
ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 3, November 2014

Copyright to IARJSET www.iarjset.com 123

Test data compression using nine coded run

length based Huffman coding

K.R.JAI BALAJI
1
, C.GANESH BABU

2
, P.SAMPATH

3
, K.GAYATHIRI

4

M.E(VLSI Design), Department of ECE, Bannari Amman institute of technology, Sathy, India 1

Professor, Department of ECE, Bannari Amman institute of technology, Sathy, India 

Associate Professor, Department of ECE, Bannari Amman institute of technology, Sathy, India3

M.E(Applied Electronics), Department of ECE, Bannari Amman institute of technology, Sathy, India 4

Abstract: In this paper, we present an compression technique to reduce the test patter volume in scan test

applications. We have proposed an encoding scheme which is run-length based Huffman coding (RLHC). This

encoding scheme together with the nine-coded compression technique enhances the test data compression ratio. In the

first step, the pre-generated test data with unspecified bits are encoded using the nine-coded compression technique

then the run-length based Huffman code is applied to the encoded data. This compression technique is very effective

when the percentage of do not cares in a test set is high. We also present the simple decoder architecture to decode the

original data. Experimental results on ISCAS’89 benchmark circuits show the effectiveness of the proposed method

compared with other test-independent compression techniques.

Index Terms: Test data compression, Nine-coded compression, Huffman coding, Design for testability, VLSI testing.

I. INTRODUCTION

Advances in VLSI technology the design of systems with

millions of transistors on a single chip is increasing

which leads to increase in volume of test pattern

required to test the circuits. The testing processes involve

storing all test vectors and test responses on the automatic

test equipment (ATE) memory. These test data are

generated using a combinational automatic test pattern

generation (ATPG) tool. The test application time

depends on the amount of test data stored on ATE, the

time required to transfer the test data from ATE to the

core and length of the scan chain. During testing the high

power can be consumed which affects the circuit

reliability [1].The power consumption depends on the

number of scan chains present in the circuit. The efficient

test data reduction can reduce the testing time, ATE

memory requirements and test power.

There are many techniques to reduce the volume of test

pattern, test application time and power consumption

when testing. The reduction in test data volume and

power can be achieved by utilizing Built-in-Self-test

(BIST) [2, 3], test data compaction or test data

compression techniques. However, BIST requires a very

high test application time. It is used for memory testing

but is not common for logic testing [3]. Hence to reduce

the test data volume test patter compression is considered

to be the best alternative scheme. The main objective of

test data compression is to reduce the number of bits used

to test the scan chains. There exists many test data

compression techniques like linear decompression based,

broadcast scan-based and code-based techniques [4,5,6].

Code based test data compression technique is more

appropriate for larger devices. Some code based test data

compression schemes are Dictionary codes, Statistical

codes, Constructive codes and Run length-based codes are

used for test data compression [4,5,6]. Among these, run-

length based codes are used to encode the repeatedly

occurring values and are an efficient method for test data

compression.

A. Main contribution

Here the 9C-RLHC is used to achieve high compression

ratio, low scan-in and scan-out power. We present two

encoding methods, one is based on run length and other is

based on Huffman coding. Both the methods exploit the

properties of nine coded compression test data to enhance

the compression ratio. First the test set with unspecified

bits is compressed with the nine-coded compression

technique and the resultant test set is further encoded with

proposed run-length based Huffman coding (RLHC)

scheme. The remaining unspecified bits in the 9C

encoded test sets are filled with logic values to reduce test

power. We also present the decompression architecture to

decode the encoded test which will take small area

overhead and overall test application time.

II. NINE-CODED COMPRESSION TECHNIQUE

In the nine-coded compression technique the input test

data block size are in fixed-length. Each input test vectors

is separated into group of bits with particular size called

block size, which is K. The block is user defined. The

encoding is performed to each of the groups in total. The

block size is selected as same, so that the blocks can be

easily separated into equal halves. The halves may be

either all 1 s, 0 s, or a set of mismatched bits, that is

http://www.iarjset.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue x, Xxxxx 2014

Copyright to IARJSET www.iarjset.com 124

combination of 1 s, 0s and x-bits (101x01x0).

Table1shows the 9C technique for block size K=8. Each

half of the input block consists of either all 0 s or all 1 s

from case 1 to 4. For case 5 to 8 one half with either all 1

s or all 0 s and another half with all mismatched bits,

indicated by uuuu , where the uuuu bits are combination

of 0 s and 1 s and other mismatched bits. The third and

fourth column indicates the symbols and description of

input blocks, this compression technique is called nine-

coded compression technique.

The unspecified bits are considered during compression

and it is noted that the encoded data still contain many

unspecified bits. The unspecified bits in the uuuu blocks

are filled using the minimum-transition filling (MTM)

technique to minimize the test power. Once the test data

is compressed using the 9c method it contains 0 s and 1 s.

The test data volume can be further reduced using RLHC

technique.

III. RUN-LENGTH BASED HUFFMAN CODING

Huffman coding is a data-coding method that reduces the

average code word length which represents the unique

pattern of a set. The Huffman coding scheme is basically

fixed-to-variable scheme.

The fixed-length input patterns restrict the exploitation of

set to achieve better compression. The efficiency of

Huffman code is depends on the frequency of occurrence

of all possible symbols in the encoded data. The long code

words are assigned to the less frequently occurred symbols

and short code words are assigned to the most frequently

occurred symbols.

Let I be the test set of IP core with fully specified bits and

the sets are partitioned into n distinct block each with

length of l. The frequencies of occurrence of n distinct

blocks b1, b2, b3,……,bn are represented as

p1,p2,p3,….,pn respectively. The entropy of the test set

H(I) specifies he minimum average number of bits for

each codeword and it can be defined as

 H(I) = ∑ pk(log2 pk) (1)

It is assumed that C1, C2,…..,Cn are the codeword length

of blocks b1,b2,….,bn respectively. The average code

word length C(I) is

 C(I) = ∑ pkck (2)

The Huffman code provides closely similar average

codeword length of theoretical entropy bound described

by using Eq.(1). If we skew the occurrence of n distinct

blocks in the test sets as much as possible, the entropy

value (I) can be again minimized. The higher probability

occurrence of distinct symbols in the compressed test set

Table 1- 9C code Formation for K=8

obtained from the 9c compression technique favors the

targeted skewing, which can minimize the H(I), and

average codeword length.

 The formation of Huffman codes and Huffman tree is

consider mh be the size of the group. The group size

represents the maximum acceptable number of 0's

contained in a runs of 0’s of length smaller than or equal

to mh, which are referred to as patterns. These patterns

are the input to the Huffman coding where for each

pattern, the number of occurrences is determined. For

group size mn, there can be maximum of mh+1 symbols

which is represented as L0, L1, L3,….,Lm, etc. For

example, symbol and pattern formation with the group

size mh=4 is shown in Table 2. The Huffman tree is built

based on the patterns and the frequency of occurrences.

To construct the Huffman tree, the patterns are arranged

in the descending order of their occurrences. Then the

sum of all the occurrences is calculated and then assigned

to the root of the Huffman tree from which the branches

are constructed. The symbols which are arranged in

descending order are directly assigned to the branches

which reduce the length of the codeword.

 The tree construction with fixed-to-variable Huffman

and the proposed run-length based Huffman code (RLHC)

codes are illustrated in Fig. 1 (A) and (B) respectively.

The three test patterns with total 48-bits are partitioned

into different symbols and the number of occurrences for

each symbol is calculated. The Huffman tree is

constructed and all the branches of the tree are marked

with alternate 0 s and 1s, as shown in Fig. 2.

Te code-word for each pattern or the symbol is computed

by back tracing the path along the tree. The branches do

not grow on both sides of the Huffman tree as described in

the conventional Huffman algorithm. We are growing the

branches only in the right-hand sides if tree which results

in shorter codeword.

This scheme is very good when the number of symbols is

limited. In our run-length based Huffman scheme, the

maximum number of symbols is limited to mh+1 for the

group size of mh. The number of symbols required to

construct the Huffman tree is reduced to 5 as compared to

9 in the case of fixed-input Huffman code. As a result the

48 bits are reduced to 24 bits in RLHC method.

http://www.iarjset.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 3, November 2014

Copyright to IARJSET www.iarjset.com 125

Table 2- Representation of symbols and patterns for mh=4

IV. DECOMPRESSION ARCHITECTURE

The decompression architecture used to decompress the

encoded data is shown in Fig. 2. It consists of two finite-

state machine (FSM) blocks, a counter, a multiplexer

(MUX), one synchronization block, and the control

signals. The decoder operates on two clocks – the external

clock ATE_CLK and the internal clock SOC_CLK.

TheFSM1 can be RLHC-FSM and the FSM2 represents

the 9C-FSM.

The FSM1 receives the compressed data, DATA_IN from

the ATE at ATE_CLK frequency. Once the FSM1detects

the code word, decoding begins at the system clock

frequency (SOC_CLK) and the DEC_EN is set to1.When

FSM1decodes the data, it does not receive any data from

the ATE. The ACK_H is set to1,as soon as the FSM1

decoded the code word and it is ready to receive the next

code word. The FSM2 receives the decoded data from

FSM1 at the frequency of the system clock. Once FSM2

detects the code word, it will decode the code word also.

For the code words C1, C2, C3 or C4, the K output bits

contain either 0s or1s. For code words C5, C6, C7, C8 or

C9, either K/2 or K bits in the output are expected to be

received directly from Data_in_u. A 3–1 MUX is used to

select 0,1 and Data_in_u. The two select Sel1 and Sel0,

come from the FSM to the MUX.

The counter is used to control the transfer of K/2 bits

from the output of MUX to the scan chain. The count

begins when the FSM sends the Cnt_en signal and it gets

incremented when it receives the INC signal. At the same

time, it activates the Sc_en signal to enable the scan-

chain. When the count reaches maximum, the K/2 bits are

sent to the scan-chain through data_out. The counter ends

the done signal to the FSM so as to send the next value to

Sel and Cnt_en. After the Done signal is sent for the

second time by the counter, the FSM deactivates the

Sc_en. Asynchronization block is used to synchronize

both the FSM's. The Fig. 3. shows the state diagram for

the RLHC FSM1 and 9C decoder FSM which is used as

FSM2.In the FSM1 the number of states is equivalent to

the total number of branches in the Huffman tree minus

one.

 Fig. 1. Code formation and its tree construction

There are maximum off our states which represent the

group size mh. The FSM starts from state S1, and changes

its state based on DATA_in_ bit from ATE. After

detecting a code word, decoding begins at the frequency

of system clock and FSM back to its default state i.e. S1

state. For example, when the input data stream to be 01,

the decoder changes its state from S1 to S2 and again

from S2 to S1 and sets the decoder output to1000 which

indicate the decompressed output 0000. The length of the

code word is equal to the number of ATE clock cycles

needed to detect a code word. This FSM is activated as

soon as the DEC_EN goes high and it receives input

DATA_IN from the ATE.

 Fig. 2. Decompression architecture

http://www.iarjset.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue x, Xxxxx 2014

Copyright to IARJSET www.iarjset.com 126

Once the decoding is done, the CMP signal goes high and

the output DATA_OUT1 is given to the synchronization

block. In the FSM2 consists of six states from S1 to S6.

Since there are nine code words used during compression,

nine possible outputs also are there after decompression,

which can be denoted by N0–N8. Each time a code word

is decoded by FSM2, the Cnt_en signal and the scan_en

signal go high and the counter counts upto K/2 before

sending a done signal. When a Done signal received in

the second time, the Sc_en signal goes low. For both the

FSMs, each time the decoded output is obtained for one

received code word, the state controller starts again from

starting state, S1.This happens when the ACK_H or

ACK_M goes high for FSM1and when the ACK signal

goes high forFSM2.

The synchronous circuit is used to synchronize the

operations between FSM1 and FSM2 which is shown in

fig. 4. It consists of memory, a register, a MUX, a control

unit and XOR gates. The input data to the register is

obtained from the FSM1. The control unit does the basic

controlling of all the elements inside the unit. When the

CMP signal goes high, the control unit sends select line

value SEL_S to the MUX and the output of the MUX is

then XORed with the output from the register. If the

output of this XOR gate is 0, it means that a 9C code

word is available as the output from the synchronization

block which is given as the input DATA_IN1

totheFSM2tobe decoded.

Fig. 3. Finite state machine for 9C-FSM and RLHS-FSM

Fig. 4. FSM synchronization circuit

V. EXPERIMENTAL RESULTS

 The compression results of 9C-RLHC method for

different block sizes. The last column shows the best case

compression ratio obtained for each circuit. The 9C-

RLHC method achieves a maximum compression ratio of

85.3% for s13207 circuit. In order to show the

effectiveness of the proposed 9C-RLHC compression

technique on reduction of test data volume over other

methods, we have compared our results with other

Huffman based techniques.

Table 5 shows the reduction percentage of test data

volume for the proposed 9C-RLHC method against other

schemes like Huffman [7], selective Huffman [8], VIHC

[9], opt Huff [10], V2V Huffman [11] methods. On

average, the proposed 9C-RLHC method achieves the

compression ratio of 77.5%. Also, the 9C-RLHC provides

the test data volume reduction of 58.4%, 35.1%, 36.2%,

29.6%, 21.1% against [7, 8, 9, 10, 11] methods

respectively.

We also demonstrate the effectiveness of our multistage

compression methods against other multistage/multilevel

compression methods presented in the literature like RL-

Huffman coding [12] and multilevel Huffman coding [13]

methods. The 9C-RLHC method shows the reduction of

34.4% and 14.6% over [12, 13] respectively. In the

comparison, we have not included the multilevel

compression technique presented in [14] since it use

different test sets. As shown, when 9C-RLH methods

yield better compression and technique shows much

higher reduction of test data volume.

Table 3- Compression results for different block sizes in

9C-RLHC technique.

http://www.iarjset.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 3, November 2014

Copyright to IARJSET www.iarjset.com 127

Table 4- Comparison of total power (scan-in and scan-out

mode) reductions against [15].

VI CONCLUSION

The test data compression scheme to reduce the test data

volume is presented in this paper. The 9C-RLHC method

exploits the frequency of occurrence of identical blocks.

While this technique enhances the test data compressions

in scan-based test applications, the 9C-RLHC provides

better compression ratio and lesser area overhead. The

test application time is also reduced as single-stage

compression scheme. Experimental results ensure that

substantial reduction in test data volume can be obtained.

These techniques can be used to test SoC with IP cores

since the compression and decompression are design

independent. We can extend these schemes for multi-

scan-based embedded core by modifying the decoder

architecture to enhance the test application time.

Table 5- Compressed-data reduction % of 9C-RLHC with others

REFERENCES
[1] P.Girard, Survey of low-power testing of VLSI circuits, IEEE Design

Test Comput. 19 (3) (2002) 82–92.

[2] Bo Ye, Qian Zhao, Duo Zhou, Xiaohua Wang, Min Luo, “Test data

compression using alternating variable run length code”, Elsevier,

Integration, the VLSI journal, Vol.44, 2011, pp. 103-110.

[3] A. Chandra, K. Chakrabarty, System-on-a-chip Test Data Compression

and Decompression Architecture based on Golomb Codes, IEEE

Trans. On Computer-Aided Des. Integr. Circuits and System, Vol. 20,

no. 3, 2001, pp. 355-368.

[4] Nur A. Touba, Survey of Test Vector Compression Techniques, IEEE

Design & Test of computers, July 2006, pp.294-303.

[5] Usha S. Mehta, Kankar S.Dasgupta, and Niranjan M. Devashrayee,

Run-Length-Based Test DataCompression Techniques: How Far from

Entropy and Power Bounds?- A Survey, Hindawi Publishing

Corporation, VLSI Design, Volume 2010.

[6] Zainalabedin Navabi. (2011). Digital System Test and Testable Design

Using VHDL Models and Architectures.

[7] D. Huffman, A method for the construction of minimum-redundancy

codes, Proc. IRE40 (9) (1952) 1098–1101.

[8] A.Jas, J.Ghosh-Dastidar, M.-. Ng, N.Touba, An efficient test vector

compres-sion scheme usings elective Huffman coding, IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst.22 (6) (2003) 797–806.

[9] P.T.Gonciari, B.M.Al-Hashimi, N.Nicolici, Variable-length input

Huffman coding for system-on-a-chip test, IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst.22(6)(2003)783–796.

[10] X.Kavousianos, E.Kalligeros, D.Nikolos, Optimal selective Huffman

coding for test-data compression ,IEEETrans. Comput.56 (8) (2007)

1146–1152.

[11] X.Kavousianos, E.Kalligeros, D.Nikolos, Test data compression based

on variable-to-variable Huffman encoding with code word reusability,

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.27 (7)

(2008) 1333–1338.

[12] M.Nourani, M.H.Tehranipour, RL-Huffman encoding for test

compression and power reduction in scan applications, ACM Trans.

Design Autom. Electron. Syst. 10(1) (2005) 91–115.

[13] X. Kavousianos, E.Kalligeros, D.Nikolos, Multi level Huffman

coding: an efficient test-data compression method for IP cores, IEEE

Trans. Comput.- Aided Design Integr. Circuits Syst.26 (6) (2007)

1070–1083.

[14] L.Lingappan, S.Ravi, A.Raghunathan ,N.Jha, S.Chakradhar, Test-

volume reduction in systems-on-a-chip using heterogeneous and multi

level compression techniques, IEEETrans. Comput.-Aided Design

Integr. Circuits Syst.25 (10) (2006) 2193–2205.

http://www.iarjset.com/

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue x, Xxxxx 2014

Copyright to IARJSET www.iarjset.com 128

[15] S.I.Hamzaoglu, J.H.PatelS, Test set compaction algorithms for

combinational circuits, IEEE Trans.Comput.-Aided Design

Integr.Circuits Syst.19 (8) (2000) 957–963.

[16] C.Krishna, N.Touba, Reducing test data volume using LFSR reseeding

with seed compression, in: Proceedings of the International Test

Conference, 2002, pp. 321–330.

[17] W.-C.Lien, K.-J.Lee, T.-Y.Hsieh, Atest-per-clock LFSR reseeding

algorithm for concurrent reduction on tests equence length and test

data volume, in: Proceedings of the Asian Test Symposium, 2012,

pp.278–283.

[18] S.Reda, A.Orailoglu, Reducing test application time through test data

mutation encoding, in: Proceedings on Design, Automation and Testin

Europe Conference and Exhibition,2002,2002,pp.387–393.

[19] I.Bayraktaroglu, A.Orailoglu, Test volume and application time

reduction through scan chain concealment, in: Proceedings on Design

Automation Conference, 2001,pp.151–155.

[20] E.H.Volkerink, A.Khoche, S.Mitra,Packet-based input test data

compression techniques ,in: IEEE International Test Conference (TC),

2002, pp.154–163.

http://www.iarjset.com/

	INTRODUCTION
	NINE-CODED COMPRESSION TECHNIQUE

