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1. INTRODUCTION 

   A complete sub graph of G is one whose vertices are 

pair wise adjacent. Finding a clique of a fixed size k is a 

well-known NP-complete problem known as k-clique [1]. 

The corresponding optimization problem i.e. finding the 

maximum complete sub graph of G is known as the 

Maximum Clique Problem (MCP). Maximum cliques size 

of a graph is also called clique number of the graph and is 

represented by ω(G). Maximum clique problem is 

equivalent to the independent set problem as well as to the 

minimum vertex cover problem. There are many 
application areas on MCP; Bioinformatics [2; 3], Social 

Networks [4], coding theory, fault diagnosis, geometry, 

computer vision and pattern recognition etc. as surveyed 

in [5], etc. Since it is NP-hard problem, so it is difficult to 

obtain a polynomial time algorithm to find exact solution, 

but with proper understanding of previous work some 

better algorithm may be devised to achieve significant 

performance, and using heuristic based greedy approach, 

near optimal solution can be found efficiently.  

The rest of the sections are presented as follows, Section 

3 discusses about the review of related works. The paper 

is concluded in Section 4. 
 

2. NOTATIONS 

Given a graph G(V, E), where V is the set of vertices and 

E is the set of edges, d(v) is degree of vertex vϵV, and 

N(v) is a set of neighbors of vertex v. U is candidate set to 

be searched to improve clique size at each recursive 

search step. C is a clique under improvement and updated 

locally within the iteration. C* is the clique and is updated 

globally at the end of each iteration, i.e. if |C|>|C*| then 

C*=C. N(C) is set of vertices which are connected to all 

vertices in C. N1(C) is set of vertices which are connected 
to all vertices in C, but one (except any one of them). 

   

3. REVIEW OF RELATED WORKS 
     Algorithms for NP-hard problems typically fall into 

one of three categories: exact algorithms, approximation 

algorithms, and Heuristic approach. The following 

sections describe each.  

 

 

 
 

3.1. EXACT ALGORITHMS 

A brute force algorithm to test whether a graph G contains 

a k-vertex clique, and to find any such clique, is to examine 

each sub-graph with at least k vertices and check to see 

whether it forms a clique. This algorithm takes time O 

(nk k2), since there are O(nk) sub graphs to check, each of 

which has O(k2) edges whose presence in G needs to be 

checked. 

The progress in computing technologies in 1960’s motivated 

the development of many new enumerative algorithms. Bron 

and Kerbosch [6] proposed a backtracking method that 

requires only polynomial storage space and excludes all the 

possibility of computing the same clique twice, as shown in 

the Algorithm-1 below. Tomita et al. [7] developed a 

modification of this approach that has the time complexity of 

O (3n/3). 

 

Algorithm 1: Classic Bron-Kerbosch algorithm 

Bron-Kerbosch (C, U, X) 

   1 if U and X are both empty then 

   2     report C as a maximal clique 

//choose the pivot vertex u in U ∪ X as the vertex with the 
highest number of neighbors in P 

    3 for each vertex v in U do 

    4       Bron-Kerbosch (C ∪ v, U ∩ N(v), X ∩ N(v)) 

    5      U ← U \ v 

    6      X ← X ∪ v 

Initially C and X is set to Φ, and U contains all the 

vertexes the graph. At each recursive step, C is the 

temporary result, U is the set of the possible candidates 

set and X is excluded set. N(v) indicates the neighbors of 
the vertex v. The algorithm works as follow: Pick a vertex 

v from U to expand. Add v to C and remove its non-

neighbors from U and X. Then pick another vertex from 

the new U and repeat the process. Continue until U is 

empty. Once U is empty, if X is empty then report the 

content of C as a new maximal clique (if it’s not then C 

contains a subset of an already found clique). Now 

backtrack to the last vertex picked and restore U, C and X 

as they were before the choice, remove the vertex from U 

and add it to X, then expand the next vertex. If there is no 

more vertexes in U then backtrack to the superior level. 
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David Eppstain demonstrated [8] is a modified version 

of the Bron-Kerbosch (including the comment mentioned 

in the algorithm 1) that visits the graph using a 

degeneracy ordering, and can be bound in complexity to 

O (d ∗ n ∗ 3d/3). Given d, degeneracy of the graph, an 
ordering in which each vertex has d or less neighbors 

which can be found out in linear time.  

The above-mentioned algorithms were designed for 

finding all maximal cliques in a graph, but solving the 

maximum clique problem requires finding only one 

maximum clique, which are described in subsequent 

sections. 

Tarjan and Trojanowski [9] proposed a recursive 

algorithm for the maximum independent set problem with 

the time complexity of O (2n/3). Finding Maximum 
independent set in a graph G, is equivalent to finding 

maximum clique in its (G) complement graph (G’). An 

improved result to obtain the time complexity of O 

(20.288n) is presented in [10]. Robson [11] further 

improved the best known worst-case complexity to O 

(2n/4). Exact algorithms are guaranteed to return optimal 

results. However all known exact algorithms for 

MAXCLIQUE are relatively slow as they take 

exponential time in the worst case. They mainly are based 

on the backtracking and Branch& Bound framework. 

A well-known exact algorithm (denoted by EA; 

enumerative algorithm) is developed by Carraghan and 

Pardalos in [12] which is shown in Algorithm-2. Despite 

its simplicity, this algorithm constitutes an important step 

for exact solving of the MCP and provides the basis for 

many later improved exact clique algorithms. The 

functioning of this algorithm is discussed below in detail. 

  

Algorithm 2: Branch &Bound algorithm 

Function clique (U; C) 

1:    if |U| =0 then 

2:         if |C| >| C*| then 

3:            |C*|:=|C| 
4:           New record; save it. 

5:       end if 

6:       return 

7:    end if 

8:  while U  ≠Ø do 

9:        if |C| + |U| < |C*| then 

10:             return 

11:       end if 

12:    i:=min{j | vj∈U} 

13:   U:=U-{v} 

14:   clique(U ∩ N(vi); C ∪ i) 

15:  end while 

16:  return 

function old 

17:  C*:=Φ 

18:  clique (V; Φ) 

19:  return 

Vertex set V is first ordered and one by one vertex is 

explored.  The vertices of G is ordered into a list L = (v1, 

v2..., vn) where vn is the vertex of minimum degree in G, 

vn-1 is the vertex of minimum degree in G-{vn}, and vn-2 is 

the vertex of minimum degree in G-{vn,vn-1}, and so on. 
Once the maximum clique induced on a particular vertex 

(vi) is found, it (vi) is removed from the ordered list. In 

other word, every time N(v) is found in right side from 

itself of the ordered list. Each vertex of U is connected to 

all the vertices of C, i.e. any vertex v of U can be added to 

C to obtain a larger clique C'= C ∪ {v}. The pruning is 
done when the set U (current candidate set) becomes so 

small that even if all vertices in U would be added to the 

C (current local clique size), the size of that clique would 

not exceed that of the largest clique found previously.  

Osterg’ard [13] proposed a better heuristic algorithm (it 

is named here REA, i.e. reverse enumerative algorithm) 

with reverse ordering as in algorithm-2, and improved the 

upper bound of the EA algorithm described above. It uses 

an additional memory to store the clique size induced on 

each of the vertex and latter it is used while pruning the 
branch. The algorithm remembers the maximum clique 

found for each vertex previously into a special array b. So 

b[i] is the maximum clique for the i-th vertex while 

searching backward. This number is used later as:  if we 

search for a clique of size greater than |C*|, then the 

search on vi is pruned if vi is going to be the (j + 1)-th 

vertex in C and j+ b[i] ≤ |C*|. 

 To estimate the upper bound of the maximum clique, 

graph coloring techniques are also applied to the subgraph 

induced by the candidate set U. This is based on a general 

fact that if a graph can be colored with k colors, then the 

maximum clique in this graph must be smaller or equal to 
k. Using color classes instead of b[i] (mentioned above) 

improves the upper bound and consequently reduces the 

size of the search tree. In addition, vertex coloring is also 

a NP-hard problem and may be expensive so, a greedy 

method may be used for coloring the vertex set U during 

the search process. The following (next two) algorithms 

of exact solution, unlike EA and REA, are based on color 

based pruning. 

Deniss Kumlander [14] proposes a better heuristic based 

vertex coloring and backtracking for MCP. The algorithm 

works like REA, mentioned above, but the pruning 
condition is different. Initially vertices are sorted by color 

classes obtained by a heuristic vertex coloring algorithm, 

i.e. V = {Cn, Cn-1, ..., , C1}, where Ci is a set of vertices 

with I, i.e. i-th color class. First of all cliques that could be 

built on vertices in C1 are explored. Then on vertices of 

C1 and C2, i.e. of the first and second color classes, and so 

forth.  In other word; at the i-th step all cliques can that 

contain vertices of {Ci, Ci-1, ..., , C1}, are explored. The 

algorithm remembers the maximum clique found for each 

for each color class into a special array b. So b[i] is the 

maximum clique for a subgraph formed by {Ci, Ci-1, ..., 

C1} vertices while searching backward. This is used later 
for pruning the branch; if max clique size found so far is 

|C*| , then if vi is going to be (j + 1)-th vertex in C and it 

belongs to the k-th colour class and j+ b[k] ≤|C*|, then the 

branch is pruned. 

An improved version of greedy coloring based algorithm 

is proposed as MCS [15], which uses a recoloring 

strategy using greedy approximate coloring procedure and 

outperform its predecessors in [16; 17]. Vertices of U are 

sorted in an ascending order with respect to the color 

number. Then, at each search step of the algorithm, MCS 

selects a vertex v ∈ U in reverse order (the last vertex in 
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the reordered set U belongs to the highest color class) and 

the color number associated with each vertex becomes an 

upper bound for the maximum clique in the remaining 

subgraph in the current branch to be searched. The basic 

idea of pruning in MCS is that if a vertex v ∈ U with color 
number Kv< (|C*| - |C|), then the vertex v needs not to be 

searched from. The number of vertices to be searched can 

be further reduced, as to move vertex v with color >(|C*| - 

|C|) to other color class less than (|C*| - |C|) in number. 

This is how number of vertices to be searched in the 

candidate set U is reduced. 

A constraint programming (CP) based B&B algorithm is 

proposed in [18, 19], it provides a heuristic to filter the 

vertices which is not going to lead to a better clique size.  

The approach that can be viewed as an adaptation and a 
generalization of the Bron & Kerbosh's [6] ideas for 

enumerating the maximal cliques of a graph. The upper 

bound of clique size in every branching step is computed 

based on a matching algorithm rather than a coloring 

algorithm. For each vertex v in U, the upper bound of 

clique size roughly corresponds to the number of vertices 

in N (v) minus matching number in the subgraph (its 

complement graph) induced by N(v). If this upper bound 

plus the current clique size is smaller than the maximum 

clique obtained in previous all branching steps, then v can 

be removed from U. Concluding the section of exact 

algorithm for MCP, the Table-1 summarizes the reviewed 
algorithms 

 

3.2. APPROXIMATION ALGORITHMS 

Approximation algorithms guarantee a result within a 

certain range of the optimal solution and typically run 

faster than exact algorithms. Much theoretical work has 

been done to determine the extent to which MAXCLIQUE 

is approximable. Hastad's [20] proved that there is no 

polynomial time approximation for MAXCLIQUE within 

a factor of n1-k for any k > 0 given a graph with n vertices, 
unless NP = P. A greedy algorithm that builds a maximal 

independent set by recursively adding a minimum degree 

vertex and removing its neighbors has an approximation 

ratio of (∆+2)/3 [21]. But the current best-known 

polynomial-time approximation algorithm achieves only 

an approximation guarantee of O(n.(loglogn)2 /(logn)3) 

[22]. 

 
3.3. HEURISTIC APPROACHES TO THE MCP 

In addition to exact and approximation algorithms, 

significant progresses on heuristic algorithms for the MCP 

also have been proposed in the recent years. In the 

following sections, the most representative heuristics of 

the problem are reviewed.   

 
3.3.1. Greedy Algorithms 

A simple greedy algorithm for MAXCLIQUE is illustrated 

in Figure 1. Greedy algorithms are frequently used in 

practice for their simplicity of implementation and better 

efficiency. In greedy heuristics, decisions on vertex to be 

added in or moved out are usually based on some static 

information associated with the vertices in the candidate 

set like their degrees. Several improvements to the static 

greedy heuristics have been proposed in the literature. For 
instance QUALEX-MS [23] and DAGS [24], are 

described below.  

 

Table-1: Comparative view of major exact algorithm of MCP 

 

Algorith

m Name 

Author Name Yea

r 

Approach/ Methodology Remarks on Performance 

Classic 
Bron-
Kerbosch 
algorithm 

Bron, Coen; 
Kerbosch, Joep 

1973 backtracking method, excludes all 
the possibility of computing the 
same clique twice 

O (3n/3), enumerates all maximal 
cliques. 

MIS/MCP R. E. Tarjan 
and A. E. 

Trojanowski 

1977 The algorithm uses a recursive, or 
backtracking scheme and concept of 

connected component and 
dominance 

O (2n/3), it is much faster than 
enumeration of all independent set. 

EA R. Carraghan, 
P.M. Pardalos 

1990 The basic B&B approach A landmark B&B algorithm, provides 
basis for many later B&B algorithms.  

REA P.R.J. 
Östergård 

2002 Based on B & B, Uses reverse 
ordering of vertices as in EA 

Performance is better than EA 

CPR Jean-Charles 
Regin 

2003 Constraint programming, Using 
B&B  and filtering of vertices to 
tighten 
the candidate set U 

Faster than another B&B algorithm 
using filtering 
algorithms on most DIMACS1 instances 

VColor-
BT-u 

Deniss 
Kumlander 

2006 Based on Color Classes and 
Backtracking 

Outperform EA and REA 

MCS E. Tomita, et. 

al. 

2010 B&B based on subgraphs coloring An improved version of subgraph 

coloring algorithm, performs better than 
it’s all predecessors on many DIMACS 
instances 

 

 

                                                             
1
 The DIMACS benchmark set is created in  1990’s for the second DIMACS challenge on Clique [34], consisting of 80 graphs on satisfiability, 

Graph Coloring, and MCP. ftp://dimacs.rutgers.edu/pub/challenge/graph/ 
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Table-2: Comparative view of major heuristic algorithm of MCP 

 

Algorith

m Name 

Author Name Year Approach/ Methodology Remarks on Performance 

RLS Battiti & 
Protasi 

2001 Reactive Tabu local search, past-
sensitive scheme to determine the 
amount of diversification 

A landmark MCP algorithm, reports 
better results than its predecessors 
 

KLS Katayama, 
Hamamoto, & 
Narihisa, 

2004 Iterated local search 
 

Achieves a good performance on the 
MANN instances from DIMACS but a 
bad performance 
on the keller and brock instance 

DAGS Grosso, A., 
Locatelli, M., 
& Croce, F. D. 

2004 Greedy algorithm including plateau 
search. 

One of the best performing algorithms, 
shows highly competitive results 
compared with a number of state-of-the-
art algorithms before DLS 

QUALE
X-MS 

S. Busygin 2006 greedy algorithm, vertex weights 
are derived from a nonlinear 
programming formulation 

Better Performance on Brock instances of 
DIMACS. 

DLS Pullan W, 
Hoos H 

2006 Dynamic local search, a simplified 
DAGS including perturbation 
strategies. 

One of the best performing algorithms, 
shows  highly competitive results 
compared with a number of state-of-the-
art algorithms before DLS 

PLS Pullan W 2006 Phased based local search, a robust 
form of DLS 

performances comparable to or better 
than  
DLS on the DIMACS benchmarks, 
except Keller6 

CLS W. Pullan, F. 
Mascia, M. 
Brunato 

2011 Cooperating local search, advance 
than PLS and paralleled algorithm 
 

Shows excellent performances on both 
DIMACS and BOSHLIB benchmarks. 
One of the current best performing MCP 
algorithms 

ELS S. Balaji 2013 Edge based local search for vertex 
cover and equivalently for MCP 

Performance on both DIMACS and 
BOSHLIB benchmarks is equivalent or 
better than PLS. 

TALS K K Singh, K 
K Naveena,  G 
Likhitaa 

2014 Target aware local search, 
Incorporating prohibition time for 
diversification. 

Outperform DLS excluding some 
instances of P-hat, gen-400, keller-6 of 
DIMACS benchmarks.  

 

QUALEX-MS [26] is a deterministic iterated greedy 

construction algorithm that uses vertex weights derived 

from a nonlinear programming formulation of 

MAXCLIQUE. In QUALEX-MS, each vertex is assigned 

a weight which represents its importance towards 

inclusion in the improving clique. Vertex weights are 

calculated on the basis of the coordinates of stationary 

points of nonlinear programs derived from the Motzkin-
Straus nonlinear formulation of the MCP.   

 

The Deep Adaptive Greedy Search (DAGS) algorithm 

[24] uses an iterated greedy construction procedure. 

Starting from basic greedy heuristics, modifications and 

improvements are combined in a two-phase heuristic 

procedure. In the first phase an improved greedy procedure 

is applied starting from each node of the graph; Based on 

number of occurrence of vertices a reduced subset of 

nodes is selected, and in second phase an adaptive greedy 

algorithm is applied to find more promising cliques around 
such nodes. A generic Add move procedure is shown in 

Figure-1, and swap move is shown in Figure-2. Swap 

move is used to fine Plateau (Clique with same size by 

swapping a vertex from C, current clique). DAGS 

adaptively adjusts the vertex weights used for vertex 

selection by a restart mechanism in order to guide the 

search towards less explored areas. Computational results 

show that DAGS is superior to QUALEX-MS for most of 

the tested DIMACS instances.  

3.3.2. Local Search 

Local search is a sophisticated way of using greedy 

approach. However, greedy algorithms can easily fall into 

the local optima due to their short-sighted nature. Several 

improvements to the greedy heuristics [2, 3, 4] have been 

proposed in the literature.  

 

Although most algorithms have been empirically 
evaluated on benchmark instances from the Second 

DIMACS Challenge but, somewhat unsurprisingly, there 

is no single best algorithm.  Nevertheless, there are few 

heuristic MAX-CLIQUE algorithms, described in the 

subsequent sections that achieved state-of-the-art 

performance.  

 

 

 

 

 
 

 

 

 

 

 

                                              
Figure 1: A simple greedy procedure called in Clique 

improvement phase 

Procedure Greedy_Add(v∈V)  

1.  Set C = C∪{v};  

2.  set N(C)=N(v) 

2.  while N(C) ≠ Ø do 

3.       Select i ∈N(C) 

          Such that |N (i ) ∩ N(C)| is maximum; 

4.       Set C = C ∪ {i }; 

5.  end while; 

6. return C; //C is clique induced on v 
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Figure 2: A simple greedy procedure called for Plateau search 

 

A Reactive Local Search (RLS) [25] is a landmark 

algorithm to the MCP which is based on local search 

complemented by a feedback (past-sensitive) scheme to 

determine the amount of diversification. RLS applies add 

moves whenever this is possible and selects a vertex with 

the highest number of adjacent vertices in current 

Candidate set to add to the clique C, similar as shown in 

Figure-1. If no allowed addition exists, RLS searches for 

an allowed vertex to drop from C such that its removal 

leads to the larger set of vertex additions to C. If no 
allowed moves are available, a random vertex is picked 

from C and is dropped. As soon as a vertex is moved, it is 

put into the tabu list and remains prohibited for the next T 

iterations. The prohibition period T is related to the 

amount of desired diversification, and is determined by 

feedback information from the search history.   

 

The k-opt algorithm (KLS) [26] is based on a 

conceptually simple variable depth search procedure that 

uses elementary search steps in which a vertex is added to 

or removed from the current clique. It is also called 

Iterated KLS (IKLS for short). It consists of three 
components: Local Search at which KLS is used, a Kick 

called LEC-Kick that escapes from local optima, and 

Restart that occasionally diversifies the search by moving 

to other points in the search space. Drop moves are 

considered only when no add or swap move exists. There 

is some evidence that it performs better than RLS on many 

instances from the DIMACS benchmark sets. 

The Dynamic Local Search (DLS-MC) [27] scheme is 

actually a slight simplification of the Deep Adaptive 

Greedy Search of [24]. The algorithm works as follows: 

After picking an initial random vertex and setting it to the 
current clique, all vertices penalties are initialized to zero. 

Then, the search alternates between an iterative 

improvement phase, during which suitable vertices are 

repeatedly added to the current clique C, and a plateau 

search phase, as shown in Figure-2, in which repeatedly 

one vertex of C is swapped with a vertex currently not 

contained in C. In the case of expand, the selection is 

made from the set N(C); it is called improving neighbor 

set of C, as shown in Figure-1. In plateau Search, on the 

other hand, the vertex to be added to C is selected from 

N1(C), which comprises the vertices that are connected to 

all vertices in C except for one vertex, say v′, which is 
subsequently removed from C. vertex penalties are used 

throughout the entire search, a “forgetting” mechanism 

decreasing the penalties is added. When no add and swap 

moves are possible, some perturbation strategies are 

applied to the clique C. The perturbation mechanism 

chooses a random vertex or the last selected vertex and is 

added in C, and then removes all vertices from C that are 

not connected to v and then the process of iterative 
improvement phase and plateau search phase is repeated 

alternatively. The authors report a very good performance 

on the DIMACS instances. The algorithm is realized 

through efficient supporting data structures leads to 

smaller overall CPU times. 

The family of stochastic local search algorithms, dynamic 

local search (DLS) [27], phased local search (PLS) [28] 

and cooperating local search (CLS) [29], share similar 

strategies of clique expansion, plateau search, and search 

stagnation.  

 
The phased Based local search (PLS) [28], to cope with 

graphs of different structures, combines three sub-

algorithms which use different vertex selection rules: 

random selection, random selection among those with the 

highest vertex degree, and random selection within those 

with the lowest vertex penalty. For each of the sub 

problem the procedure of DLS-MC is adopted. The 

performance results for PLS with respect to DLS-MC 

shows that, excluding keller6, PLS is either comparable or 

more efficient than DLS-MC for all DIMACS instances. 
  

 The Cooperating Local search (CLS) [29] further 

improves over PLS by incorporating four low level 

heuristics which are effective for different instance types. 

CLS is a parallel maximum clique hyper-heuristic that 

incorporates four low level heuristics, namely: Greedy 

Search (GREEDY) which uses random selection within 

vertex degree, is biased towards higher degree vertices and 

performs limited plateau search; Level Search (LEVEL) 

which uses random selection within vertex degree, is 

biased towards higher degree vertices and performs 
extensive plateau search; Focus Search (FOCUS) which 

obtains an average vertex degree for the clique as close as 

possible to this focus vertex degree, and, Penalty Search 

(PENALTY), which further enhance the performance of 

CLS,  relevant information is passed between low level 

heuristics in order to guide the search to particular areas of 

the search domain. CLS shows excellent performances on 

both DIMACS and BOSHLIB benchmarks. 

 

The edge based local search (ELS) algorithm [35] is a 

two phased local search method for MCP. The ELS works 
as follows: In first phase, the algorithm greedily constructs 

a vertex cover and the second phase a pruning technique is 

applied to make the vertex cover more optimal. A 

parameter ’support’ of vertices defined in the ELS greatly 

reduces the number of random selections of vertices and 

also the number of iterations and running times. While 

constructing optimal vertex cover, the vertex with more 

support is chosen greedily first. For each v ∈ V in the 

graph G, support of a vertex is defined by  

                 s(v)=d(v)+∑u∈N(v)d(u) 

The quantity ∑u∈N(v)d(u) is the sum of the degree of 

vertices which are adjacent to v.  The computational 

results on BHOSLIB and DIMACS benchmark graphs 

Procedure Greedy_swap_Move (v∈V)  

 
1.  Select i ∈N1(C) 

              Such that |N (i) ∩ N(C)| is maximum or at random 

2.   Set C = C ∪ {i}; 
3.   Remove/drop vertex v from C, which is not adjacent to i 

4.   Store the removed vertex v in tabu list,  
          // vertices in tabu list are prohibited till a 
specified no. of iteration. 

4.  Update N(C) & N1(C), excluding the vertices in tabu list. 
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indicate that ELS is capable of achieving state-of-the-art-

performance for the maximum clique with reasonable 

average running times 

The Target Aware Local Search for Maximum Clique 

Problem (TALS) [30] is a multi restart based and 
improved local search techniques. The diversification in 

order to avoid the local optima is achieved by 

incrementing the prohibition time for selected vertex in the 

current clique so that in next restart, the vertex is delayed 

from being selected for a certain number of iteration. It 

starts with a clique C with single vertex and iteration is 

initialized by zero. Iteratively a vertex from N1(C) is 

selected with maximum degree and its prohibition time is 

lesser than the current iteration value. Subsequently the 

iteration is incremented by one, and prohibition time of the 

selected vertex is incremented by some adjusted integral 
value, which later decreases as iteration is increases. If 

there is no more vertices in N1(C) and if target clique is 

not achieved, then the process restart with a new initial 

vertex. TALS outperforms other algorithm like RLS, DLS-

MC for most of the DIMACS graphs. 

In the past few years, many powerful variations of the 

basic local search procedure have been developed, many 

of which are inspired by natural occurring phenomena.  

Examples of such algorithms are simulated annealing [32], 

and genetic algorithm [33]. Surprisingly all these 

techniques have been applied to the maximum clique 
problem. As concluding remark of the section, the 

reviewed algorithms are summarized in the Table-2. 
 

4. CONCLUSION 

Based on the review of various algorithms, summarization 

of similar algorithms is tabulated; additionally we take a 

privilege to comment on future enhancement of the 

algorithms. In the view of exact solution of MCP, further 

enhancement may be done by applying better coloring 

algorithm to estimate upper bound. In the view of local 
search technique, we can see that hardly a algorithm 

dominates on all other algorithm, it is because of diverse 

structure of graphs. One possible way to overcome this 

deficiency may be to incorporate multiple search operators 

within a single algorithm and incorporating dynamic 

capability to decide the most permissible operators to be 

triggered during the search process. 
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