
ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2203 15

Survey of Algorithms on Maximum Clique

Problem

Krishna Kumar Singh
1
, Dr. Ajeet Kumar Pandey

2

Lecturer, RGUKT- Nuzvid, AP, India1

AECOM Hyderabad, AP, India2

Abstract: The maximum clique problem (MCP) is to determine a sub graph of maximum cardinality. A clique is a sub

graph in which all pairs of vertices are mutually adjacent. Based on existing surveys, the main goal of this paper is to

provide a simplified version and comprehensive review on Maximum clique problem. This review intends to encourage

and motivate new researchers in this area. Though capturing the complete literature in this regard is beyond scope of the

paper, but it is tried to capture most of the representative papers from similar approaches.

Keywords: Maximum Clique problem, Exact Algorithms, Approximation Algorithms, Heuristic Approach, Local search.

1. INTRODUCTION

 A complete sub graph of G is one whose vertices are

pair wise adjacent. Finding a clique of a fixed size k is a

well-known NP-complete problem known as k-clique [1].

The corresponding optimization problem i.e. finding the

maximum complete sub graph of G is known as the

Maximum Clique Problem (MCP). Maximum cliques size

of a graph is also called clique number of the graph and is

represented by ω(G). Maximum clique problem is

equivalent to the independent set problem as well as to the

minimum vertex cover problem. There are many
application areas on MCP; Bioinformatics [2; 3], Social

Networks [4], coding theory, fault diagnosis, geometry,

computer vision and pattern recognition etc. as surveyed

in [5], etc. Since it is NP-hard problem, so it is difficult to

obtain a polynomial time algorithm to find exact solution,

but with proper understanding of previous work some

better algorithm may be devised to achieve significant

performance, and using heuristic based greedy approach,

near optimal solution can be found efficiently.

The rest of the sections are presented as follows, Section

3 discusses about the review of related works. The paper

is concluded in Section 4.

2. NOTATIONS

Given a graph G(V, E), where V is the set of vertices and

E is the set of edges, d(v) is degree of vertex vϵV, and

N(v) is a set of neighbors of vertex v. U is candidate set to

be searched to improve clique size at each recursive

search step. C is a clique under improvement and updated

locally within the iteration. C* is the clique and is updated

globally at the end of each iteration, i.e. if |C|>|C*| then

C*=C. N(C) is set of vertices which are connected to all

vertices in C. N1(C) is set of vertices which are connected
to all vertices in C, but one (except any one of them).

3. REVIEW OF RELATED WORKS
 Algorithms for NP-hard problems typically fall into

one of three categories: exact algorithms, approximation

algorithms, and Heuristic approach. The following

sections describe each.

3.1. EXACT ALGORITHMS

A brute force algorithm to test whether a graph G contains

a k-vertex clique, and to find any such clique, is to examine

each sub-graph with at least k vertices and check to see

whether it forms a clique. This algorithm takes time O

(nk k2), since there are O(nk) sub graphs to check, each of

which has O(k2) edges whose presence in G needs to be

checked.

The progress in computing technologies in 1960’s motivated

the development of many new enumerative algorithms. Bron

and Kerbosch [6] proposed a backtracking method that

requires only polynomial storage space and excludes all the

possibility of computing the same clique twice, as shown in

the Algorithm-1 below. Tomita et al. [7] developed a

modification of this approach that has the time complexity of

O (3n/3).

Algorithm 1: Classic Bron-Kerbosch algorithm

Bron-Kerbosch (C, U, X)

 1 if U and X are both empty then

 2 report C as a maximal clique

//choose the pivot vertex u in U ∪ X as the vertex with the
highest number of neighbors in P

 3 for each vertex v in U do

 4 Bron-Kerbosch (C ∪ v, U ∩ N(v), X ∩ N(v))

 5 U ← U \ v

 6 X ← X ∪ v

Initially C and X is set to Φ, and U contains all the

vertexes the graph. At each recursive step, C is the

temporary result, U is the set of the possible candidates

set and X is excluded set. N(v) indicates the neighbors of
the vertex v. The algorithm works as follow: Pick a vertex

v from U to expand. Add v to C and remove its non-

neighbors from U and X. Then pick another vertex from

the new U and repeat the process. Continue until U is

empty. Once U is empty, if X is empty then report the

content of C as a new maximal clique (if it’s not then C

contains a subset of an already found clique). Now

backtrack to the last vertex picked and restore U, C and X

as they were before the choice, remove the vertex from U

and add it to X, then expand the next vertex. If there is no

more vertexes in U then backtrack to the superior level.

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2203 16

David Eppstain demonstrated [8] is a modified version

of the Bron-Kerbosch (including the comment mentioned

in the algorithm 1) that visits the graph using a

degeneracy ordering, and can be bound in complexity to

O (d ∗ n ∗ 3d/3). Given d, degeneracy of the graph, an
ordering in which each vertex has d or less neighbors

which can be found out in linear time.

The above-mentioned algorithms were designed for

finding all maximal cliques in a graph, but solving the

maximum clique problem requires finding only one

maximum clique, which are described in subsequent

sections.

Tarjan and Trojanowski [9] proposed a recursive

algorithm for the maximum independent set problem with

the time complexity of O (2n/3). Finding Maximum
independent set in a graph G, is equivalent to finding

maximum clique in its (G) complement graph (G’). An

improved result to obtain the time complexity of O

(20.288n) is presented in [10]. Robson [11] further

improved the best known worst-case complexity to O

(2n/4). Exact algorithms are guaranteed to return optimal

results. However all known exact algorithms for

MAXCLIQUE are relatively slow as they take

exponential time in the worst case. They mainly are based

on the backtracking and Branch& Bound framework.

A well-known exact algorithm (denoted by EA;

enumerative algorithm) is developed by Carraghan and

Pardalos in [12] which is shown in Algorithm-2. Despite

its simplicity, this algorithm constitutes an important step

for exact solving of the MCP and provides the basis for

many later improved exact clique algorithms. The

functioning of this algorithm is discussed below in detail.

Algorithm 2: Branch &Bound algorithm

Function clique (U; C)

1: if |U| =0 then

2: if |C| >| C*| then

3: |C*|:=|C|
4: New record; save it.

5: end if

6: return

7: end if

8: while U ≠Ø do

9: if |C| + |U| < |C*| then

10: return

11: end if

12: i:=min{j | vj∈U}

13: U:=U-{v}

14: clique(U ∩ N(vi); C ∪ i)

15: end while

16: return

function old

17: C*:=Φ

18: clique (V; Φ)

19: return

Vertex set V is first ordered and one by one vertex is

explored. The vertices of G is ordered into a list L = (v1,

v2..., vn) where vn is the vertex of minimum degree in G,

vn-1 is the vertex of minimum degree in G-{vn}, and vn-2 is

the vertex of minimum degree in G-{vn,vn-1}, and so on.
Once the maximum clique induced on a particular vertex

(vi) is found, it (vi) is removed from the ordered list. In

other word, every time N(v) is found in right side from

itself of the ordered list. Each vertex of U is connected to

all the vertices of C, i.e. any vertex v of U can be added to

C to obtain a larger clique C'= C ∪ {v}. The pruning is
done when the set U (current candidate set) becomes so

small that even if all vertices in U would be added to the

C (current local clique size), the size of that clique would

not exceed that of the largest clique found previously.

Osterg’ard [13] proposed a better heuristic algorithm (it

is named here REA, i.e. reverse enumerative algorithm)

with reverse ordering as in algorithm-2, and improved the

upper bound of the EA algorithm described above. It uses

an additional memory to store the clique size induced on

each of the vertex and latter it is used while pruning the
branch. The algorithm remembers the maximum clique

found for each vertex previously into a special array b. So

b[i] is the maximum clique for the i-th vertex while

searching backward. This number is used later as: if we

search for a clique of size greater than |C*|, then the

search on vi is pruned if vi is going to be the (j + 1)-th

vertex in C and j+ b[i] ≤ |C*|.

 To estimate the upper bound of the maximum clique,

graph coloring techniques are also applied to the subgraph

induced by the candidate set U. This is based on a general

fact that if a graph can be colored with k colors, then the

maximum clique in this graph must be smaller or equal to
k. Using color classes instead of b[i] (mentioned above)

improves the upper bound and consequently reduces the

size of the search tree. In addition, vertex coloring is also

a NP-hard problem and may be expensive so, a greedy

method may be used for coloring the vertex set U during

the search process. The following (next two) algorithms

of exact solution, unlike EA and REA, are based on color

based pruning.

Deniss Kumlander [14] proposes a better heuristic based

vertex coloring and backtracking for MCP. The algorithm

works like REA, mentioned above, but the pruning
condition is different. Initially vertices are sorted by color

classes obtained by a heuristic vertex coloring algorithm,

i.e. V = {Cn, Cn-1, ..., , C1}, where Ci is a set of vertices

with I, i.e. i-th color class. First of all cliques that could be

built on vertices in C1 are explored. Then on vertices of

C1 and C2, i.e. of the first and second color classes, and so

forth. In other word; at the i-th step all cliques can that

contain vertices of {Ci, Ci-1, ..., , C1}, are explored. The

algorithm remembers the maximum clique found for each

for each color class into a special array b. So b[i] is the

maximum clique for a subgraph formed by {Ci, Ci-1, ...,

C1} vertices while searching backward. This is used later
for pruning the branch; if max clique size found so far is

|C*| , then if vi is going to be (j + 1)-th vertex in C and it

belongs to the k-th colour class and j+ b[k] ≤|C*|, then the

branch is pruned.

An improved version of greedy coloring based algorithm

is proposed as MCS [15], which uses a recoloring

strategy using greedy approximate coloring procedure and

outperform its predecessors in [16; 17]. Vertices of U are

sorted in an ascending order with respect to the color

number. Then, at each search step of the algorithm, MCS

selects a vertex v ∈ U in reverse order (the last vertex in

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2203 17

the reordered set U belongs to the highest color class) and

the color number associated with each vertex becomes an

upper bound for the maximum clique in the remaining

subgraph in the current branch to be searched. The basic

idea of pruning in MCS is that if a vertex v ∈ U with color
number Kv< (|C*| - |C|), then the vertex v needs not to be

searched from. The number of vertices to be searched can

be further reduced, as to move vertex v with color >(|C*| -

|C|) to other color class less than (|C*| - |C|) in number.

This is how number of vertices to be searched in the

candidate set U is reduced.

A constraint programming (CP) based B&B algorithm is

proposed in [18, 19], it provides a heuristic to filter the

vertices which is not going to lead to a better clique size.

The approach that can be viewed as an adaptation and a
generalization of the Bron & Kerbosh's [6] ideas for

enumerating the maximal cliques of a graph. The upper

bound of clique size in every branching step is computed

based on a matching algorithm rather than a coloring

algorithm. For each vertex v in U, the upper bound of

clique size roughly corresponds to the number of vertices

in N (v) minus matching number in the subgraph (its

complement graph) induced by N(v). If this upper bound

plus the current clique size is smaller than the maximum

clique obtained in previous all branching steps, then v can

be removed from U. Concluding the section of exact

algorithm for MCP, the Table-1 summarizes the reviewed
algorithms

3.2. APPROXIMATION ALGORITHMS

Approximation algorithms guarantee a result within a

certain range of the optimal solution and typically run

faster than exact algorithms. Much theoretical work has

been done to determine the extent to which MAXCLIQUE

is approximable. Hastad's [20] proved that there is no

polynomial time approximation for MAXCLIQUE within

a factor of n1-k for any k > 0 given a graph with n vertices,
unless NP = P. A greedy algorithm that builds a maximal

independent set by recursively adding a minimum degree

vertex and removing its neighbors has an approximation

ratio of (∆+2)/3 [21]. But the current best-known

polynomial-time approximation algorithm achieves only

an approximation guarantee of O(n.(loglogn)2 /(logn)3)

[22].

3.3. HEURISTIC APPROACHES TO THE MCP

In addition to exact and approximation algorithms,

significant progresses on heuristic algorithms for the MCP

also have been proposed in the recent years. In the

following sections, the most representative heuristics of

the problem are reviewed.

3.3.1. Greedy Algorithms

A simple greedy algorithm for MAXCLIQUE is illustrated

in Figure 1. Greedy algorithms are frequently used in

practice for their simplicity of implementation and better

efficiency. In greedy heuristics, decisions on vertex to be

added in or moved out are usually based on some static

information associated with the vertices in the candidate

set like their degrees. Several improvements to the static

greedy heuristics have been proposed in the literature. For
instance QUALEX-MS [23] and DAGS [24], are

described below.

Table-1: Comparative view of major exact algorithm of MCP

Algorith

m Name

Author Name Yea

r

Approach/ Methodology Remarks on Performance

Classic
Bron-
Kerbosch
algorithm

Bron, Coen;
Kerbosch, Joep

1973 backtracking method, excludes all
the possibility of computing the
same clique twice

O (3n/3), enumerates all maximal
cliques.

MIS/MCP R. E. Tarjan
and A. E.

Trojanowski

1977 The algorithm uses a recursive, or
backtracking scheme and concept of

connected component and
dominance

O (2n/3), it is much faster than
enumeration of all independent set.

EA R. Carraghan,
P.M. Pardalos

1990 The basic B&B approach A landmark B&B algorithm, provides
basis for many later B&B algorithms.

REA P.R.J.
Östergård

2002 Based on B & B, Uses reverse
ordering of vertices as in EA

Performance is better than EA

CPR Jean-Charles
Regin

2003 Constraint programming, Using
B&B and filtering of vertices to
tighten
the candidate set U

Faster than another B&B algorithm
using filtering
algorithms on most DIMACS1 instances

VColor-
BT-u

Deniss
Kumlander

2006 Based on Color Classes and
Backtracking

Outperform EA and REA

MCS E. Tomita, et.

al.

2010 B&B based on subgraphs coloring An improved version of subgraph

coloring algorithm, performs better than
it’s all predecessors on many DIMACS
instances

1
 The DIMACS benchmark set is created in 1990’s for the second DIMACS challenge on Clique [34], consisting of 80 graphs on satisfiability,

Graph Coloring, and MCP. ftp://dimacs.rutgers.edu/pub/challenge/graph/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2203 18

Table-2: Comparative view of major heuristic algorithm of MCP

Algorith

m Name

Author Name Year Approach/ Methodology Remarks on Performance

RLS Battiti &
Protasi

2001 Reactive Tabu local search, past-
sensitive scheme to determine the
amount of diversification

A landmark MCP algorithm, reports
better results than its predecessors

KLS Katayama,
Hamamoto, &
Narihisa,

2004 Iterated local search

Achieves a good performance on the
MANN instances from DIMACS but a
bad performance
on the keller and brock instance

DAGS Grosso, A.,
Locatelli, M.,
& Croce, F. D.

2004 Greedy algorithm including plateau
search.

One of the best performing algorithms,
shows highly competitive results
compared with a number of state-of-the-
art algorithms before DLS

QUALE
X-MS

S. Busygin 2006 greedy algorithm, vertex weights
are derived from a nonlinear
programming formulation

Better Performance on Brock instances of
DIMACS.

DLS Pullan W,
Hoos H

2006 Dynamic local search, a simplified
DAGS including perturbation
strategies.

One of the best performing algorithms,
shows highly competitive results
compared with a number of state-of-the-
art algorithms before DLS

PLS Pullan W 2006 Phased based local search, a robust
form of DLS

performances comparable to or better
than
DLS on the DIMACS benchmarks,
except Keller6

CLS W. Pullan, F.
Mascia, M.
Brunato

2011 Cooperating local search, advance
than PLS and paralleled algorithm

Shows excellent performances on both
DIMACS and BOSHLIB benchmarks.
One of the current best performing MCP
algorithms

ELS S. Balaji 2013 Edge based local search for vertex
cover and equivalently for MCP

Performance on both DIMACS and
BOSHLIB benchmarks is equivalent or
better than PLS.

TALS K K Singh, K
K Naveena, G
Likhitaa

2014 Target aware local search,
Incorporating prohibition time for
diversification.

Outperform DLS excluding some
instances of P-hat, gen-400, keller-6 of
DIMACS benchmarks.

QUALEX-MS [26] is a deterministic iterated greedy

construction algorithm that uses vertex weights derived

from a nonlinear programming formulation of

MAXCLIQUE. In QUALEX-MS, each vertex is assigned

a weight which represents its importance towards

inclusion in the improving clique. Vertex weights are

calculated on the basis of the coordinates of stationary

points of nonlinear programs derived from the Motzkin-
Straus nonlinear formulation of the MCP.

The Deep Adaptive Greedy Search (DAGS) algorithm

[24] uses an iterated greedy construction procedure.

Starting from basic greedy heuristics, modifications and

improvements are combined in a two-phase heuristic

procedure. In the first phase an improved greedy procedure

is applied starting from each node of the graph; Based on

number of occurrence of vertices a reduced subset of

nodes is selected, and in second phase an adaptive greedy

algorithm is applied to find more promising cliques around
such nodes. A generic Add move procedure is shown in

Figure-1, and swap move is shown in Figure-2. Swap

move is used to fine Plateau (Clique with same size by

swapping a vertex from C, current clique). DAGS

adaptively adjusts the vertex weights used for vertex

selection by a restart mechanism in order to guide the

search towards less explored areas. Computational results

show that DAGS is superior to QUALEX-MS for most of

the tested DIMACS instances.

3.3.2. Local Search

Local search is a sophisticated way of using greedy

approach. However, greedy algorithms can easily fall into

the local optima due to their short-sighted nature. Several

improvements to the greedy heuristics [2, 3, 4] have been

proposed in the literature.

Although most algorithms have been empirically
evaluated on benchmark instances from the Second

DIMACS Challenge but, somewhat unsurprisingly, there

is no single best algorithm. Nevertheless, there are few

heuristic MAX-CLIQUE algorithms, described in the

subsequent sections that achieved state-of-the-art

performance.

Figure 1: A simple greedy procedure called in Clique

improvement phase

Procedure Greedy_Add(v∈V)

1. Set C = C∪{v};

2. set N(C)=N(v)

2. while N(C) ≠ Ø do

3. Select i ∈N(C)

 Such that |N (i) ∩ N(C)| is maximum;

4. Set C = C ∪ {i };

5. end while;

6. return C; //C is clique induced on v

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2203 19

Figure 2: A simple greedy procedure called for Plateau search

A Reactive Local Search (RLS) [25] is a landmark

algorithm to the MCP which is based on local search

complemented by a feedback (past-sensitive) scheme to

determine the amount of diversification. RLS applies add

moves whenever this is possible and selects a vertex with

the highest number of adjacent vertices in current

Candidate set to add to the clique C, similar as shown in

Figure-1. If no allowed addition exists, RLS searches for

an allowed vertex to drop from C such that its removal

leads to the larger set of vertex additions to C. If no
allowed moves are available, a random vertex is picked

from C and is dropped. As soon as a vertex is moved, it is

put into the tabu list and remains prohibited for the next T

iterations. The prohibition period T is related to the

amount of desired diversification, and is determined by

feedback information from the search history.

The k-opt algorithm (KLS) [26] is based on a

conceptually simple variable depth search procedure that

uses elementary search steps in which a vertex is added to

or removed from the current clique. It is also called

Iterated KLS (IKLS for short). It consists of three
components: Local Search at which KLS is used, a Kick

called LEC-Kick that escapes from local optima, and

Restart that occasionally diversifies the search by moving

to other points in the search space. Drop moves are

considered only when no add or swap move exists. There

is some evidence that it performs better than RLS on many

instances from the DIMACS benchmark sets.

The Dynamic Local Search (DLS-MC) [27] scheme is

actually a slight simplification of the Deep Adaptive

Greedy Search of [24]. The algorithm works as follows:

After picking an initial random vertex and setting it to the
current clique, all vertices penalties are initialized to zero.

Then, the search alternates between an iterative

improvement phase, during which suitable vertices are

repeatedly added to the current clique C, and a plateau

search phase, as shown in Figure-2, in which repeatedly

one vertex of C is swapped with a vertex currently not

contained in C. In the case of expand, the selection is

made from the set N(C); it is called improving neighbor

set of C, as shown in Figure-1. In plateau Search, on the

other hand, the vertex to be added to C is selected from

N1(C), which comprises the vertices that are connected to

all vertices in C except for one vertex, say v′, which is
subsequently removed from C. vertex penalties are used

throughout the entire search, a “forgetting” mechanism

decreasing the penalties is added. When no add and swap

moves are possible, some perturbation strategies are

applied to the clique C. The perturbation mechanism

chooses a random vertex or the last selected vertex and is

added in C, and then removes all vertices from C that are

not connected to v and then the process of iterative
improvement phase and plateau search phase is repeated

alternatively. The authors report a very good performance

on the DIMACS instances. The algorithm is realized

through efficient supporting data structures leads to

smaller overall CPU times.

The family of stochastic local search algorithms, dynamic

local search (DLS) [27], phased local search (PLS) [28]

and cooperating local search (CLS) [29], share similar

strategies of clique expansion, plateau search, and search

stagnation.

The phased Based local search (PLS) [28], to cope with

graphs of different structures, combines three sub-

algorithms which use different vertex selection rules:

random selection, random selection among those with the

highest vertex degree, and random selection within those

with the lowest vertex penalty. For each of the sub

problem the procedure of DLS-MC is adopted. The

performance results for PLS with respect to DLS-MC

shows that, excluding keller6, PLS is either comparable or

more efficient than DLS-MC for all DIMACS instances.

 The Cooperating Local search (CLS) [29] further

improves over PLS by incorporating four low level

heuristics which are effective for different instance types.

CLS is a parallel maximum clique hyper-heuristic that

incorporates four low level heuristics, namely: Greedy

Search (GREEDY) which uses random selection within

vertex degree, is biased towards higher degree vertices and

performs limited plateau search; Level Search (LEVEL)

which uses random selection within vertex degree, is

biased towards higher degree vertices and performs
extensive plateau search; Focus Search (FOCUS) which

obtains an average vertex degree for the clique as close as

possible to this focus vertex degree, and, Penalty Search

(PENALTY), which further enhance the performance of

CLS, relevant information is passed between low level

heuristics in order to guide the search to particular areas of

the search domain. CLS shows excellent performances on

both DIMACS and BOSHLIB benchmarks.

The edge based local search (ELS) algorithm [35] is a

two phased local search method for MCP. The ELS works
as follows: In first phase, the algorithm greedily constructs

a vertex cover and the second phase a pruning technique is

applied to make the vertex cover more optimal. A

parameter ’support’ of vertices defined in the ELS greatly

reduces the number of random selections of vertices and

also the number of iterations and running times. While

constructing optimal vertex cover, the vertex with more

support is chosen greedily first. For each v ∈ V in the

graph G, support of a vertex is defined by

 s(v)=d(v)+∑u∈N(v)d(u)

The quantity ∑u∈N(v)d(u) is the sum of the degree of

vertices which are adjacent to v. The computational

results on BHOSLIB and DIMACS benchmark graphs

Procedure Greedy_swap_Move (v∈V)

1. Select i ∈N1(C)

 Such that |N (i) ∩ N(C)| is maximum or at random

2. Set C = C ∪ {i};
3. Remove/drop vertex v from C, which is not adjacent to i

4. Store the removed vertex v in tabu list,
 // vertices in tabu list are prohibited till a
specified no. of iteration.

4. Update N(C) & N1(C), excluding the vertices in tabu list.

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2203 20

indicate that ELS is capable of achieving state-of-the-art-

performance for the maximum clique with reasonable

average running times

The Target Aware Local Search for Maximum Clique

Problem (TALS) [30] is a multi restart based and
improved local search techniques. The diversification in

order to avoid the local optima is achieved by

incrementing the prohibition time for selected vertex in the

current clique so that in next restart, the vertex is delayed

from being selected for a certain number of iteration. It

starts with a clique C with single vertex and iteration is

initialized by zero. Iteratively a vertex from N1(C) is

selected with maximum degree and its prohibition time is

lesser than the current iteration value. Subsequently the

iteration is incremented by one, and prohibition time of the

selected vertex is incremented by some adjusted integral
value, which later decreases as iteration is increases. If

there is no more vertices in N1(C) and if target clique is

not achieved, then the process restart with a new initial

vertex. TALS outperforms other algorithm like RLS, DLS-

MC for most of the DIMACS graphs.

In the past few years, many powerful variations of the

basic local search procedure have been developed, many

of which are inspired by natural occurring phenomena.

Examples of such algorithms are simulated annealing [32],

and genetic algorithm [33]. Surprisingly all these

techniques have been applied to the maximum clique
problem. As concluding remark of the section, the

reviewed algorithms are summarized in the Table-2.

4. CONCLUSION

Based on the review of various algorithms, summarization

of similar algorithms is tabulated; additionally we take a

privilege to comment on future enhancement of the

algorithms. In the view of exact solution of MCP, further

enhancement may be done by applying better coloring

algorithm to estimate upper bound. In the view of local
search technique, we can see that hardly a algorithm

dominates on all other algorithm, it is because of diverse

structure of graphs. One possible way to overcome this

deficiency may be to incorporate multiple search operators

within a single algorithm and incorporating dynamic

capability to decide the most permissible operators to be

triggered during the search process.

REFERENCES
[1]. Karp, R.M: In: Miller, R.E., Thatcher, J.W. “Reducibility among

Combinatorial Problems”, pp. 85–103. Plenum, New York, 1972.

[2]. Bahadur D.K.C., Akutsu, T., Tomita, E., Seki, Fujiyama, “Point

matching under non-uniform distortions and protein side chain

packing based on an efficient maximum clique algorithm”, Genome

Informatics, 13, pp. 143–152, 2002

[3]. Etsuji Tomita, Tatsuya Akutsu and Tsutomu Matsunaga,” Efficient

Algorithms for Finding Maximum and Maximal Cliques: Effective

Tools for Bioinformatics”, ISBN 978-953-307-475-7, 2011.

[4]. B. Balasundaram, S. Butenko, I.V. Hicks,” Clique relaxations in

social network analysis: The maximum k-plex problem”,

Operations Research, 59(1): pp. 133–142, 2011.

[5]. Pardalos, P.M., Bomze,I.M., Budinich,M. and Pelillo,M. “ The

Maximum Clique Problem. in Handbook of Combinatorial
Optimization, Supplement”, Vol. A, Kluwer Academic Publishers: 1-74, 1999

[6]. Bron, Coen; Kerbosch, Joep, Algorithm 457, “finding all cliques of
an undirected graph”, Commun. ACM (ACM) 16 (9): pp. 575–577, 1973.

[7]. Tomita, Etsuji; Tanaka, Akira; Takahashi, Haruhisa, “The worst-

case time complexity for generating all maximal cliques and computational

experiments”, Theoretical Computer Science 363(1): pp. 28–42, 2006.

[8]. Eppstein, David; Strash, Darren, "Listing all maximal cliques in

large sparse real-world graphs", 10th International Symposium on

Experimental Algorithms, 2011.

[9]. R. E. Tarjan and A. E. Trojanowski. “Finding a maximum

independent set”, SIAM Journal of Computing, 6: pp. 537–546, 1977.

[10]. F. V. Fomin, F. Grandoni, and D. Kratsch. “Measure and conquer:

domination – a case study”. In L. Caires, G. F. Italiano, L.

Monteiro, C. Palamidessi, and M. Yung, editors, Proc. ICALP’05,

volume 3580 of Lecture Notes in Computer Science, pp. 191–203.

SpringerVerlag, 2005.

[11]. J. M. Robson. “Finding a maximum independent set in time

O(2
n/4

)”, Technical Report 1251-01, LaBRI, Université de

Bordeaux I, 2001.

[12]. R. Carraghan, P.M. Pardalos, “An exact algorithm for the maximum

clique problem”, Oper. Research.Letters. Vol. 9 pp 375–382, 1990.

[13]. Östergård, P.R.J., “A fast algorithm for the maximum clique

problem”. Volume 120, Issues 1–3, pp. 197–207, 2002.

[14]. Deniss Kumlander, “A simple and efficient algorithm for the

maximum clique finding reusing a Heuristic vertex colouring”.

IADIS international journal on computer science and information

systems, Vol. 1, No. 2 , pp. 32-49, ISSN: 1646-3692, 2006.

[15]. E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, M. Wakatsuki, “A

simple and faster branch-and bound algorithm for finding a

maximum clique”. Lecture Notes in Computer Science, volume

5942, pp. 191–203, 2010.

 [16] E. Tomita, T. Seki, “An efficient branch-and-bound algorithm for

finding a maximum clique”. Lecture Notes in Computer Science,

volume 2731, pp, 278–289, 2003.

[17] E. Tomita, T. Kameda, “An efficient branch-and-bound algorithm

for finding a maximum clique with computational experiments”.

Journal of Global Optimization, 37(1): 95–111, 2007

[18]. Kluwer, M. Milano, "Using Constraint Programming to solve the

Maximum Clique Problem", editor Constraints and Integer

Programming, 2003.

[19]. Jean-Charles Regin, “Solving the Maximum Clique Problem with

Constraint Programming”, Proceedings CPAIOR, 2003

[20]. J. H’astad, “Clique is hard to approximate within n
1-e

 “. Acta

Mathematica, 182(1):105–142, 1999.

[21]. M. M. Halld´orsson and J. Radhakrishnan, “Greed is good:

Approximating independent sets in sparse and bounded-degree

graphs”. Algorithmica, 18:145–163, 1997.

[22]. U. Feige, “Approximating maximum clique by removing subgraphs”.

SIAM Journal on Discrete Mathematics, 18(2):219–225, 2004.

[23]. S. Busygin, “A new trust region technique for the maximum weight
clique problem”, Discrete Applied Mathematics, 154(15): 2080–2096, 2006.

[24]. Grosso, A., Locatelli, M., & Croce, F. D, “Combining swaps and

node weights in an adaptive greedy approach for the maximum

clique problem”. Journal of Heuristics, 10, pp. 135–152, 2004

[25]. Battiti, R., & Protasi, M. “Reactive local search for the maximum

clique problem”, Algorithmica, 29, 610–637, 2001.

[26]. Katayama, K., Hamamoto, A., & Narihisa, H. (2004). “Solving the

maximum clique problem by k-opt local search”. In Proceedings-

ACM Symposium on Applied computing, pp. 1021–1025, 2004.

[27]. Pullan W, Hoos H., ” Dynamic local search for the maximum clique

problem”. Journal of Artificial Intelligence Research 25, pp. 159-185, 2006.

[28]. Pullan, “Phased local search for the maximum clique problem”, J

Comb Optimum 12:303–323, 2006.

[29]. W. Pullan, F. Mascia, M. Brunato, “Cooperating local search for the

maximum clique problem”. Journal of Heuristics, 17(2): 181–199, 2011.

[30]. K K Singh, K K Naveena, G. Likhitaa “Target Aware Local Search

for Maximum Clique Problem”, IFRSA’s International Journal Of

Computing, Vol. 4 Issue. 3, 2014.

[31]. S. Balaji, “ A New Effective Local Search Heuristic for the

Maximum clique problem “, World Academy of Science,

Engineering and Technology, International Journal of
Mathematical, Computational, Physical and Quantum Engineering Vol:7 No:5, 2013
[32]. Xiutang Geng, Jin Xu, Jianhua Xiao, Linqiang Pan, “A simple

simulated annealing algorithm for the maximum clique problem”,

Information Sciences 177, 5064–5071, 2007.

[33]. A.S. Murthy, G. Parthasarathy and V.U.K. Sastry, “Clique finding-

A genetic approach”, Proc. 1st IEEE Conf. Evolutionary

Computing.: 18-21, 1994.

[34]. D.S. Johnson and M.A. Trick (eds.), “Cliques, Coloring, and

Satisfiability: Second DIMACS Implementation Challenge”,

DIMACS Vol. 26, American Mathematical Society, 1996 (see also

http://dimacs.rutgers.edu/Volumes/Vol26.html).

	INTRODUCTION
	NOTATIONS
	REVIEW OF RELATED WORKS
	EXACT ALGORITHMS
	APPROXIMATION ALGORITHMS
	HEURISTIC APPROACHES TO THE MCP
	Greedy Algorithms
	Local Search
	CONCLUSION

