
ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2207 30

Loss of Significance in Numerical Computing

and Polynomial Form

Ashu Vij

 Assistant Professor, P.G. Department of Mathematics, D.A.V. College, Amritsar

Abstract: One of the most common and often avoidable peculiarity of using normalized floating point representation

of numbers in arithmetic operations is Loss of Significance. Use of normalized floating point representation of numbers

in arithmetic operations lead to some unexpected and unfortunate consequences. There is a loss of significance due to

subtraction of a number from nearly equal number. In this paper, the loss of significance in various numerical

computations including its effect in polynomial form is discussed. Further, the alternatives to minimize its effect on

final result are also discussed.

Keywords: normalized floating point, arithmetic operations, loss of significance, polynomial form.

INTRODUCTION

In computing, floating point describes a method of

representing an approximation of a real number in a way

that can support a wide range of values. The numbers are,

in general, represented approximately to a fixed number

of significant digits and scaled using an exponent. The

base for the scaling is normally 2, 10 or 16. The typical

number that can be represented exactly is of the form:

Significant digits × base exponent

In scientific notation, the given number is scaled by

a power of 10 so that it lies within a certain range-

typically between 1 and 10, with the radix point appearing

immediately after the first digit.

 A floating-point number consists of:

 A signed (meaning positive or negative) digit

string of a given length in a given base (or radix). This

digit string is referred to as the significand, coefficient or

the mantissa . The length of the significand determines

the precision to which numbers can be represented. The

radix point position is assumed to always be somewhere
within the significand—often just after or just before the

most significant digit, or to the right of the rightmost (least

significant) digit

 A signed integer exponent, also referred to as the

characteristic or scale, which modifies the magnitude of

the number.

Leonardo Torres y Quevedo in 1914 designed an electro-

mechanical version of the Analytical Engine of Charles

Babbage which included floating-point arithmetic.[2] In
1938, Konrad Zuse of Berlin completed the Z1, the first

mechanical binary programmable computer; it was,

however, unreliable in operation.[3] It worked with 24-bit

binary floating-point numbers having a 7-bit signed

exponent, a 16-bit significand (including one implicit bit),

and a sign bit. The memory used sliding metal parts to

store 64 words of such numbers. The more reliable relay-

based Z3, completed in 1941 had representations for plus

and minus infinity. It implemented defined operations with

infinity such as 1/∞ = 0 and stopped on undefined

operations like 0×∞. It also implemented the square root

operation in hardware.Konrad Zuse, architect of

the Z3computer, which used 22-bit binary floating point.

Loss of Significance in numerical computation

The fact that floating-point numbers cannot precisely

represent all real numbers, and that floating-point

operations cannot precisely represent true arithmetic

operations, leads to many surprising situations. This is

related to the finite precision with which computers
generally represent numbers. For example, the non-

representability of 0.1 and 0.01 (in binary) means that the

result of attempting to square 0.1 is neither 0.01 nor the

representable number closest to it. In 24-bit (single

precision) representation, 0.1 (decimal) was given

previously as

 e = −4; s = 110011001100110011001101, which is

0.100000001490116119384765625 exactly. Squaring this

number gives

0.010000000298023226097399174250313080847263336

181640625 exactly.

Squaring it with single-precision floating-point hardware

(with rounding) gives

0.010000000707805156707763671875 exactly. But the

representable number closest to 0.01 is

0.009999999776482582092285156250 exactly. So we

can see that using normalized floating point representation

of numbers in arithmetic operations lead to some

unexpected and unfortunate consequences. One of the

most common and often avoidable peculiarity of using

normalized floating point representation of numbers in
arithmetic operations is Loss of Significance. In this paper,

the loss of significance in various numerical computations

including its effect in polynomial form is discussed.

Further, the alternatives to minimize its effect on final

result are also discussed.

 Subtraction of a number from nearly equal number may

result in loss of significance or cancellation error.

To understand this loss, let us consider the numbers a=

.6439E2 and b=.6398E2 each correct to four significant

digits.

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 2, February 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2207 31

Now the difference a-b = .6439E2 - .6398E2 = .0041E2,

which is correct to only two significant digits.

This loss of significant figures in the subtraction of two

nearly equal numbers is greatest source of inaccuracy in
most computations and sometimes make the result of

computations worthless. This inaccuracy due to loss of

significant figures can be lessened and sometimes can be

avoided entirely as follows:

1. We should approximate each number involved in

subtraction operation with sufficient accuracy before

subtraction operation. But this method does not work

when two given numbers are known to be true only to a

few significant digits.

2. We should transform the expression whose value
is desired into another expression so that the subtraction

operation can be avoided.

Foe example: To evaluate f(x)= 1-cosx for x=0.05, we

have,

f(0.05)=1-cos0.05= .1000E1-.9988E0

=.1000E1 - .0999E1 =.0001E1

Although 1 is exact and cos0.05 is correct to four

significant digits but f(0.05) is correct to only one

significant digit. To avoid this loss of significance, we

proceed as follows:

1-cosx = (1-cosx) (1+cosx)/ (1+cosx) = sin2x/(1+cosx)
It can be verified that more accurate approximation is

obtained for above calculation .

Loss of significance in polynomial forms

In all areas of numerical analysis, polynomials are used as

the basic means of approximation. So the representation

and evaluation of polynomials is a basic topic in

numerical analysis. A customary way to represent a

polynomial is as follows:

 F(x) = a0 + a1x +a2x
2+…. +anx

n

with certain coefficients a0,a1,a2,……

This power form of polynomial is a standard way to

specify a polynomial. But this form may lead to loss of

significance[4].

For example: if we construct power form of a straight line

which take the values f(1000)= 1/3 and f(1001)= -2/3 then

power form for this polynomial is f(x)=1000.3-x in five

digit floating point arithmetic.

But f(1000)=.3 and f(1001)= -0.7 using the polynomial
form using same five digit floating point arithmetic. This

lead to loss of significant digits as we can recover only one

decimal digit.

To avoid this loss of significant digits , we use shifted

power form as follows:

We change the centre at 1000 then

f(x)= 0.33333-(x-1000)

 Using same five digit floating point arithmetic,

f(1000)=.33333 and f(1001)= -0.66667

Similarly Chebchev’s polynomial or orthogonal

polynomial approximation can also be used as a remedy

for loss of significance.

CONCLUSION
One should take due care while dealing with floating point

numbers in normalized form on computer. The fact that

floating-point numbers cannot precisely represent all real

numbers, and that floating-point operations cannot

precisely represent true arithmetic operations, leads to

many surprising situations. This is related to the

finite precision with which computers generally represent

numbers. There is an incident to see how things can go

wrong while using floating point numbers. On 25 February

1991, a loss of significance in a MIM-104 Patriot missile

battery prevented it intercepting an incoming Scud missile
in Dhahran, Saudi Arabia, contributing to the death of 28

soldiers from the U.S. Army's 14th Quartermaster

Detachment[5]

REFERENCES
1. Scarborough,j.b.: Numerical mathematical analysis,1958

2. B. Randell (1982). From analytical engine to electronic digital

computer: the contributions of Ludgate, Torres, and Bush. IEEE

Annals of the History of Computing, 04(4). pp. 327–341.

3. "Konrad Zuse’s Legacy: The Architecture of the Z1 and Z3" . IEEE

Annals of the History of Computing 19 (2): 5–15.

1997. doi:10.1109/85.586067 .

4. Elementary numerical analysis: an algorithmic approach : Samuel

D. Conte/ Carl de Boor

5. "Patriot missile defense, Software problem led to system failure at

Dharhan, Saudi Arabia; GAO report IMTEC 92-26" . US

Government Accounting Office.

