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Abstract: One of the most common and often avoidable  peculiarity of using normalized floating point representation 

of numbers in arithmetic operations is Loss of Significance. Use of normalized floating point representation of numbers 

in arithmetic operations lead to some unexpected and unfortunate consequences. There is a loss of significance due to 

subtraction of a number from nearly equal number. In this paper, the loss of significance in various numerical 

computations including its effect in polynomial form is discussed. Further, the alternatives to minimize its effect on 

final result are also discussed.  
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INTRODUCTION 

In computing, floating point describes a method of 

representing an approximation of a real number in a way 

that can support a wide range of values. The numbers are, 

in general, represented approximately to a fixed number 

of significant digits and scaled using an exponent. The 

base for the scaling is normally 2, 10 or 16. The typical 

number that can be represented exactly is of the form: 

Significant digits × base exponent 

 
In scientific notation, the given number is scaled by 

a power of 10 so that it lies within a certain range- 

typically between 1 and 10, with the radix point appearing 

immediately after the first digit.  

 

 A floating-point number consists of: 

 A signed (meaning positive or negative) digit 

string of a given length in a given base (or radix). This 

digit string is referred to as the significand, coefficient or 

the mantissa . The length of the significand determines 

the precision to which numbers can be represented. The 

radix point position is assumed to always be somewhere 
within the significand—often just after or just before the 

most significant digit, or to the right of the rightmost (least 

significant) digit 

 

 A signed integer exponent, also referred to as the 

characteristic or scale, which modifies the magnitude of 

the number. 

 

Leonardo Torres y Quevedo in 1914 designed an electro-

mechanical version of the Analytical Engine of Charles 

Babbage which included floating-point arithmetic.[2] In 
1938, Konrad Zuse of Berlin completed the Z1, the first 

mechanical binary programmable computer; it was, 

however, unreliable in operation.[3] It worked with 24-bit 

binary floating-point numbers having a 7-bit signed 

exponent, a 16-bit significand (including one implicit bit), 

and a sign bit. The memory used sliding metal parts to 

store 64 words of such numbers. The more reliable relay-

based Z3, completed in 1941 had representations for plus 

and minus infinity. It implemented defined operations with 

infinity such as 1/∞ = 0 and stopped on undefined 

operations like 0×∞. It also implemented the square root  

 

operation in hardware.Konrad Zuse, architect of 

the Z3computer, which used 22-bit binary floating point. 

 

Loss of Significance in numerical computation  

The fact that floating-point numbers cannot precisely 

represent all real numbers, and that floating-point 

operations cannot precisely represent true arithmetic 

operations, leads to many surprising situations. This is 

related to the finite precision with which computers 
generally represent numbers. For example, the non-

representability of 0.1 and 0.01 (in binary) means that the 

result of attempting to square 0.1 is neither 0.01 nor the 

representable number closest to it. In 24-bit (single 

precision) representation, 0.1 (decimal) was given 

previously as 

 

 e = −4; s = 110011001100110011001101, which is 

0.100000001490116119384765625 exactly. Squaring this 

number gives  

0.010000000298023226097399174250313080847263336

181640625 exactly.  
 

Squaring it with single-precision floating-point hardware 

(with rounding) gives 

0.010000000707805156707763671875 exactly.  But the 

representable number closest to 0.01 is 

0.009999999776482582092285156250 exactly.  So we 

can see that using normalized floating point representation 

of numbers in arithmetic  operations  lead to some 

unexpected and unfortunate consequences. One of the 

most common and often avoidable  peculiarity of using 

normalized floating point representation of numbers in 
arithmetic operations is Loss of Significance. In this paper, 

the loss of significance in various numerical computations 

including its effect in polynomial form is discussed. 

Further, the alternatives to minimize its effect on final 

result are also discussed.  

 

 Subtraction of a number from nearly equal number may 

result in loss of significance or cancellation error. 

To understand this loss, let us consider the numbers a= 

.6439E2 and b=.6398E2 each correct to four significant 

digits. 
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Now the difference  a-b =  .6439E2 - .6398E2 = .0041E2, 

which is correct to only two significant digits. 

 

This loss of significant figures in the subtraction of two 

nearly equal numbers is greatest source of inaccuracy in 
most computations and sometimes make the result of 

computations worthless. This inaccuracy due to loss of 

significant figures can be lessened and sometimes can be 

avoided entirely as follows: 

 

1. We should approximate each number involved in 

subtraction operation with sufficient accuracy before 

subtraction operation. But this method does not work 

when two given numbers are known to be true only to a 

few significant digits. 

2.  We should transform the expression whose value 
is desired into another expression so that the subtraction 

operation can be avoided. 

Foe example:  To evaluate f(x)= 1-cosx for x=0.05, we 

have, 

f(0.05)=1-cos0.05= .1000E1-.9988E0 

=.1000E1 - .0999E1 =.0001E1 

Although 1 is exact and cos0.05 is correct to four 

significant digits but f(0.05) is correct to only one 

significant digit. To avoid this loss of significance, we 

proceed as follows: 

1-cosx = (1-cosx) (1+cosx)/ (1+cosx) = sin2x/(1+cosx) 
It can be verified that more accurate approximation is 

obtained for above calculation . 

 

Loss of significance in polynomial forms 

In all areas of numerical analysis, polynomials are used as 

the basic means of approximation. So the representation 

and evaluation of polynomials is a basic topic in  

numerical analysis. A customary way to represent a 

polynomial is as follows: 

 

 F(x) = a0 + a1x +a2x
2+….  +anx

n                           

with  certain coefficients a0,a1,a2,…… 
 

This power form of polynomial is a standard way to 

specify a polynomial. But this form may lead to loss of 

significance[4]. 

 

For example: if we construct power form of  a straight line 

which take the values f(1000)= 1/3 and f(1001)= -2/3 then 

power form for this polynomial is f(x)=1000.3-x in five 

digit floating point arithmetic. 

 

But f(1000)=.3 and f(1001)= -0.7 using the polynomial 
form using same five digit floating point arithmetic. This 

lead to loss of significant digits as we can recover only one 

decimal digit. 

 

To avoid this  loss of significant digits , we use shifted 

power form as follows: 

We change the centre at 1000 then  

f(x)= 0.33333-(x-1000)  
 

 Using same five digit floating point arithmetic,  

f(1000)=.33333 and f(1001)= -0.66667 
 

Similarly Chebchev’s polynomial or orthogonal 

polynomial approximation can also be used as a remedy 

for loss of significance. 

 

CONCLUSION 
One should take due care while dealing with floating point 

numbers in normalized form on computer. The fact that 

floating-point numbers cannot precisely represent all real 

numbers, and that floating-point operations cannot 

precisely represent true arithmetic operations, leads to 

many surprising situations. This is related to the 

finite precision with which computers generally represent 

numbers. There is an incident to see how things can go 

wrong while using floating point numbers. On 25 February 

1991, a loss of significance in a MIM-104 Patriot missile 

battery prevented it intercepting an incoming Scud missile 
in Dhahran, Saudi Arabia, contributing to the death of 28 

soldiers from the U.S. Army's 14th Quartermaster 

Detachment[5] 
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