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1. INTRODUCTION

Let {(X,, ,)}hen be a collection of topological space. Let
(X, 1) be a topological space with X =UX,, A € A. (X,1)
is a free union of (X,,1,) iff the following condition
satisfied TETt© VAE A TNX, €1y

If (X,,7,) is subspace of (X,t) and X, is open in X for
every A€ A, (X,1) is a free union of the subspaces
(X,, ). But the spaces (X;,t,) are not necessary to be a
subspace of X. So we will give the definition of disjoint
union topology and topological summed and investigate
some of results about topological summed in this paper.
Let {(X,,,)} be a disjoint non-empty collection of
topological spaces (X;, ;) indexed by a set A. The disjoint
union X =UX;,L€ A is a topological space with the
following topology

t={T € X:TnX, €rforeachi € A}.

T is a disjoint union topology and X is a topological
summed of a disjoint non-empty collection of topological
spaces X;. Hence, (X, 1) is a free union of (X;,1,).

In this paper we understand {(X,,t,)}en is the disjoint
non-empty collection of topological spaces indexed by a
set A and (X, 1) is the topological summed of collection
{X when

Now we will give free union of a disjoint non-empty
collection of topological spaces. Definitions, theorems and
some results for topological summed have been obtained
by using the known definitions and theorems for the
topological spaces [1], [2], [3].

2. MAIN RESULTS

Our definition to be used in the future is the following.
Definition 2.1: For (x,) y Sequence of Xand b € X,
(x), >be 3IILEAIN,EN:n>N, = x, € TK
every T € 1, containing b.

Theorem 2.1:1f t is the family in the sense of definition in
Introduction, then (X, 1) is a topological space.

Proof: For each AeEAODNX,=0€En =>0ET,,
XnX)sz;LET)szef)\‘.

For every finite subfamily {T;, T,, ..., T.} € 1, we have
(NIZ; T) NX, =N (T;nX,) for each A€ A. Since
T; € 1, for every L € A we have T; N X, € 1, and we know
(X5, 1) is topological space so Ni_;(T; N X;) € 1,. Then
Ni—1(TinX) = (N{Z; T)) NnX, €1, and hence N{_; T €
T.

for
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For every subfamily {T;, T,, ...} € t and for each A € A we
have,

(UT)nX, =U(TinXy) €y,

and hence (U;Tj)) €t ]
Theorem 2.2: For each A € A, 1y, is subfamily of .

Proof: Let A€ 1,. Then we have AnX, = A€, Also
for L#X,ANX, =@ €1, Hence, we obtain AnX, €
T, foreachh € Aandso A € 1. [
Example 2.1:Let {(X;,,)}heas be a disjoint non-empty
collection of topological spaces. It is clear that Ui T; € 1
foreach A € A, T, € 1,. Also by theorem 2.2 we obtain
T={Uig Ti:ILE AT €1y }.

Suppose now that T, is indiscrete topology. For every
A €A, we have X, € 1. Hence, T can not be indiscrete
topology except A = {1}.

Theorem 2.3: tis indiscrete iff A = {1}.

Proof: It is obtained from the above example easily. m

Theorem 2.4: t is discrete iff for each L€ A, 1) is

discrete.

Proof: If T is discrete, {x} is element of =, for each x € X.

Then {x} n X, is element of t,, for each L € A. As X, is

discrete, x € X is element of X, for only one A € A , i.e.,

for =L, x€X, = {x}nX,; =0 and {x}nX, ={x} €

7). SO 1, contain all single point set, for each A € A. So 1,

is discrete topology.

Conversely, if 1, is discrete, T is discrete because of 1) St
|

Theorem 2.5: X, is subspace of X.

Proof: Because of X = U;ecpX;, X, is subset of X

However, for every A € A and for t = {X, N T: T € } we

must show that 7, = 7.
, Ve
Ter{=>3aVerT=X,NV=SX,NVETL >TET,
7T UEX, '
ey =Uert=—U=UnX,Uet=>U€r
Then we obtain 7, = 7 n

Theorem 2.6: If AnX; ={x} and {x} ¢ 1; , for x € X and
i € A. A can’t be neighborhood of x.

Proof: Since {(X,,t,)}ea is the disjoint collection of
topological spaces, X; is the only subset such that x € X;.
On the contrary, A is neighborhood of x such that An
X; = {x} and {x} ¢ 7;. In this case, there is U € t such that
Xx€EUCA SoUNnX, e, foreachr e Aie,UNnX; =
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{x} €1, fori € A, contradiction. [

Theorem 2.7: A € X is open iff A is neighborhood of each

X € A

Proof: Let A € 1, x € A. Since we can write x EAC A, A

is neighborhood of the point x.

Conversely, if A is neighborhood of each x € A, then there

exist U, € tsuch thatx € U, € A. Hence, we have

A= UXEA{X} c UxeA UX - UXEAA = A

Since the set A is union of the open sets U,, A is open set.
|

Theorem 2.8: For x€X, €X and x€ACX, A is

neighborhood of x in X such that A # X, iff AnX; is

neighborhood of x in Xj.

Proof: Let A be a neighborhood of x in X. So there is

Uet such that xeUc< A So that AnX, is

neighborhood of x in X; because of x e UNX; C AN X,

and Un XA € 7).

If AN X, is neighborhood of x in X;, there is U € t; such

that x e U S ANX,. U €1, because of 7; S 7. Also we

know that U € AN X; € A and so A is neighborhood of x

inX. [

Theorem 2.9: Let ACS X. For A is closure of 4, A =

Uies AN X;.

Proof: Let x be a element of a set A. Then x € K such

that K¢ € 7, for each K 2 A. Hence x € K n X; such that

(KnX))“ e, for at least one A€A So x€
Uiean AN X;.

Let x be aelementofaset U;ep AN X,. Thenx € AN X;,
for at least one 1 € A. So x € A because of A N X;. [

Theorem 2.10: Let A C X.
A= Uzea(AN X))

Proof: Let x be a element of a set A°. Then x € G such
that G € 7, for at least one G < A. Therefore x € G N X;,
foratleastone A€ AandG S A.Sox€EGNX, S ANKX;
such that x € G N X;. Thus x € U ;ea(ANX;)° and so
A S Upen(A N X;)".

Let x be a element of a set Uyea(A N X;)°. Then x €
(AN X,)’, for at least one 1 € A. Thus x € A° because of
AﬂXl c A.So UAEA(A ﬂXA)°§A°. | ]
Theorem 2.11: The family B={T € X:31€ A, T € 13}
is the base of (X, t) topological space.

Proof: i) We know that for every 1 € A, X, € 7, and
UseaXa = X

i) Let B;, B; € B.So for at least one i,j € A, B; € 7;,B; €
7;. For i # j, the condition is obvious because of B; N
B=¢ .Leti=j and B;nB #@. We know that if
B;,Bi €1, B;nB €t;. So for B; =B;NB;, and
x € B; N B;, there exist B;; € B such that x € B; < B; N
B;. [ ]
Theorem 2.12: Let the family B, be a base of X,
topological space for A€ A. In this case, B =
{T:31€ A, TeB,} is the base of (X,t) topological
space.

Proof: i) Since B, is the base of X, topological space, it is
obvious that Urep, T = X.

ii) For every 4 € A, it is obvious that each B, is discrete.
Fori,je A letT, € B,T, €B andfori=j, T,NT; # Q.

For A° is interior of A,
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As B; is a base of X; , for every x € T; N T;, there exist
T; € Bj suchthatx € T;; € T; N T;. [ ]
Theorem 2.13: The convergent sequence of X; converges
in X also.

Proof: Let (x,) be such a sequence of X, that converges
the point b € X; in X;. (x,) also is a sequence of X
because of X; < X. From the definition of convergence we
have;

Forvr* et (b €T*),3n eN:n>n} = x, € TA.

On the other hand, for VT € ©(b € T) we know that
T=T*or T2T* So for ng=nd, if n>ng, x, €T.

Then (x,) convergesin X. [ ]
We note that the sequence of X need not be converging in
X;.

Let us define the set Z; = {n € N: x,, ¢ G} for (x,) is a
sequence of X and G € t. Now, we will talk about a
different approach for convergence with maksZ;. Also, we
will take maksZ; = 1 while Z,; = @.
Theorem 2.14: Let (x,) be a sequence of X. (x,)
converges the point b € X iff there exist a maksZ, for
each G € 7(b € G).
Proof: Let N, = maks{n;:n; = maksZ;, G € t,b € G}.
Then (x,) converges the point b € X In the meanings
given in the definition 2.1. So (x,) converges the point
b € X in the meanings given in the Theorem 2.14 also.
]
Theorem 2.15: Let (x,,) be a sequence of X, A, u € 4,
beX;, and b' € X,. If b and b’ is limit point for (x,),
A=pu.
Proof: On the contrary, let A # u. Then X; nX, =0 .
Since (x,) converges the point b € X;, for n = ny, there
exist ny € N such that x,, € X;. On the other hand, since
(x,)) converges the point b’ € X, for n = my, there exist
mg € N such that x,, € X, . Let py = maks{ng, mo}. For
n = py, x, € X; N X,, contradiction. ]
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