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1. INTRODUCTION 
 

Let   Xλ, τλ  λ∈Λ be a collection of topological space. Let 
 X, τ  be a topological space with X =  Xλ, λ ∈ Λ.  X, τ  

is a free union of  Xλ, τλ  iff the following condition 

satisfied T ∈ τ ⇔ ∀λ ∈ Λ, T ∩ Xλ ∈ τλ 

If  Xλ, τλ  is subspace of  X, τ  and Xλ is open in X for 

every λ ∈ Λ,  X, τ   is a free union of the subspaces 

 Xλ, τλ . But the spaces  Xλ, τλ  are not necessary to be a 

subspace of X. So we will give the definition of disjoint 

union topology and topological summed and investigate 

some of results about topological summed in this paper. 

Let   Xλ, τλ   be a disjoint non-empty collection of 

topological spaces  Xλ, τλ  indexed by a set Λ. The disjoint 

union X =  Xλ , λ ∈ Λ is a topological space with the 

following topology 

τ =  T ⊆ X: T ∩ Xλ ∈ τλfor each λ ∈ Λ . 
τ is a disjoint union topology and X is a topological 

summed of a disjoint non-empty collection of topological 

spaces Xλ. Hence,  X, τ  is a free union of  Xλ, τλ .  

In this paper we understand   Xλ, τλ  λ∈Λ  is the disjoint 

non-empty collection of topological spaces indexed by a 

set Λ and  X, τ  is the topological summed of collection 
  Xλ, τλ  λ∈Λ. 

Now we will give free union of a disjoint non-empty 

collection of topological spaces. Definitions, theorems and 

some results for topological summed have been obtained 

by using the known definitions and theorems for the 

topological spaces [1], [2], [3]. 
 

2. MAIN RESULTS 
 

Our definition to be used in the future is the following. 
 

Definition 2.1: For  xn  ℕ sequence of X and b ∈ X,  

 x n → b ⇔ ∃! λ ∈ Λ, ∃Nk ∈ ℕ: n ≥ Nk ⇒ xn ∈ T(k) for 

every T(k) ∈ τλ containing b. 

Theorem 2.1:If τ is the family in the sense of definition in 

Introduction, then  X, τ  is a topological space. 

Proof: For each λ ∈ Λ, ∅ ∩ Xλ = ∅ ∈ τλ ⇒ ∅ ∈ τλ, 

X ∩ Xλ = Xλ ∈ τλ ⇒ X ∈ τλ. 

For every finite subfamily  T1 , T2 , … , Tr ⊆ τ, we have 

  Ti
r
i=1  ∩ Xλ =   Ti ∩ Xλ 

r
i=1  for each λ ∈ Λ. Since 

Ti ∈ τ, for every λ ∈ Λ we have Ti ∩ Xλ ∈ τλ and we know 

 Xλ, τλ  is topological space so   Ti ∩ Xλ 
r
i=1 ∈ τλ. Then 

  Ti ∩ Xλ 
r
i=1 =   Ti

r
i=1  ∩ Xλ ∈ τλ and hence   Ti

r
i=1 ∈

τ. 

 
 

For every subfamily  T1 , T2 , …  ⊆ τ and for each λ ∈ Λ we 

have, 

  Tii  ∩ Xλ =   Ti ∩ Xλ i ∈ τλ  

and hence   Tii  ∈ τ                                     ∎ 

Theorem 2.2: For each λ ∈ Λ, τλ is subfamily of τ. 

Proof: Let A ∈ τλ. Then we have A ∩ Xλ = A ∈ τλ. Also 

for λ ≠ λ
′, A ∩ X

λ
′ = ∅ ∈ τλ. Hence, we obtain A ∩ Xλ ∈

τλ, for each λ ∈ Λ and so A ∈ τ.                        ∎ 

Example 2.1:Let   Xλ, τλ  λ∈Λ be a disjoint non-empty 

collection of topological spaces. It is clear that  Ti ∈ τi∈I  

for each λ ∈ Λ, Ti ∈ τλ. Also by theorem 2.2 we obtain 

τ =   Tii∈I : ∃λ ∈ Λ, Ti ∈ τλ . 
Suppose now that τλ is indiscrete topology. For every 

λ ∈ Λ, we have Xλ ∈ τ. Hence, τ can not be indiscrete 

topology except Λ =  1 .  
 

Theorem 2.3: τ is indiscrete iff Λ =  1 . 
Proof: It is obtained from the above example easily.      ∎ 

Theorem 2.4: 𝛕 is discrete iff for each λ ∈ Λ, τλ is 

discrete. 

Proof: If 𝛕 is discrete,  x  is element of 𝛕, for each x ∈ X. 

Then  x ∩ Xλ is element of τλ, for each λ ∈ Λ. As Xλ is 

discrete, x ∈ X is element of Xλ for only one λ ∈ Λ , i.e., 

for λ ≠ λ
′, x ∈ Xλ ⇒  x ∩ X

λ
′ = ∅ and  x ∩ Xλ =  x ∈

τλ. So τλ contain all single point set, for each λ ∈ Λ. So τλ 

is discrete topology.  

Conversely, if τλ is discrete, τ is discrete because of τλ ⊆ τ

                               ∎ 

Theorem 2.5: Xλ is subspace of X. 
Proof: Because of X =  Xλλ∈Λ , Xλ is subset of X. 
However, for every λ ∈ Λ and for τ′ =  Xλ ∩ T: T ∈ τ  we 

must show that τλ = τ′. 

T ∈ τ′ ⇒ ∃V ∈ τ: T = Xλ ∩ V
V∈τ

  Xλ ∩ V ∈ τλ ⇒ T ∈ τλ 

U ∈ τλ

τλ⊆τ

   U ∈ τ
U⊆Xλ
    U = U ∩ Xλ, U ∈ τ ⇒ U ∈ τ′ 

Then we obtain τλ = τ′                                  ∎ 
 

Theorem 2.6: If A ∩ Xi =  x  and  x ∉ τi , for x ∈ X and 

i ∈ Λ. A can’t be neighborhood of x. 

Proof: Since   Xλ, τλ  λ∈Λ is the disjoint collection of 

topological spaces, Xi  is the only subset such that x ∈ Xi . 

On the contrary, A is neighborhood of x such that A ∩
Xi =  x  and  x ∉ τi . In this case, there is U ∈ τ such that 

x ∈ U ⊆ A. So U ∩ Xλ ∈ τλ, for each λ ∈ Λ, i.e., U ∩ Xi = 
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 x ∈ τi  , for i ∈ Λ, contradiction.           ∎ 

Theorem 2.7: A ⊆ X is open iff A is neighborhood of each 

x ∈ A. 

Proof: Let A ∈ τ, x ∈ A. Since we can write x ∈ A ⊆ A, A 

is neighborhood of the point x. 

Conversely, if A is neighborhood of each x ∈ A, then there 

exist Ux ∈ τ such that x ∈ Ux ⊆ A. Hence, we have 

A =   x x∈A ⊆  Ux ⊆x∈A  Ax∈A = A. 

Since the set A is union of the open sets Ux , A is open set.

                                       ∎ 

Theorem 2.8: For 𝑥 ∈ 𝑋𝜆 ⊆ 𝑋 and 𝑥 ∈ 𝐴 ⊆ 𝑋, 𝐴 is 

neighborhood of 𝑥 in 𝑋 such that 𝐴 ≠ 𝑋𝜆  iff 𝐴 ∩ 𝑋𝜆  is 

neighborhood of  𝑥 in 𝑋𝜆 . 

Proof: Let 𝐴 be a neighborhood of 𝑥 in 𝑋. So there is 

𝑈 ∈ 𝜏 such that 𝑥 ∈ 𝑈 ⊆ 𝐴. So that 𝐴 ∩ 𝑋𝜆  is 

neighborhood of 𝑥 in 𝑋𝜆  because of 𝑥 ∈ 𝑈 ∩ 𝑋𝜆 ⊆ 𝐴 ∩ 𝑋𝜆  

and 𝑈 ∩ 𝑋𝜆 ∈ 𝜏𝜆 . 

If 𝐴 ∩ 𝑋𝜆  is neighborhood of 𝑥 in 𝑋𝜆 , there is 𝑈 ∈ 𝜏𝜆  such 

that 𝑥 ∈ 𝑈 ⊆ 𝐴 ∩ 𝑋𝜆 . 𝑈 ∈ 𝜏, because of 𝜏𝜆 ⊆ 𝜏. Also we 

know that 𝑈 ⊆ 𝐴 ∩ 𝑋𝜆 ⊆ 𝐴 and so 𝐴 is neighborhood of 𝑥 

in 𝑋.               ∎ 

Theorem 2.9: Let 𝐴 ⊆ 𝑋.  For 𝐴  is closure of 𝐴, 𝐴 =
 𝐴 ∩ 𝑋𝜆

         
𝜆∈𝛬 . 

Proof:  Let 𝑥 be a element of a set 𝐴 . Then 𝑥 ∈ 𝐾 such 

that 𝐾𝑐 ∈ 𝜏, for each 𝐾 ⊇ 𝐴. Hence 𝑥 ∈ 𝐾 ∩ 𝑋𝜆  such that 

 𝐾 ∩ 𝑋𝜆 
𝑐 ∈ 𝜏𝜆 , for  at least one 𝜆 ∈ Λ. So 𝑥 ∈

 𝐴 ∩ 𝑋𝜆
         

𝜆∈Λ . 

Let 𝑥 be a element of a set  𝐴 ∩ 𝑋𝜆
         

𝜆∈Λ . Then 𝑥 ∈ 𝐴 ∩ 𝑋𝜆
         , 

for at least one 𝜆 ∈ Λ. So 𝑥 ∈ 𝐴  because of 𝐴 ∩ 𝑋𝜆 .         ∎  

Theorem 2.10: Let 𝐴 ⊆ 𝑋.  For 𝐴∘ is interior of 𝐴, 

𝐴∘ =   𝐴 ∩ 𝑋𝜆 
°

𝜆∈Λ . 

Proof: Let 𝑥 be a element of a set 𝐴∘. Then 𝑥 ∈ 𝐺 such 

that 𝐺 ∈ 𝜏, for at least one 𝐺 ⊆ 𝐴. Therefore 𝑥 ∈ 𝐺 ∩ 𝑋𝜆 , 

for at least one 𝜆 ∈ Λ and 𝐺 ⊆ 𝐴. So 𝑥 ∈ 𝐺 ∩ 𝑋𝜆 ⊆ 𝐴 ∩ 𝑋𝜆  

such that 𝑥 ∈ 𝐺 ∩ 𝑋𝜆 . Thus 𝑥 ∈   𝐴 ∩ 𝑋𝜆 
∘

𝜆∈Λ  and so 

𝐴∘ ⊆   𝐴 ∩ 𝑋𝜆 
∘

𝜆∈Λ . 

Let 𝑥 be a element of a set   𝐴 ∩ 𝑋𝜆 
∘

𝜆∈Λ . Then 𝑥 ∈
 𝐴 ∩ 𝑋𝜆 

°, for at least one 𝜆 ∈ Λ. Thus 𝑥 ∈ 𝐴∘ because of 

𝐴 ∩ 𝑋𝜆 ⊆ 𝐴. So   𝐴 ∩ 𝑋𝜆 
∘ ⊆ 𝐴∘

𝜆∈𝛬 .         ∎ 

Theorem 2.11: The family 𝓑 =  𝑇 ⊆ 𝑋: ∃𝜆 ∈ 𝛬, 𝑇 ∈ 𝜏𝜆  
is the base of  𝑋, 𝜏  topological space. 

Proof: i) We know that  for every 𝜆 ∈ 𝛬, 𝑋𝜆 ∈ 𝜏𝜆  and 

 𝑋𝜆𝜆∈𝛬 = 𝑋 

ii) Let 𝐵𝑖 , 𝐵𝑗 ∈ ℬ.So for at least one 𝑖, 𝑗 ∈ 𝛬, 𝐵𝑖 ∈ 𝜏𝑖 , 𝐵𝑗 ∈

𝜏𝑗 . For 𝑖 ≠ 𝑗, the condition is obvious because of 𝐵𝑖 ∩

𝐵𝑗 = ∅ . Let 𝑖 = 𝑗 and 𝐵𝑖 ∩ 𝐵𝑗 ≠ ∅. We know that if 

𝐵𝑖 , 𝐵𝑗 ∈ 𝜏𝑖 , 𝐵𝑖 ∩ 𝐵𝑗 ∈ 𝜏𝑖 . So for 𝐵𝑖𝑗 = 𝐵𝑖 ∩ 𝐵𝑗 , and 

𝑥 ∈ 𝐵𝑖 ∩ 𝐵𝑗 , there exist 𝐵𝑖𝑗 ∈ ℬ such that 𝑥 ∈ 𝐵𝑖𝑗 ⊆ 𝐵𝑖 ∩

𝐵𝑗 .            ∎ 

Theorem 2.12: Let the family ℬ𝜆  be a base of 𝑋𝜆  

topological space for 𝜆 ∈ 𝛬. In this case, 𝕭 =
 𝑇: ∃𝜆 ∈ 𝛬, 𝑇 ∈ ℬ𝜆  is the base of  𝑋, 𝜏  topological 

space. 

Proof: i) Since ℬ𝜆  is the base of 𝑋𝜆  topological space, it is 

obvious that  𝑇𝑇∈ℬ𝜆
= 𝑋. 

ii) For every 𝜆 ∈ 𝛬, it is obvious that each ℬ𝜆  is discrete. 

For 𝑖, 𝑗 ∈ 𝛬, let 𝑇𝑖 ∈ ℬ𝑖 , 𝑇𝑗 ∈ ℬ𝑗  and for 𝑖 = 𝑗, 𝑇𝑖 ∩ 𝑇𝑗 ≠ ∅. 

As ℬ𝑖  is a base of 𝑋𝑖  , for every 𝑥 ∈ 𝑇𝑖 ∩ 𝑇𝑗 , there exist 

𝑇𝑖𝑗 ∈ ℬ𝑖𝑗  such that 𝑥 ∈ 𝑇𝑖𝑗 ⊆ 𝑇𝑖 ∩ 𝑇𝑗 .                 ∎               

Theorem 2.13: The convergent sequence of 𝑋𝜆  converges 

in 𝑋 also. 

Proof: Let  𝑥𝑛  be such a sequence of 𝑋𝜆  that converges 

the point 𝑏 ∈ 𝑋𝜆  in 𝑋𝜆 .  𝑥n  also is a sequence of 𝑋 

because of 𝑋𝜆 ⊆ 𝑋. From the definition of convergence we 

have; 

For ∀𝑇𝜆 ∈ 𝜏𝜆 𝑏 ∈ 𝑇𝜆 , ∃𝑛0
𝜆 ∈ ℕ: 𝑛 ≥ 𝑛0

𝜆 ⇒ 𝑥𝑛 ∈ 𝑇𝜆 . 

On the other hand, for ∀𝑇 ∈ 𝜏 𝑏 ∈ 𝑇  we know that 

𝑇 = 𝑇𝜆  or 𝑇 ⊇ 𝑇𝜆 . So for 𝑛0 = 𝑛0
𝜆 , if 𝑛 ≥ 𝑛0,  𝑥𝑛 ∈ 𝑇. 

Then  𝑥𝑛   converges in 𝑋.           ∎ 

We note that the sequence of 𝑋 need not be converging in 

𝑋𝜆 . 

Let us define the set 𝑍𝐺 =  𝑛 ∈ ℕ: 𝑥𝑛 ∉ 𝐺  for  𝑥𝑛  is a 

sequence of 𝑋 and 𝐺 ∈ 𝜏. Now, we will talk about a 

different approach for convergence with maks𝑍𝐺 . Also, we 

will take maks𝑍𝐺 = 1 while 𝑍𝐺 = ∅. 

Theorem 2.14: Let  𝑥𝑛  be a sequence of 𝑋.  𝑥𝑛  

converges the point 𝑏 ∈ 𝑋 iff there exist a maks𝑍𝐺  for 

each 𝐺 ∈ 𝜏 𝑏 ∈ 𝐺 . 

Proof: Let 𝑁𝑘 = maks 𝑛𝐺 : 𝑛𝐺 = maks𝑍𝐺 , 𝐺 ∈ 𝜏, 𝑏 ∈ 𝐺 . 
Then  𝑥𝑛  converges the point 𝑏 ∈ 𝑋 In the meanings 

given in the definition 2.1. So  𝑥𝑛  converges the point 

𝑏 ∈ 𝑋 in the meanings given in the Theorem 2.14 also.

                         ∎ 

Theorem 2.15: Let  𝑥𝑛   be a sequence of 𝑋, 𝜆, μ ∈ 𝛬, 

𝑏 ∈ 𝑋𝜆  and 𝑏′ ∈ 𝑋𝜇 . If 𝑏 and 𝑏′ is limit point for  𝑥𝑛 , 

𝜆 = 𝜇. 

Proof: On the contrary, let 𝜆 ≠ 𝜇. Then 𝑋𝜆 ∩ 𝑋𝜇 = ∅ . 

Since  𝑥𝑛  converges the point 𝑏 ∈ 𝑋𝜆 , for 𝑛 ≥ 𝑛0, there 

exist 𝑛0 ∈ ℕ such that 𝑥𝑛 ∈ 𝑋𝜆 . On the other hand, since 

 𝑥𝑛  converges the point 𝑏′ ∈ 𝑋𝜇 , for 𝑛 ≥ 𝑚0, there exist 

𝑚0 ∈ ℕ such that 𝑥𝑛 ∈ 𝑋𝜇  . Let 𝑝0 = 𝑚𝑎𝑘𝑠 𝑛0, 𝑚0 . For 

𝑛 ≥ 𝑝0, 𝑥𝑛 ∈ 𝑋𝜆 ∩ 𝑋𝜇 , contradiction.        ∎
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