
IARJSET ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

       International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 3, Issue 12, December 2016 
 

Copyright to IARJSET                                  DOI 10.17148/IARJSET.2016.31229                                                   155 

Tuning the Group Velocity of Light for 1D 

Photonic Crystal with Defect 
 

Nurgül Akinci
1
 

Dr., Dept of Physics, Bülent Ecevit University, Zonguldak, Turkey
1
 

 

Abstract: An exact representation of dispersion relation for one dimensional periodic system composed of dielectric 

layers with a defect is derived by means of transfer matrix, in order to calculate the group velocity of the defect modes 

in the photonic band gap. It is found that slow group velocities can be tuned by modifying size of the defect layer,as 

moving towards the band edge the frequency values get lower shifts.Effect of the different defect dielectric constants 

on the group velocity is also presented. 
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I. INTRODUCTION 

 

A major interest of photonics is to provide some basic 

strategies  to reach novel approaches to new technology 

including the concepts of slow light which has 

advantageous of controlling the optical signals for data 

transmission [1].  Many of the approaches to achieve the 

slow light rely on electromagnetically induced 

transparency [2], coupled resonatorstructures [3]and 

photonic crystals (PhCs) [4]which require good theoretical 

foundations. In particular, thePhCs at the defect frequency 

represent ultra-slow group velocities [2,3]. 

There are many studied examples of PhCsthat are focused 

on light propagating in periodic arrays of dielectric 

scatterers [5,6]. Theoretical and numerical analysis for 

dispersion propertiesin which the periodic medium is one 

dimensional (1D) [7,8], two dimensional (2D) [9,10] or 

three dimensional (3D) [11,12] are extensively well 

known.When these structures consist of defects such as 

cavities [13], line defects [14]the investigation to solutions 

of Maxwell equations are now more difficult. However, 

controlling the slow light requires a reduction of the group 

velocities which can be obtained by means of dispersion 

properties.In this paper, it is purposed to examine some 

optical properties inPhC structure with defect for 

exploration the tuning the group velocity.  
 

In Section II it is derived an analytic expression for band 

structure with defect states in 1D-PhC consisting of 

dielectric layers with a defect as a single layer. In Section 

III numerical results are presented and discussed for 

dispersion relation and the affected group velocity by 

different defect layerthickness and dielectric constant. 

Section IV evaluates these results for the applications. 

 

II. THEORY 

 

In order to study optic properties of 1D defect-PC, John 

and Wang model [15] is used which permits to investigate 

light propagation in a periodic medium. In particular, it is 

considered electromagnetic wave propagating in a 1D 

medium that has uniform dielectric properties in one  

 

 

direction which is taken to be x axis.  The structure 

composed of alternating dielectric layers is illustrated in 

Fig.1.  

 

 
Fig.1Schematic diagram of an ideal 1D PhC of dielectric 

layers, a and d represent thickness of layer with the 

dielectric constant of ε 1 and lattice constant, respectively. 

 

The wave equation for electromagnetic modes in a 1D 

system may be written as 
 

∂2

∂x2 E x, t =
ε x 

c2

∂2

∂t2 E x, t                         (1) 

 

with 

ε x =  
ε1

a
2 < 𝑥 <  a

2 + d 

ε2
a

2 < 𝑥 < a
2 

  

 

wherea and (d-a) are the lengths of dielectric layers with 

dielectric constants ε1 and  ε2, respectively. dis also lattice 

constantand c isthe velocity of light in the vacuum. The 

solutions of Equation (1) for a certain region in the 

structure are superpositions of left- and right-travelling 

waves.  Boundary conditions require these solutions and 

their derivatives to be continuous at two interfaces 

between dielectric media. It is assumed that time 

dependence of the electromagnetic wave of angular 

frequency ω has the form of  E x, t = E x exp⁡(−i ωt) 

and dielectric layers are periodically positioned, namely, 

ε x + d = ε x .  As a result of the periodicity of the 

lattice, the Bloch’s theorem implies that bounded solutions 

must satisfy 

a 

ε 2 ε 1 

x=0 
 

d 
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E x + d = eiβd E x  
 

whereβ is Blochwavevector along the x axis which is 

normal to 1D-PhC. Smith et al. [6] areobtained an exact 

solution for PhCsfor one dimension using an analytic 

method which can be expanded to higher dimensions or 

defect structures. It was discussed in detail by several 

authors, e.g., Ojha et al. [16]. 

On the other hand, if the 1D-PhC mentioned above has a 

defect which consists of a single layer, its dispersion 

properties change because the translation symmetry is 

broken. Such a system is shown in Fig.2considering the 

three regions I, II, and III centered about the origin, it can 

be identified defect region as region II, a semi-infinite 

lattice which its solution increases exponentially to the left 

as region I and the other semi-infinite lattice which its 

solution decreases exponentially to the right as region III.  

 

Fig. 2 The same lattice as Fig.1.exactremoved part at the 

center as a defect  in air. 

 

The general solutions in regions I and III are 

EI x = Aeikx + Be−ikx  

EIII x = Ceikx + De−ikx  
 

wherek =  ε1ω c . Now, Bloch’s theorem requires that 

E x = e±κd E x + d  with real and positive wavevectorκ. 

The general solution for region II is 

EII x = eκd Aeiq  x+d + Be−ik q+d   

 

whereq =  ε1ω c. By applying of the boundary conditions 

to the EI and EII , at x = −
a

2
 , a matrix equation for 

unknown coefficients A and B,  which determines the 

eigenfunctions and eigenvalues is given by 

 ΤΜ − eκd Ι  
A
B
 = 0                      (2) 

 

where 

Τ =  𝑒
𝑖𝑘𝑑 0
0 𝑒−𝑖𝑘𝑑

  

 

and  matrix elements of M are 
 

𝑀11 = 𝑒−𝑖𝑘𝑎  𝑐𝑜𝑠𝑞𝑎 +
𝑖
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+

𝑞
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Solution to the Equation (2) gives the relation between 

𝜅and 𝜔, exactly, 
 

cosh 𝜅𝑎 

=  cos 
 𝜀1𝜔 𝑑 − 𝑎 

𝑐
 cos 

 𝜀2𝜔𝑎

𝑐
 

−
1

2
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 𝜀2

+
 𝜀2

 𝜀1

 sin  
 𝜀1𝜔 𝑑 − 𝑎 

𝑐
 sin  

 𝜀2𝜔𝑎

𝑐
  .  (3) 

 

Because bound states of 1D systems are nondegenerate 

and the defect-1D system has a reflection symmetry, 

symmetric or antisymmetric defect modes are introduced 

in the gap of the PhC[6]. By demanding that  𝐸𝐼𝐼  and 𝐸𝐼𝐼𝐼  

obey the conditions at 𝑥 =
𝑎

2
, involving the coefficients C 

and D, a second matrix equation can be obtained with 

negative 𝜅 which yields Equation (3). 

The group velocity of electromagnetic wavesin dispersion 

material is given as[17] 
 

𝑉𝑔 =
𝑑𝜔

𝑑𝑘
=  

𝑑𝑘

𝑑𝜔
 
−1

  (4) 

 

Equation (3) leads directly to calculate 𝑉𝑔by the inverse of 

the first-order dispersion. 

 

III. RESULTS AND DISCUSSION 

 

It is clear that dispersion is a basic concept for calculating 

properties of the light in a medium, thus, it is firstly 

calculated the variation of the normalized frequency as a 

function of the normalized wave vector by using Equation 

(3). It is considered that the 1D-defect-PhC consists of the 

alternating dielectric layers with  𝜀1 = 1.5  and𝜀2 = 3.46 

in the case of 𝑎 𝑑 = 0.5. Fig. 3 shows typical band 

diagram of the analytic results. The first band gap is 

formed as a region by splitting of the bottom and the upper 

band edge states. As it is seen, the 1D-defect-PhC supports 

only one defect state in the first PBG.  
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Fig. 3 The photonic band diagram for 1D-defect PhC with 

f=0.5.  Dielectric constants 𝜺𝟏 and  𝜺𝟐 are 1.5 and 3.46, 

respectively.Red line shows defect mode introduced in the 

gap. 
 

In order to investigate the effect of the dielectric layers 

thicknesses to the group velocity, three cases are 

    x=0 
 

Region I Region II Region III 
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considered in which the filling factors are 𝑓 = 𝑎 𝑑 = 0.3, 

0.4 and 0.5, respectively. Fig. 4 represents the group 

velocity 𝑉𝑔  as expressed in Equation (4) for different 

values of the layer thickness. It can be seen thatthe 

maximum value of the group velocity of defect modes is 

about 0.3cfor 𝑓 = 0.5. By decreasing the filling factor it 

can be achived the lower group velocity. However, small 

shift can be seen near the band edge frequencies.  
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Fig. 4 The group velocity as a function of the normalized 

frequency for 1D-defect PhC with different filling factors. 

 

The effect of the dielectric constant of the defect layer on 

the group velocity in middle of the photonic band gap with 

the fixed value  𝑓 = 0.5 is depicted in Fig. 5. It is clearly 

seen that 𝑉𝑔  decreases when the defect dielectric constant 

increases. 

 

1,4 1,5 1,6 1,7 1,8 1,9
0,00

0,05

0,10

0,15

0,20

0,25

0,30

 

 

V
g

/c



 
Fig. 5 Effect of the defect dielectric constant on group 

velocity 

 

IV. CONCLUSION 

 

In conclusion, it is theoretically calculated the dispersion 

relation and  the group velocity in the 1D-defect-PhC with 

the dielectric lattice of the layers. It is found that the group 

velocity can be tuned by modifying the size of defect 

layers or alternating the defect layer dielectric properties. 

The results present a foresight that one can choose suitable 

slow light region by disregarding nonlinear optical 

properties. 
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