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Abstract: Unmanned Aerial Vehicles (UAVs), also called unmanned aircraft systems, have recently reached 

unprecedented levels of growth in diverse military and civilian application domains. Quadrotor is basically an 
underactuated UAV. So control of a quadrotor UAV is difficult owing to the fact that it’s a MIMO underactuated 

system subject to tight coupling and due to the presence of parameter uncertainties. In this work a sliding surface 

incorporated adaptive backstepping approach is proposed to control and stabilize the quadrotor. The validity of 

proposed control scheme is demonstrated by simulations using MATLAB simulink with different initial conditions. 

Simulation results validate the fact that the proposed controller gives better regulation. 
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I. INTRODUCTION 

 

Recently, autonomous aerial vehicles such as the 
quadrotor have attracted considerable amount of interest 

because of a wide area of applications and a lot of 

advantages. The quadrotor has many abilities such as the 

vertical take-off and landing, hover capability, high 

maneuverability, and agility. The quadrotor also possess 

more advantages than standard helicopters in terms of 

small size, efficiency, and safety. Due to these advantages, 

the quadrotor is eligible for applications like military 

services, surveillance, rescue, research area, remote 

inspection, and photography. 

For autonomous flight of the quadrotor, one of the most 
important techniques is an efficient attitude control and 

stabilization. However, the control of the quadrotor is not 

easy because of the high nonlinearity, strongly coupled 

dynamics, and multivariable nature. In addition, the 

quadrotor system is an underactuated system because the 

dynamics of a quadrotor have six outputs ),,,,,( zyx

while it has only four independent control inputs

),,,(
4321

UUUU . Uncertainties which are associated with 

physical parameters also bring another challenge for a 

control design. Thus, it is hard to control the nonlinear and 
under actuated quadrotor system. 
 

Various nonlinear control methods such as linearization, 

saturation, backstepping, and sliding mode control were 

used to control the quadrotor system. For example, a 

nonlinear controller based on decomposition into a nested 

structure and feedback linearization has been introduced 

[6]; a feedback linearization controller involving high-

order derivative terms was proposed in [7]. However, in 

these linearization methods, only higher-level dynamics 

without consideration of physical parameters were 

considered. 

 

 

Robust integral backstepping using sliding mode is 
another method for the control of quadrotor in the 

presence of actuator and sensor faults is proposed in [8] 

here some of the useful nonlinearities gets cancelled. In 

[9] only attitude control problem is dealt with an adaptive 

block backstepping controller after considering a 3-DoF 

design structure. In [10] attitude control by using Zeigler 

Nichols rule for tuning PD parameter the linearization of 

nonlinear system is proposed. In [11] model reference 

adaptive control gives good tracking performance of 

quadrotor but stability is not guaranteed. 

Based on the review, this work will investigate the attitude 
control design of a quadrotor UAV. Adaptive 

backstepping technique is adopted to design the controller. 

The adaptive backstepping controller can asymptotically 

stabilize the attitude system. The remainder of this paper is 

organized as follows. In Section 2, the dynamics of the 

quadrotor, this is obtained by the Lagrange–Euler method. 

A Sliding surface adaptive backstepping-based control 

approach is presented in Section 3, and also the stability of 

closed-loop system is provided. In Section 4, simulation 

results of the designed control scheme to a quadrotor are 

presented. Section 5 presents some concluding remarks. 
 

II.    QUADROTOR DYNAMICS 

 

The dynamics of quadrotor helicopters have been studied 

in detail by several groups [1],[14]. A simple, rigid-body 

model of the quadrotor is given, 

 

 

 

 

 

m

U
x 1)sinsincossin(cos  

m

U
y 1)cossinsinsin(cos  
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where x, y, and z are the position of the center of mass in 

the inertial frame; , and  are the Euler angles, 

which describe the orientation of the body-fixed frame 

with respect to the inertial frame; m,  yx
II , and z

I
  

are 

the mass and moments of inertia of the quadrotor, 
respectively; L is the length from the rotors to the center of 

mass; and r
J and R

 are the moments of inertia and 

angular velocity of the propeller blades. 321
,, UUU

  
and 

4
U

  
are the collective, roll, pitch, and yaw forces 

generated by the four propellers. 
 

To simplify equation (1) 
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Then state space representation is (2) 

Where 61
xx   that correspond to   ,,,,,

respectively. 

 

 
Fig1: Euler angles for Quadrotor UAV 
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III SLIDING SURFACE ADAPTIVE 

BACKSTEPPING CONTROL DESIGN 

 

In this section, a sliding surface is introduced into the 

adaptive back stepping approach is presented. This is 

because; quadrotor is an under-actuated system because it 

has six degrees of freedom but only four actual inputs. The 

six degrees of freedom include translational motion in 

three directions and rotational motion around three axes. 

The schematic configuration of a quadrotor is shown in 

fig: 1 
 

For an underactuated system the adaptive backstepping 

control technique fails to stabilize the system. So a sliding 

surface is introduced, which forces the system to eliminate 

the disturbance then asymptotically stabilize the system. 
 

(1) To obtain control input 1
U  

87
xx 

                                                                                          

                       
1311098

coscosˆˆ Uxxx  
                                                                              

First Lyapunov function for the subsystem is 

2

77
2

1
xV 

 
(3)

 
 
First derivative of the Lyapunov function is 

777
xxV  

 
(4) 

 
According to theory, system is asymptotically stable, the 

first derivative of Lyapunov function should be negative 

definite. So, 
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7787
xcxx des 

 
(5)

 
 

Then (5) in (4) 

02

777
 xcV             (6) 

 

Augmenting the Lyapunov function by adding the error 

variable and sliding surface 
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By taking the derivative, 
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Where, 

 

 
 

 

 

Then the parameter adaptation laws are 

 

 

 

 

 

 

By proper selection of
1

U , the overall Lyapunov function 

8
V becomes negative definite which implies that 7

x
 
tends 

to zero, then error also tends to zero asymptotically. 
Therefore, 
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(2) To obtain control input 2
U  

21
xx 

 

64342212
ˆˆˆ xxxUx

r
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First Lyapunov function for the subsystem is, 

2

11
2

1
xV            (11) 

 
First derivative of the Lyapunov function is 

111
xxV             (12) 

 

Then to make derivative as negative definite, 
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xcxx des            (13) 

 
Then (13) in (12) gives         
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 xcV           (14) 

 

Augmenting the Lyapunov function by adding the error 

variable and sliding surface 
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By taking the derivative, 
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Then the parameter adaptation laws are 
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By proper selection of 
2

U , the overall Lyapunov function 

2
V becomes negative definite which implies that 

1
x tends 

to zero, then error also tends to zero asymptotically. 
Therefore, 
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(3) To obtain control input 3
U  

43
xx 

 

6262544
ˆˆˆ xxxx

r
   

 

First Lyapunov function for the subsystem is, 
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First derivative of the Lyapunov function is                       
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Augmenting the Lyapunov function by adding the error 

variable and sliding surface 
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By taking the derivative, 
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Then the parameter adaptation laws are 
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By proper selection of 3
U , the overall Lyapunov function 

4
V becomes negative definite which implies that 

3
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to zero, then error also tends to zero asymptotically. 
Therefore, 
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(4) To obtain control input 4
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Augmenting the Lyapunov function by adding the error 

variable and sliding surface 
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Then the parameter adaptation laws are 

 
 

 

 
 
 

By proper selection of
4

U , the overall Lyapunov function 

6
V becomes negative definite which implies that 

5
x tends 

to zero, then error also tends to zero asymptotically. 
 

Therefore, 
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IV. SIMULATION RESULTS 
 

In this section, the results of simulation are presented in 

order to demonstrate the performance of the proposed 

controller. The simulation parameters are given in the 

table 1. 
 

Table1: Quadrotor UAV model parameters 
 

Parameters Description Value Units 

g  Gravity 9.81 2/ sm  

m  Mass .65 kg  

L  Distance .23 m  

x
I  

Roll Inertia 310*5.7 
 

2kgm  

y
I  

Pitch Inertia 310*5.7   2kgm  

z
I  

Yaw Inertia 310*3.1   2kgm  

r
J  Rotor Inertia 510*5.6   2kgm  

b  Thrust factor 510*13.3    

d  Drag factor 710*5.7    

 

The simulation of roll angle variation with respect to time 

for the initial condition 0.1 is shown in fig 2. The 

simulation is done for 01.,2
8642
 cccc and

01.
10987654321
  .  

 

The results show that, the controller forces the system to 

eliminate disturbance and system is regulated with 0.4% 

error. Similarly the roll angle variation with respect to 
time for the different initial conditions (0.2,0.3) are shown 

in fig 3 and fig 4 with same initial conditions gives better 

regulation with 0.4% error 

 

 
Fig2: Variation of roll angle with respect to time 

 

 
FIG3: Variation of Roll Angle With Respect To Time 
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Fig4: Variation of roll angle with respect to time 

 

The simulation of pitch angle variation with respect to 

time for the initial condition 0.1  is shown in fig 5. The 

simulation is done for 01.,2
8642
 cccc

 
and 

01.
10987654321
  . 

The result shows that, the controller forces the system to 

eliminate disturbance and system is regulated with .1% 

error. Similarly the pitch angle variation with respect to 

time for the different initial conditions(0.2,0.3)are shown 

in fig 6 and fig 7 with same initial conditions gives better 

regulation with 0.1% error. 

 

 
Fig5: Variation of pitch angle with respect to time 

 

 
Fig6: Variation of Pitch angle with respect to time 

 
Fig7: Variation of Pitch angle with respect to time 

 

The simulation of yaw angle variation with respect to time 

for the initial condition 0.1 is shown in fig 8. The 

simulation is done for 01.,2
8642
 cccc and 

01.
10987654321
  . 

The results show that, the controller forces the system to 

eliminate disturbance and system is regulated with .1% 

error. Similarly the pitch angle variation with respect to 

time for the different initial conditions(0.2,0.3)are shown 

in fig 9 and fig 10 with same initial conditions gives better 

regulation with 0.1% error. 
 

 
Fig8: Variation of yaw angle with respect to time 

 

 
Fig9: Variation of yaw angle with respect to time 
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Fig10: Variation of yaw angle with respect to time 

 

From the simulation results it is clear that, by using a 

sliding surface in to the adaptive backstepping approach, 

to control the quadrotor UAV gives better results. The 

error is very less and the system regulates with a steady-

state error which is less than 1% for various initial 

conditions. So compared to simple adaptive backstepping 

approach [1] sliding surface in corporated adaptive 
backstepping is good.  

 

V. CONCLUSION 

 

A sliding surface- adaptive back stepping approach is 

employed to control and stabilize an under actuated 

quadrotor UAV system with unknown parameters. Based 

on Lyapunov stability theorem adaptive backstepping 

control laws are designed to ensure asymptotic stability of 

the system. A sliding surface is also incorporated into the 

system, to ensure better regulation. Validate the fact that 
the controller regulate satisfactorily. The steady-state error 

of 1% can be eliminated by an integral action.    
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