Review on "Hadamard Matrices its construction and some interesting properties"

Monish Arora
Assistant Prof., Department of Mathematics, D.A.V College, Jalandhar

Abstract

In this paper we introduce Hadamard matrix, its definition, examples, construction of Hadamard matrices, its some properties and conclusion.

Keywords: Hadamard Matrix

INTRODUCTION

A Hadamard matrix, Named after the French mathematician Jacques Hadamard, is square matrix whose entries are eithers +1 or -1 and whose rows are mutually orthogonal.

$$
\begin{gathered}
\text { For Example } H_{2}=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] \begin{array}{l}
R_{1} \\
R_{2}
\end{array} \\
\text { Clearly } R_{1} R_{2}=0
\end{gathered}
$$

So Rows are orthogonal

It is a Hadamard matrix of order 2 Columns in Hadamard matrix are also mutually orthogonal.

CONSTRUCTION

In 1867, James, Joseph Sylvester constructed Hadamard matrix in the following manner.

$$
\begin{gathered}
\text { Replace } 1 \text { by } H_{2} \\
\text { And }-1 \text { by }-H_{2} \text { in } H_{2} \text {, we get } H_{4} \\
\text { So } H_{4}=\left[\begin{array}{cc}
H_{2} & -H_{2} \\
H_{2} & H_{2}
\end{array}\right] \\
=\left[\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right] 4 \times 4
\end{gathered}
$$

Clearly

H_{4} is a Hadamard matrix of order 4. By using same proc and -1 by $-H_{2}$ in H_{4}, We get H_{8}, we get H_{8} again a Hadamard matrix of order 8
It become a chain of Hadamard matrices very amazing

Order	2	$4=2^{2}$
2^{3}	$16=2^{4}$	$8=$

So Sylvester constructed Hadamard matrices of order 2^{n} where n is a tve integer properties

$$
\begin{gathered}
H_{2}^{T}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \\
\text { Then } H_{2} H_{2}^{T}=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
=2 I_{2}
\end{gathered}
$$

In general the property is

$$
H_{n} H_{n}^{T}=n I_{n}
$$

Where H_{n} is a Hadamard matrix.
Further if we multiply any row (column) of a Hadamard matrix -1 then the resulting matrix is again a Hadamard matrix.

If we interchange any two rows (or columns) of a Hadamard matrix, even then resulting matrix is a Hadamard matrix.

In 1893 Hadamard constructed matrices of order 12 and 20. So H_{12} and H_{20} are missing Hadamard matrices in the Sylvester constructed Hadamard matrices. $H_{2}, H_{4}, H_{8}, H_{16}, H_{32} \ldots$

Recently Hadi Kharaghani and Behruz Tayfeh Rezaie
 Hadamard matrix of order 428. As of 2008 there are 13 multiples of 4 less than or equal to 2000 for which no Hadamard matrix of that order is known.

They are $668,716,892,1004,1132,1244,1388,1436$, 1676, 1772, 1916, 1948, 1964.

Construction of a Hadamard matrix by J. Williamson method

First, we study some properties and some concepts required for the J . Williamson method.

PROPERTY

If we multiply any row (column) of a Hadamard matrix by -1 , then the resulting matrix is again a Hadamard matrix.

If we interchange any two row (or column) of a Hadamard matrix, even then the resulting matrix is a Hadamard matrix.

CIRCULANT MATRIX

The matrix of type $\left[\begin{array}{ccc}a & b & c \\ c & a & b \\ -b & c & a\end{array}\right]$ is called a circulant matrix. It is denoted by circ (abc).

Example	$-\left(\begin{array}{llll}1 & 1 & 1 & \\ -1 & 1 & 1 & \begin{array}{l}\text { is a circulant matrix. It } \\ \text { is } \begin{array}{c}\text { also } \\ \text { matrix. }\end{array} \\ \text { Hadamard }\end{array} \\ 1 & - & 1 & \\ 1 & 1 & 1 & - \\ 1 & & & \end{array}\right)$

It is the only known circulant matrix, which is a Hadamard matrix.

Product (or sum) of two circulant matrices is a circulant matrix.

Inverse of a circulant matrix is a circulant matrix.

$$
\begin{aligned}
& \text { Let } \square \square \quad=\quad \operatorname{circ}\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \\
& \text { then } \square^{2}= \\
& =\quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& =\quad\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =\quad \operatorname{circ}\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
& \text { Also } \square \square^{3} \quad=\quad \square^{\square} \square \\
& =\quad \operatorname{circ}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
& =\quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I_{3}
\end{aligned}
$$

$$
\therefore \quad \square^{3}=\mathrm{I}
$$

$$
\begin{array}{ll}
\Rightarrow & \square^{\square} \cdot \square=\mathrm{I} \\
\therefore & \square^{\square \square}=\square^{\square}
\end{array}
$$

$$
\text { Also } \quad \square^{\mathrm{T}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$\therefore \quad \square^{\square}=\square^{\square}$
$\therefore \quad$ From above, we have
$\square^{\square}=\square^{\square \square}=\square \square \quad$ where $\square=\operatorname{circ}\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$

WILLIAMSON'S METHOD STATEMENT

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four symmetric and circulant matrices of order t whose entries are +1 and -1 such that it satisfies

$$
\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}+\mathrm{D}^{2}=4 \mathrm{t} \mathrm{I}_{\mathrm{t}}
$$

The matrices A, B, C and D are known as Williamson's matrices of order t . Where as H is a Hadamard matrix of order 4 t .

To construct a Hadamard matrix of order 12.

$$
\begin{gathered}
\text { Order }=12=4(3) \\
\therefore \quad \text { we take } \mathrm{t}=3 \\
\square^{2}=\begin{array}{c}
\text { circ }\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
\end{array} \\
\\
\therefore=\operatorname{circ}\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \\
\operatorname{circ}\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)+\operatorname{circ}\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
\\
\operatorname{circ}\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) \\
\\
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
\end{gathered}
$$

$\begin{array}{cc}\text { Now } & \text { neither } \square \text { nor } \square^{2} \text { are } \\ \text { symmetric matrix. } \\ \text { but } & \square \square \square \square \square \square \text { is a symmetric }\end{array}$ matrix.

Let	$\mathrm{A}=\square^{3}+\square+\square^{2}$
or	$\mathrm{A}=\mathrm{I}+\square+\square^{2}$

$$
\begin{aligned}
& \text { or } \quad \mathrm{A}=\mathrm{I}+\mathrm{w}_{1} \quad \text { where } \\
& \mathrm{w}_{1}=\square+\square^{2}
\end{aligned}
$$

Also Let \quad| B | $=\mathrm{I}-\mathrm{w}_{1}$ |
| ---: | :--- |
| C | $=\mathrm{I}-\mathrm{w}_{1}$ |
| D | $=\mathrm{I}-\mathrm{w}_{1}$ |

Then clearly A, B, C and D are all symmetric as well as circulant matrices with entries +1 or -1 .

```
Now \(\quad w_{1}^{2}=\left(\square+\square^{2}\right)^{2}=\left(\square+\square^{-1}\right)^{2}=\square^{\square}+\square^{-2}+\)
\(2 \square \square^{-1}\)
    \(=\square^{-1}+\)
\(\square+2 \mathrm{I}\)
```

2I

$$
\therefore \quad \mathrm{A}^{2}=\left(\mathrm{I}+\mathrm{w}_{1}\right)^{2} \quad=\mathrm{I}+2 \mathrm{w}_{1}+w_{1}^{2}
$$

$$
=\mathrm{I}+2 \mathrm{w}_{1}+\mathrm{w}_{1}+2 \mathrm{I}
$$

$$
\therefore \quad \mathrm{A}^{2} \quad=3\left(\mathrm{I}+\mathrm{w}_{1}\right)
$$

Also

$$
\begin{aligned}
& \mathrm{B}^{2} \\
& =\mathrm{I}-2 \mathrm{w}_{1}+w_{1}^{2} \\
& =\mathrm{I}-2 \mathrm{w}_{1}+\mathrm{w}_{1}+2 \mathrm{I} \\
\therefore \quad & \mathrm{~B}^{2}
\end{aligned} \quad=3 \mathrm{I}-\mathrm{w}_{1} .
$$

Also		$\mathrm{C}^{2}=3 \mathrm{I}-\mathrm{w}_{1} \quad \&$	$\mathrm{D}^{2}=3 \mathrm{I}-$
w_{1}			
Now		$\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}+\mathrm{D}^{2}$	$=$
	12 I		$=$

(3) I
$\therefore \quad$ It satisfies $\quad A^{2}+B^{2}+C^{2}+D^{2}=4 t I_{t}$
Now

$$
\begin{aligned}
\mathrm{A} & =\mathrm{I}+\mathrm{w}_{1} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=
\end{aligned}
$$

and $\operatorname{cir}\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$ $=\operatorname{circ}\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)-$ 1	$=\operatorname{circ}\left(\begin{array}{ll}1 & -1\end{array}-\right.$
	$=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right]$
$B=\operatorname{circ}\left(\begin{array}{lll}1 & -1 & -1\end{array}\right)$	$C=D=$

$\therefore \quad$ Hadamard matrix of order 12 will be
$\left(\begin{array}{cccc}\mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\ -\mathrm{B} & \mathrm{A} & \mathrm{D} & -\mathrm{C} \\ -\mathrm{C} & -\mathrm{D} & \mathrm{A} & \mathrm{B} \\ -\mathrm{D} & \mathrm{C} & -\mathrm{B} & \mathrm{A} \\ & & & \end{array}\right)$

Put matrices A, B, C, D in above, we get H_{12}
If H is a Hadamard matrix of order n . Then
(i) $H H^{T}=n \mathrm{I}_{n}$
(ii) $[\operatorname{detH}]=n^{\frac{1}{2} n}$
(iii) $H H^{T}=H^{T} H$
(iv) Hadamard matrices may be changed into other Hadamard matrices by different arrangements of rows and column and by multiplying rows and column by -1 . The matrices so obtained are known as H -equivalent.
(v) Every Hadmard martrix is H-equivalent to an Hadamard matrix which has every element of the its first row and column +1 .

These latter matrices are called normalized.
(vi) If H is a normalized hadamard martrix of order $4 n$, them every row (column) except the first has 2 n minus ones and 2 n plus ones in each row (column).

Further n minus ones in any row (column) overlap with n minus ones in each other row (column)
(vii) the order of an Hadamard matrix is 1,2 or 4 n , n positive integer.

Theorm If a Hadamard matrix of order n exists then $n=1,2$ or a multiple of 4 .

Suppose $\mathrm{n}>2$ and standardize H_{n}
Permute columns so that

+ + . . + +	+ + . . + +	+ + . . + +	+ + . . + +
+ + . . + +	+ + . . + +	- -...--	- -...-
+ + . . + +	- -...--	+ + . . + +	- -...-
p	q	r	S

then $\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}=\mathrm{n}$ the length of the vectors
$\mathrm{p}+\mathrm{q}-\mathrm{r}-\mathrm{s}=0$ Row1 and Row2 are orthogonal
$\mathrm{p}-\mathrm{q}-\mathrm{r}+\mathrm{s}=0$ Row 2 and Row3 are orthogonal
$\mathrm{p}-\mathrm{q}+\mathrm{r}-\mathrm{s}=0$ Row 3 and Row 1 are orthogonal
Therefore, we have $\mathrm{n}=4 \mathrm{a}$
Also $\mathrm{n}=4 \mathrm{~b}=4 \mathrm{c}=4 \mathrm{~d}$
So if a Hadamard matrix of order n exists then the order n must be either 1,2 or a multiple of 4 .

APPLICATIONS

Hadamard matrices have application in Error correcting codes, Modern CDMA Cellphones, pattern recognition, neuroscience optical communication and information hiding.

CONCLUSION

Although Hadamard matrices look simple but have interesting properties and very productive applications.

REFERENCES

1. K.J. Horadam Hadamard Matrices and their application Princeton university Press.
2. Agaian SS (1985) Hadamard matrices and their applications lecture notes mathematics Vol. 1168 Springer - Verlag
3. Weisstein, EricW "Hadamard Matrix" from Math world - A Wolfrom web resource.
