
ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 1

SOFTWARE PATTERNS vs QUALITY

ATTRIBUTES

(INVESTIGATION APPROACH)

Hassan Almari
1
, Clive Boughton

2

Australian National University (ANU), Research School of Computer Science, Canberra, Australia1,2

Abstract: The development of software patterns(SPs)is aimed at providing a reliable and reusable framework for
resolving similar problems within distinct contexts. To accomplish this objective competently, it is imperative to

document these patterns effectively to facilitate the comprehension of their concepts to users, thereby encouraging their

use over and over again. Thus, the documentation of patterns needs to explicitly explain their relationship with the
quality attributes (QAs) that they support, or hinder, in order to satisfy the implementation of stakeholders”

requirements. The variation in patterns descriptions in contemporary literature renders the explanation of the above

relationship complex and difficult to follow. This eventually deters developers from employing patterns or causes them

to overlook their QAs. Either of these scenarios may result in significant expense in terms of development time and

cost, and/or attaining required system quality. This paper tries to address the aforementioned problem by comparing

and analysing six well known software pattern resources, pinpointing the aspects of variation amongst authors

descriptions, which lead to different relationships between patterns and QAs, which in fact cause confusion among

users. Once the variance concept amongst these six resources in terms of terminology and description has been

addressed, we derive a relationship matrix between the software patterns (included in these resources) and the standard

ISO-9126 QAs. We believe that this research work is a positive contribution to the enhancement of techniques for

documenting software patterns. It further helps improve pattern selection by users via improved prediction of output

quality. Thus, to provide a reliable method for maintaining and representing the research work, we have created a
database application that identifies the above relationship. This database also includes discrepancies among the

documentation approaches of the six resources that we have studied, as well as the variance in pattern categorisations

and terminologies. The pattern database should also serve future research endeavours. This research study received a

positive response as per the findings of a questionnaire aimed at software professionals and based on the context of the

preceding problem. 97 precent of the participants, from six different nations, answering the questionnaire supported this

study.

Keywords: Software engineering, Software architectures, Patterns, Quality concepts, Quality analysis and evaluation,

Documentation

I. INTRODUCTION

Currently, most software pattern resources describe

patterns based on the authors “experiences and

observations. Some of these resources have pointed

explicitly to the relationship between each pattern and

their (apparent) quality attributes QAs, i. e., [1], [2] while

others do not; i.e., [3] and [4]. However, there are a few

works analysing the identification of the relationships

between software patterns and quality attributes in a

scientific methodology [5], based on measurements and

metrics, such as that of the work done by [6] and [7]. The

former mentioned work of Kim/Garlan used (Alloy-

Analyser) as a tool. They tried to create models using

some patterns, and to evaluate some quality

characteristics. Their work focused on mapping rules

between architectures and models, while maintaining the

properties like consistency, style compliance, reliability.

Whereas the latter work is concerned about the evaluation

of software architecture by metrics, which is applicable to

software patterns too. In the work of Dr Zayaraz [7], he

did use different available methods within his evaluation

framework. For example he applied the rules and

principles of the Common Software Measurement

International Consortium (COSMIC) Full Function Points

with some metrics to measure the basic interaction

parameters for some characteristics such as coupling,

cohesion, and complexity on different patterns (e.g. Pipes

and Filters). Also, he did use Analytical Hierarchy Process

(AHP) for comparisons between different pattern

structures for specific quality attributes. Both approaches

are a good step forward to building a concrete relationship

between patterns and QAs based on scientific methods and

measurement, not just an observation or experience of the

pattern author. More research effort needs to be done to

answer some of the questions that have been illustrated in

Figures 1a and 1b.

This paper attempts to highlight some important factors

that impact pattern usability within the software

engineering discipline, that are caused by conflicts

between several pattern resources regarding relationships

between patterns and their quality attributes (Patt-QAs).

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 2

a b

Fig. 1 Visualizing the Problem Area.

A. Rationale Of The Investigation Approach

This investigation was necessary for two reasons: (1) to

emphasize the problem concept, (2) to increase the

proposed solution value to pattern users. This
accomplished based on three processes shown in Figure 2.

The first process is, to highlight the differences between

definitions, terminologies and categorisation as factors that

challenge identifying relationships between software

patterns and QAs (Patt-QAs). Seven analysis steps have

been carried out to satisfy the first process as described in

Table I.

Fig. 2 Investigation approach processes

Second process is, to discuses some survey questionnaire

results, which support the existence of the problems

described in the first process. Also, it supports our

proposed solution to build a database of the relationships

between patterns and QAs. Thirdly are, generating a

metrics suite designed to express the investigation

undertaken for six credible and definitive sources of

patterns with respect to their characteristics. The software

patterns sources included in this study are:

1. [1] – the Gang of Four (GoF) book,

2. [2] – POSA-V1,

3. [8] – POSA-V2,

4. [9] – POSA-V3,

5. [10] – Software Engineering Institute – Software

Architecture in Practice, and

6. [11] – Security Patterns.

The Selection of these sources is based on the authors

preliminary research, also by supportive respondent's

answers to a questionnaire done in 2012, (by the

researchers). Almost half of the respondents identified

GoF and POSA books as their reliable, popular and known

pattern references. While the [10] and [11] included in this

study as important part that tackle architectural and
Security patterns, which is valuable to the research main

goal.

The rest of the paper is organized as follows: Section 2

discusses the problems associated with differing pattern

definitions, terminologies and categorisation, then briefly

argues how QA definitions, terminologies, and

categorisation cause problems in identifying their

relationship with software patterns. Section 3 introduces

an example that supports our claims in Section 2. Section

4 lists issues arising from variation on both domain
software patterns and QAs. Finally, in section 5. We

introduce some important findings from our survey that

supports this investigation and our proposed solution, then

summarise the database information and structure in

section 6. Followed by the conclusions Section 7.

II. PATTERNS AND QUALITY ATTRIBUTES REFINEMENT

To create or describe a pattern we should understand the

concept of pattern and follow rules or constraints to

document them in the right way. To assess patterns against

QAs, we should do the same to the QAs concept. The rest

of this section lays out the problems that existed within the

concept and rules of creating and documenting patterns

within software engineering, that have a direct impact on

their utilization and evaluation. Also, this section presents

justifications as to why we built a (Patt-QAs) relationships

database, and some of the challenges that have been faced

during this process.

A. Problems Discovered Within Current Pattern

Definitions And Terminologies

Numerous pattern definitions are being suggested for

varying contexts. It is therefore difficult to define patterns

in commonly acceptable terms. However, it seems

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 3

TABLE I DESCIPTIONS OF THE 7-ANALYSIS STEPS FOR THE TARGETED RECOURSES

Process

Investigation Steps Description

1 Pattern Resources Selection
Identifying the most widely and reliable resources within the field of software patterns through

concrete literature review, which become the targeted resources for this investigation study.

2 Pattern Categorization Approach Study and compare all categorization approaches within the selected resources.

3 Pattern Descriptions

Study and compare the description of patterns between targeted resources in the domain of quality

attribute relationship. This step includes the investigation of every resource and the way they

define and categorize quality attributes in their descriptions.

4 Quality attribute Approach

Selection Identifying one of the best-standardized practices in the field for defining and

categorizing the quality attributes through a literature review. Then we use the selected approach

for identifying the relationship between patterns and (QAs). Also, we use it for comparisons

between different quality attributes categorization schema within the targeted recourses.

5
Creation of the Relationship

Matrixes

Based on the pattern descriptions within the targeted resources, and the description of QAs by the

selected approach, we built relationship matrix for each resource and a common matrix for all of

the resources that identified the relationship between patterns and QAs.

6
Creation of the Quality Attributes

Categorization Tables

Based on the information collected from steps 1–5, we created comparisons tables for the QAs

classifications, between selected QAs approach and others within the targeted resources.

7 Conflicts and Issues
Based on the investigation steps 1–6, we have identified any relationship conflicts and issues

within the descriptions of patterns on targeted resources.

sufficient to say that a pattern is essentially the solution to

a problem within a particular domain which can be applied
to help resolve similar problems in different contexts

within the same domain. The definition of „context‟ has

evolved over time, for the purpose of this paper/study we

believe that Dey‟s definition is the most appropriate and is

probably the most widely accepted.

Dey‟s defines the „context‟ as «any information that can

be used to characterize the situation of an entity. An entity

is a person, place, or object that is considered relevant to

the interaction between (for example) a user and an

application, including the user and the application», [12].

The definition of a pattern as described by GoF is «a

solution to a problem in a context». This definition,
however, was unacceptable to Dick Gabriel [13], who

believed that it failed to illustrate the significance of the

concept, and may even cause misinterpretation amongst

software professionals. Gabriel also believed that many of

the existing pattern definitions were indistinct and did not

accurately express the implications patterns have. He

therefore proposed a new definition, amending an early

version by [14]: «Each pattern is a three-part rule, which

expresses a relation between a certain context, a certain

system of forces which occurs repeatedly in that context,

and a certain software configuration which allows these
forces to resolve themselves».

Likewise, [2], [15], [16], and Gabriel[13], each one have

his own pattern definition.

Most of the definitions above share common key points

with a few variations. Some are more elaborate than others

or include some further important aspects such as forces.

Defining the forces that drives and constraints the most

appropriate solution to a problem in the form of a pattern

is an important step during pattern creation [14].

Fig. 3 Terminologies of "Pattern" within software development lifecycle.

Furthermore, having different terminologies and names in

real life to explain the same thing, often due to differences

in cultural factors or language, is acceptable. However,
this is improper in the context of software patterns, as it

leads to confusion. It is therefore considered as an absence

of standardization, which can cause major challenges,

[17]. Therefore this research aims to minimize some of

these challenges by explaining the problem area and

introducing the (Patt-QAs) database with its benefits and

features, (see Section 6).

Terminologies shown in the Figure 3are being used within

the current literature. For example, the Architectural-

Styles termed by [18] and [10], Architectural-Pattern by

[2] and [19], [20] and [15] name it a Conceptual-Model,

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 4

and a Conceptual-Pattern by [16]. Many software

developers use patterns in different stages of the software

development lifecycle. We believe that the problem

context persists, while the context of developments

changes as described by Figure 3.

More (redundant) terminology increases the challenge of

patterns’ usability. It appears to same readers that the

terms described in Figure 3 suggest different concepts. But

are they?

The philosophy surrounding the conceptual or

architectural „model, style, and pattern‟ in the

aforementioned terms attempts to convey a single idea
through various explanations. All of which share the

concept, components, restraints, and relationships that

focus on a high abstraction level. However, the conceptual

models should be explained further through detailed

descriptions, in order to be able to move from an

architectural context to a design context and so forth.

We believe that all terminologies shown in Figure 3 do

have the same concept of pattern, with minor differences,

to fit into the various development contexts. Also, less

terminology surrounding pattern, and a concrete

description of a common formal term, lead to better
utilization and understanding of software patterns, which

shall minimize the confusion in the midst of its users. So,

many existing definitions and terms for the same concept

(as illustrated above) was a challenging factor during this

study. As a result, and based on this study, the relationship

database has been created for all patterns included in the

selected resources. All patterns for all levels of the

development life cycle are gathered in one place, with an

indication of their names, definitions, and categories, to

help developers to compare and find relevant information

regarding the included patterns and their relations with
QAs with little time.

The same discussion above also applies to the design

phase as briefly discussed below:

Alexander defines design as «a process of synthesis, a

process of putting together things, a process of

combination, [14].

According to [2], design patterns depict frequently

occurring arrangements of interacting components, thus

helping to resolve design dilemmas in a given frame of

reference. What this essentially suggests is that a pattern

cannot be translated into code, but rather the pattern

should be moulded in a way that it provides a solution to
the problem.

Whilst, currently software developers can select a pattern

as an available code artefact, alter it to match his/her

problem context and finally convert the entire package

into code. Nonetheless, we agree with [2], that patterns

should be highly generic with textual explanations in

addition to block and connector diagrams, in order to

support higher reusability in multiple contexts and better

understanding. However, the textual explanations and the

block and connector diagrams should not be arbitrary.

Also, should be applied within a common standardized
procedure or a framework.

Various definitions (rules), of design patterns that convey

the diversity of terminology and description can be noticed

by comparing between the definitions of [1], [2], [21]–[23]

To conclude, the concept of a repetitive 'structural' pattern

theme can be used for describing the architecture, design,
and implementation, and what's different then? Is the

changed context. So, reducing pattern documentation

conflicts, needs more research and standardised

procedures, to helps increase the effective use of patterns.

Same concept been discussed earlier in architectural level

within Figure 3 describtion.

B. Problems Discovered Within Current Pattern
Categorisations

Coupled with the expansion of pattern diversity, there is a

corresponding rise in the emphasis on the obligation to

categorize patterns. To meet this end, a categorization

outline is employed to organize the patterns as a collection

so as to make them accessible for searching and storing by

users. For the purpose of this section we have add POSA-

V4 with other resources from section 1A).

The classification approaches for the investigated

resources are:

 The first and the second volumes are based on two

primary categories: „pattern‟ and „problem‟ categories.

The pattern category is subdivided into 3 types in both
volumes, while problem category is organized into 10

types in POSA-V1, and 4 types in POSA-V2.

 POSA-V3 were based on 3 primary categories

within the domain of typical resource management

lifecycle. These categories were resource acquisition,

resource lifecycle and resource release.

 POSA-V4, the patterns were categorized on the

basis of 13 technical topics and distributed systems.

 GoF team, however, used a different approach,

classifying patterns based on purpose and scope. The

„purpose‟ has been further sub-classified into creational,
structural, and behavioural categories, while „scope‟ into

categories of classes and objects.

 SEI book by [10] contains architectural styles that

are categorized on the basis of respective subjects and

relations. [10] describe thirteen different styles, of which

the five primary styles are independent components, data

flow, data-centre, virtual machine, and the call and return.

The primary styles signify the relationships amongst the

sub-styles and their respective topics.

 The book on security patterns by [11] comprises

pattern categories bearing reference to enterprise and
system levels within the security domain, and is related to

engineering and operations activities at all levels.

Based on this study we found that the description of the

technical topics (POSA-V4) are the same as «technical

problems», which shares the same concept of the

«problem category» that have been recognized in volumes

1 and 2. For example, the From Mud To Structure, have

been described as a problem category in POSA-V1, and as

a technical topic in POSA-V4.

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 5

From comparing the targeted resources mentioned above,

it is clear that there is no common approach for

categorising patterns. However, we believe that the

„problem‟ category as a concept, is shared between many

pattern books, although under a variety of names, for
example, it is named „purpose‟ in GoF book; „problem‟ in

POSA-V1 and V2 and „technical topics‟ in POSA-V4, and

as „main style or related subject‟ in SEI.

Also, as an example of confusing categorisation schema

used in these books is that of the Interpreter pattern, where

GoF considers this pattern as a design (behavioural)

pattern, but the SEI group consider it an architectural

(virtual machine) style. So, what is the Interpreter pattern,

and does this affect the reusability of this pattern? Can we

use the same pattern, that explained by GoF in the context

of a virtual machine, as explained by SEI group, or do we
need to adjust it to fit the new context?

This lack of a common classification, particularly for

scenarios that are technical, such as software patterns, can

end up complicating things for users, researchers and

readers. Therefore, when users seek appropriate patterns

for resolving certain real-life issues, they are confronted

with different guides and classifications for what are

essentially the same patterns. Whilst, this can assist the

users in employing the patterns in diverse contexts, it may

also contribute towards making the reuse factor of patterns

more complex, unmanageable, and less efficient. To assist

with minimising such confusion, this study provides a
database with information regarding 168 pattern (in-total)

names and classification, helping developers compare and

choose the most appropriate patterns for their problem

domain.

C. The Variation Concept As A Problem within QAs

There are many different schools of thought regarding the

management of QAs and how they can be addressed

effectively such as, ISO, SEI, DoD STD, and IEEE, [24].
Hence, there are challenges that arise when quality has to

be defined in the real world. This section tries to

demonstrate in brief the difficulties that arose during this

study from the QAs documentation variation viewpoint.
, include all variants and relationships with quality attributes.

According to Mitra 2008 and reference therein pertaining

to Juran and Gryna (1993), Crosby (1979), IEEE-1061,
and ISO-9126, each have their own individual concept of

quality. Doctor Ronald [25], argues that there are

variations in QA definitions that are acknowledged by

both the community and researchers involved. The

presence of different concepts of quality amongst different

people and communities illustrates that there are variations

within the definitions for each QA that may share some

characteristics and differ in others. However, small

variation within QA definitions could increase the

difficulties in defining and evaluating software patterns

against them.

Likewise, the terminological variations concept persists

with QA categorisations, same as the pattern
categorisations issue discuessed earlier. So, depending on

the domain, people have designed different ways to

classify QAs using different approaches. The needs for

further research and study increased; however this will not

be discussed in this paper. The focus here is to explore the

differences in QA categorisations within our six sources

and demonstrate the issues elucidated by these differences,

which will be discussed in section 3 and 4. However, the

Fig. 4 GoF team approach for classifying, describing

Proxy patterns

relationships database included all the QAs definitions and

categorisations for ISO 9126, because this a standards

represents a broad agreement of QAs. Also, QAs

definitions and categorisations for all targeted resources

where applicable is included in the database, to help the

users to make their comparisons between different

approaches.

III. CONFLICT EXAMPLE - (PROXY PATTERN)

This example for illustrative purposes of the issues

discussed in Section 2. It is a comparison of the Proxy

pattern documentation approach, between the GoF and

POSA-V1.This comparison shows some of the differences

that we think lead to confusion and that minimize the

utilisation of software patterns.

The definition of the Proxy pattern has similarities in both

resources. While, POSA-V1 did elaborate further in their

description. However, there are more differences within

the Proxy pattern such as: (1) their instances or variants,

(2) their primary and secondary categorisations, (3) their

relationships with QAs. Figure 4 and Figure 5, visualize
the above three differences.

The GoF divides Proxy patterns into 4 variants: remote,

virtual, protection and smart reference as presented in

Figure 4 Contrastingly, the POSA group divide the Proxy

pattern into 7 variants, namely remote, protection, cache,

synchronization, counting, virtual, and firewall as seen in

Figure 5 The common variants between both methods of

classification are remote, virtual and protection. The

important question being, which QAs are supported or

hindered by those variants in both references.

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 6

Fig. 5 POSA team approach for classifying, describing Proxy patterns,

include all variants and relationships with quality attributes.

Figure 4 shows that all GoF Proxy pattern variants support

„lowering cost‟ as a QA, and Virtual and Protection

patterns supporting optimization and security

respectively.

The POSA team on the other hand considered all Proxy

pattern variants, including common ones such as Remote,

Virtual and Protection patterns, to be supportive of

usability, security, and performance. Unlike the GoF

scheme, efficiency and lower-cost are supported only by

the Virtual pattern. Whereas, efficiency is hindered by all

other variants, as shown in POSA team approach, Figure 5

The above divergence in the categorisations schema and
relationships between patterns with QAs increase

confusion, making it harder to predict outcome quality

when utilizing these patterns, as well as reducing pattern

usability.

IV. ISSUES DISCOVERED BY THIS STUDY

 There are no specific definitions or

categorisations of QAs that are presented by [1]. The

approach taken instead focuses on the explanation of how

patterns can be used to support claimed QAs. They used

their own words and examples to explain QAs in the

context of software patterns.

 ISO-9126, POSA Books, and SEI [10], defined QAs

with various differences using various vocabularies.

Although the concepts of their definitions are largely

similar for each QA. However, they do varied in their
sentence structuring, terminologies and how many features

or constraints are included within their definitions. We

believe, that any additional (features or constraints) added

to any QA definition should be considered as a

prerequisite that needs to be fulfilled, to achieve that QA

with all it‟ s characteristics. As a result, the above

variations in the QAs descriptions could have an impact on

the overall evaluation process for any system or structure

(e.g. patterns), and cause a conflict between development‟

teams if they use non-common descriptions for the

intended requirements (e.g. QAs).

 ISO-9126, POSA Books, and SEI [10] present

different QA categories. For example, ISO-9126 and

POSA Books, each have „Reliability‟ as one of their main
categories, but they differ in their sub-categories as

illustrated in Figure 6It is clear then that we will

experience differences when trying to satisfy or validate

the „Reliability‟ QA using both approaches. For more

information, see the QAs categorisation table in the

database.

 One of the biggest causes of confusion and

difficulty in traceability is the use of different names for

the same patterns or one name for different patterns. For

example, GoF team explained Adapter and Decorator

patterns as two different patterns, which they are.

However, both have been identified as Wrapper pattern. It

is neither logical nor user-friendly for the same pattern to

have different names or different patterns have the same

name, making it hard to identify, trace and apply. It is

understandable to have a variety of names if the pattern

has individual instances or variants, such as the Proxy

variants example discussed earlier. There are other

examples of this «documentation problem» where the

same pattern has various titles: Publisher-subscriber,

Observer and Dependents are all different names for the

same pattern. Indeed there are 8 different names described

by [11] for Check-Point pattern alone, which are (Policy

Definition Point (PDP), Policy Enforcement Point (PEP),

Access Verification, Holding off hackers, Validation and

Penalization, Make the Punishment fit the Crime,

Validation Screen, Pluggable Authentication). However,

GoF and POSA books have provided something as a

solution to this problem, by introducing «Also Known As»

section. Other resources such as [3] and [10], however do

not acknowledge alternative names in their work.

Some resources include the same patterns with the same

names and definition, but with different QA relationships.
For example, in POSA-V1, the Piping and Filtering

pattern supports Testability and Exchangeability, whereas

SEI book lists it as supporting Maintainability and

Usability. Questions therefore arise as to which QAs the

pattern truly supports, and how these different conclusions

have been reached. Not forgetting that QA relationships

seem arbitrary, and the answer most probably lies with the

differing experience and observations of the pattern

authors, or because there is still a lack of proper

methodology to capturing and documenting patterns, as

we believe.

TABLE II: METHODS SELECTED DURING THIS ANALYSIS.

Individual analysis methods Multi-dimensional analysis methods

Several types of graphs (e.g. bar chart, pie chart), frequency tables,

descriptive statistics, a nonparametric Chi-square, and numerical

measurement for the (Likert) type questions.

Several types of graphs (e.g bar charts, scatter plots) , one sample t-test, a

cross tabulation with Chi-squares, and descriptive

statistics.

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 7

Fig. 6 Reliability as an example of the differences within QAs

categorisation.

Using expert knowledge regarding recurring problems to

provide feasible solutions to the community relies on good

standardized documentation, as recommended by [17],

that standardisation helps decrease the challenges facing

software development, preventing user confusion. To

follow Garlan advise, we used the ISO-9126 model as the
reference from which to build the relationship matrices

between patterns and QAs, using the information

described in all 6 resources studied.

V. PATTERN QUESTIONNAIRE AND ANALYSIS

In this section the researchers report the results of a survey

designed to establish the reasons affecting the utilization

of software patterns. A (secondary) goal of the survey was

to obtain the agreement of survey respondents to some

proposed solutions that could help developers with

understanding better the effective use of patterns during

the process of selecting and deploying them. A high level

of confidentiality was applied during gathering and

analyzing responds. The following sections outline the

process and methods used in the analysis of the responses

to the questionnaire. Section 5C shows an important

portion of the questionnaire that is related to the scope of

this paper. During this analysis the Statistical Package for

the Social Sciences (SPSS) tool, was used. This

explanation is to facilitate tables and figures notations.

A. ANALYSIS PROCEDURE

The survey was divided into three different sections as

follows:

The first section focused on gathering information

regarding respondents personal expertise. The second

section centred on determining the reasons that affect the

usability factor of software patterns during development

processes. The last section was aimed at discovering issues

that are related to current software patterns documentation,

and also, to obtain the respondents' agreement regarding

some proposed solutions by the researches.

The analysis procedure was carried out in two steps as

follows:

1. One-dimensional Analyses. Each question was

analyzed and summarized in the form of graphs and tables

where needed.

2. Multi-dimensional Analyses. In this step we

analyzed more than one question together (matrix-cross-

correlational), to see if there are any relationships or

dependences between various factors. The selections of

the questions were based on the overall objective of the

investigation.

B. JUSTIFICATIONS OF THE METHODS USED
DURING THIS ANALYSIS

Several techniques were used to carry out this analysis, the

selection of the methods based on best technique that suit

the type of questions, such as questions with ordinal scale,

t-tests were employed, and for dichotomous variables a pie

charts were used etc. However, due to the paper

limitations we briefly named the methods that been used

for each category, see Table II.

C. RELATED ANALYSIS

In this section we will show the statistical results of the

general agreement amongst the questionnaire respondent

towards the four mentioned statements that shown in

Table \ref{tab:4Q. These questions was proposed as a

solutions to some of the issues discussed in sections 2, 3,

and 4

Each of the statements responses were of Likert scale,

variables are of ordinal scale, so numerical measurements

are meaningful. Assigning 1= Strongly Disagree to

5 = Strongly Agree, the neutral option was assigned to 3 as

it is value. So, one interesting matter is to see whether

there any tendency to «Strongly Agree» or «Strongly

Disagree». A one sample right tail t-test will be useful to

see the general agreement of the respondents(see

Table IV).

So, our hypothesis will be based on the neutral selection

(Neutral value = 3), as follows:

Null hypothesis, Ho: µ≤3

Alternative hypothesis, Ha: µ≥3,

where, µ is the mean score of each of the statements.

Statistical analysis results are:

The overlapping (95 percent CI) error bars on the

(Agree=4, option) indicated that most of the respondent

agreed with all four statements as illustrated by Figure 7.

TABLE III: THE 4 QUESTIONS – THAT SUPPORTS THIS STUDY.

Please indicate your level of agreement with respect of the following statements:

Q17

Identifying the relationship between software patterns and

quality attributes is very important to software developers

and the software engineering field.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

Q18

Identifying standard quality attribute definitions within

current pattern references is a critical for comparing the same

patterns against the quality attribute they possess.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 8

Q19

Studying relationships between patterns and quality attributes

based on the current reliable software pattern references, and

creating a database to store these relationships on the basis of

standardized quality attribute definitions, is valuable

knowledge.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

Q20

Developing an evaluation model to assess patterns against

quality attributes is worthwhile, provided it‟s not difficult to

use.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

Fig. 7 Distribution of the Mean with Error bars: 95% CI.

TABLE IV: ONE SAMPLE RIGHT TAIL T-TEST.

Test Value = 3

95 % Confidence

Interval of the

Difference

t df
p-

value

Mean

Difference
Lower Upper

Identifying the relationship between software patterns and quality attributes is very

important to software developers and the software engineering field.
9.5 33 .000 1.1 .9 1.4

Identifying standard quality attribute definitions within current pattern references

is a critical for comparing the same patterns against the quality attribute they

possess.

4.3 31 .000 .7 .4 1.0

Studying relationships between patterns and quality attributes based on the current

reliable software pattern references, and creating a database to store these

relationships on the basis of standardized quality attribute definitions, is valuable

knowledge.

6.3 31 .000 1.1 .7 1.4

Developing an evaluation model to assess patterns against quality attributes is

worthwhile, provided it‟ s not difficult to use.
5.7 30 .000 .9 .6 1.2

Aslo, to investigate the respondents agreement

significance with 95 percent confidence interval towards

the four mentioned statements, one sample (right tailed) t-

tests were performed. The test is significant for all of the

statements as described in Table IV.

To sum up, this paper presents the work that satisfied part

of the respondents' wishes in Q17 and Q19 (see Table III)

and to contributes to software patterns community, by

identifying the relationships between some existing

software patterns and QAs. Also, by developing a database

to represent this information in easy way for the users.

More research needed to provide solutions to the

statements presented in Q18 and Q20 above, (see Table

III).

VI. BRIEF DESCRIPTION OF DATABASE OF PATTERNS VS

QUALITY ATTRIBUTES RELATIONSHIPS

It is recognized the importance of software patterns and

QAs relationships to the software development processes.

Investigating, and analyzing of these relations were carried

out to help users to locate their desired relationship in

short time and easy way through the developed database.

There are several tabs, each one have many services. We

recommend users to start with the overview tab to

understand the overall structure of the database, and to

facilitate their navigation process.

In total, we categorised 168 patterns and

identified/systematised the known relationships between

120 patterns and 50 QAs within our database. Our

database contains these relationships as well as other

features such as search functions that can be used to easily

find any patterns, conflict relationship or QA. Users can

therefore explore each reference included in this study in

an individual matrix, or view the pattern categorisation

table for an individual resource. Each pattern has a

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 9

description table consisting of definitions, alternative

names, comments and relationships. A contrast tables of

QAs classifications between POSA, SEI and ISO-9126 is

also included.

In the future, the description table will needs further

updating in order to enhance knowledge about patterns

and QAs. Furthermore, they will also include forces,

scenarios, quality tactics and quality metrics, as well as

other information deemed essential for comprehensive

knowledge about software patterns and their QAs

relationships. In addition, the database built to be easier to

explore as well as navigate through the user-friendly

interface and menu. Users are therefore in a position to

create, delete or even modify any relation. This database

means that all the information on this subject is gathered

into one place, providing summaries for numerous

resources. The importance of the database comes from its

ability to effectively save users time and effort, especially

those who are concerned with finding a brief summary

about particular patterns. To conclude this section,

developing the database was very hard and time

consuming, due to all processes involved from

investigating to representing the information included. As

a result, the database application was produced in such

manner that it will be practical to other researchers and

analyst. The database could be navigated with a proper

access authorization through the researchers.

VII. CONCLUSION

This investigation of the relationship between QAs and

software patterns has highlighted two main issues. Firstly,

there are differences between pattern documentation

within the current literature, which may because of

different factors such as, authors experience and the

maturity of the patterns in the field of software

engineering. Secondly, there isn't concrete approach or

process to be followed for describing the relationship

between patterns and quality attributes, or for categorizing

them in a more sensible formal/verifiable way. Both points

above have led to the existence of conflict relationships

between patterns and QAs, which decreases the utilization

of patterns by users. Our major research objective is to aid

software engineering community to see and help overcome

the pattern documentation problem that we have

identified. Also, to help patterns users to build better

software by selecting patterns without ignoring their

quality attributes, through visualizing this relationships

within presented database, which been identified by

several credible resources in the field. We believe that

mining software patterns and pointing to any issues within

their descriptions is an important step to improve pattern

documentation, which already have a major affect on

distilling and documenting software artifacts during

software development lifecycle as discussed in Sections 1,

2 and 3.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. USA: Addison-

Wesley, 1995.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.

Stal, Pattern-Oriented Software Architecture - A System of

Patterns, vol. 1. Chichester, UK: John Wiley & Sons, 1996.

[3] D. C. Schmidt and L. Rising, Design patterns in communications

software, vol. 19. Cambridge University Press, 2001.

[4] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R.

Stafford, Patterns of Enterprise Application Architecture. Addison-

Wesley, 2003.

[5] R. Freitas, “Scientific Research Methods and Computer Science,”

2009.

[6] J. ~S. Kim and D. Garlan, “Analyzing architectural styles with

alloy,” in ROSATEA ’06: Proceedings of the ISSTA 2006 workshop

on Role of software architecture for testing and analysis, 2006, pp. 70–80.

[7] G. Zayaraz, “Quantitative Approaches For Evaluating Software

Architectures,” Pondicherry Engineering College, Puducherry,

India, 2010.

[8] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-

Oriented Software Architecture - Patterns for Concurrent and

Networked Objects, vol. 2. Chichester, UK: John Wiley & Sons, 2000.

[9] M. Kircher and P. Jain, Pattern-Oriented Software Architecture -

Patterns for Resource Management, vol. 3. John Wiley & Sons, 2004.

[10] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 1st ed. USA: Addison Wesley Longman Inc., 1998.

[11] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad, Security Patterns: Integrating

Security and Systems Engineering. Chichester, UK: John Wiley &

Sons, 2006.

[12] A. K. Dey, “Understanding and using context,” Pers. ubiquitous

Comput., vol. 5, no. 1, pp. 4–7, 2001.

[13] J. O. Coplien, “A Pattern Definition, http://st-

www.cs.illinois.edu/patterns/definition.html.” .

[14] C. Alexander, The Timeless Way of Building. USA: Oxford

University Press, 1979.

[15] M. Fowler, Analysis patterns: reusable object models. Addison-

Wesley, 1997.

[16] D. Riehle and H. Züllighoven, “Understanding and using patterns in

software development,” TAPOS, vol. 2, no. 1, pp. 3–13, 1996.

[17] D. Garlan, “Software architecture: a roadmap,” in Proceedings of

the Conference on The Future of Software Engineering, 2000, pp. 91–101.

[18] R. T. Filding, “Architectural Styles and the Design of Network-

based Software Architectures,” University of California, IRVINE, 2000.

[19] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 3rd ed. USA: Pearson Education, Inc., 2013.

[20] C. Alexander, Notes on the Synthesis of Form. Presidents and

Fellows of Harvard College, 1964.

[21] P. Wolfgang, Design patterns for object-oriented software

development. Reading, Mass.: Addison-Wesley, 1994.

[22] J. O. Coplien and D. C. Schmidt, Eds., Pattern Languages of

Program Design. New York, NY, USA: ACM Press/Addison-

Wesley Publishing Co., 1995.

[23] A. Sherman, K. Brown, and B. Woolf, The Design Patterns

Smalltalk Companion, vol. Pearson Ed. 1998.

[24] R. ~T. Futrell, D. ~F. Shafer, and L. ~I. Shafer, Quality Software

Project Management. Upper Saddle River, USA: Prentice-Hall Inc., 2002.

[25] R. Petrasch, “The definition of software quality: a practical

approach,” in Proceedings of the 10th International Symposium on

Software Reliability Engineering, 1999, pp. 33–34.

BIOGRAPHIES

Hassan Almari (1971) received his

MSE and ME (hons) degrees in

software engineering and engineering

from the Australian National

University - ANU, Canberra, in 2009

and 2010, respectively, and he is

currently working toward the PhD degree in software

engineering field. He have over 17 years of experience in

computer and operational department in RSADF, he is

Lieutenant colonel in the RSADF until now. His work
experience includes developing and maintaining C3 and

http://www.iarjset.com/

ISSN 2393-8021

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 10

C4I systems. In 1998 he worked for 6 years in the PHI

project, to integrate several weapons into one command

and control center (C3) with RSADF and Colsa

Corporation. His main research interest and current work

focused on architectural level, and it is modeling and
evaluation techniques.

Clive Boughton (1956) possesses a

PhD in Molecular Physics from the

Australian National University (ANU).

Clive is a professional who possesses

over thirty years of practical experience

in varying roles as scientist, engineer,

software engineer, consultant,

academic, and project and company

manager. His collective experiences have given him the
opportunity to observe and contribute to commerce and

defence industries using contemporary techniques,

languages and management methods. His extensive

industry experience led to him attaining tenure in

Computer Science at ANU, where he finalised a four year

degree in Software Engineering, and set up a Masters in

Software Engineering. His teaching and research interests

include requirements elicitation and analysis, project

management, quality management and systems/software

modelling and architecture. He has supervised several PhD

and Masters students surrounding topics in Software

Engineering.

http://www.iarjset.com/

