Review of "Some operators on Hilbert Space and their Spectrum"

Monish Arora
Assistant Prof., Department of Mathematics, D.A.V. College, Jalandhar

Abstract

In the paper there will be a brief introduction of Hilbert space then some types of operators on Hilbert space and their spectrum.

Keywords: Hilbert space, operators, spectrum

INTRODUCTION

A Hilbert space is a vector space H together with an inner Theorem. An operator T on a Hilbert space H is self-adjoint product $\langle x, y\rangle$ defined on it such that the norm IIxII= $\sqrt{\langle x, x\rangle}$ defined on H makes it a complete metric space. So a Hilbert space ($\mathrm{H},<>$) is a complete inner product space.

An operator on a Hilbert space H is a continuous or bounded linear transformation $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$. The set of all operators on H is denoted by $\mathrm{B}(\mathrm{H})$.

Spectrum of an operator $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ is the set of all eigen values of T and is denoted by $\sigma(\mathrm{T})=\{\lambda: T-\lambda I$ is singular\}

MATHEMATICAL DISCUSSION

Some types of operators are adjoint operator, selfadjoint, operator positive operator, Normal operator, Unitary operator.

ADJOINT OPERATOR

Let T be an operator on a Hilbert space H then there exists a unique operator denoted by $\mathrm{T}^{*}: \mathrm{H} \rightarrow \mathrm{H}$ such that
$\langle\mathrm{Tx}, \mathrm{y}\rangle=\left\langle\mathrm{x}, \mathrm{T}^{*} \mathrm{y}\right\rangle \forall \mathrm{x}, \mathrm{y} \in \mathrm{H}$.
The operator T^{*} is called the adjoint of T .
These are some important properties of operators

$$
\begin{equation*}
\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{*}=\mathrm{T}_{1}{ }^{*}+\mathrm{T}_{2}{ }^{*} \tag{1}
\end{equation*}
$$

(2) $\quad(\alpha \mathrm{T})^{*}=\bar{\alpha} T^{*}$
(3) $\quad\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{*}=\mathrm{T}_{2}{ }^{*} \mathrm{~T}_{1}{ }^{*}$
(4) $T^{* *}=T$
IITII = IIT*'II
$\langle T x, x\rangle=0 \forall x \in H \Leftrightarrow T=0$

SELF-ADJOINT OPERATOR

An operator T on a Hilbert space H is said to be selfadjoint if $\mathrm{T}=\mathrm{T}^{*}$

$$
\text { So }\langle\mathrm{Tx}, \mathrm{y}\rangle=\langle\mathrm{x}, \mathrm{Ty}\rangle \forall \mathrm{x}, \mathrm{y} \in \mathrm{H}
$$

iff $\langle T x, x\rangle$ is real $\quad \forall, x \in H$
Let T be self-adjoint operator on H .
$\therefore \mathrm{T}^{*}=\mathrm{T}$
Now $\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle$

$$
=\langle x, T x\rangle
$$

$$
\langle\mathrm{Tx}, \mathrm{x}\rangle=\langle\overline{T x, x}\rangle
$$

$$
\Rightarrow\langle T x, x\rangle \text { is real } \forall x \in H
$$

conversely, suppose $<T x, x>\in R \forall x \in H$
Where R is the set of real numbers

$$
\therefore\langle\mathrm{Tx}, \mathrm{x}\rangle=\langle\overline{T x, x}\rangle
$$

$$
\begin{aligned}
& =\left\langle x, T^{*} x\right\rangle \\
& =\left\langle\mathrm{T}^{*} \mathrm{x}, \mathrm{x}\right\rangle \forall \mathrm{x} \in \mathrm{H} \\
\Rightarrow & \left\langle\mathrm{Tx}-\mathrm{T}^{*} \mathrm{x}, \mathrm{x}\right\rangle=0 \quad \forall \mathrm{x} \in \mathrm{H} \\
< & \left.\left(\mathrm{T}-\mathrm{T}^{*}\right) \mathrm{x}, \mathrm{x}\right\rangle=0 \quad \forall \mathrm{x} \in \mathrm{H} \\
\Rightarrow & \mathrm{~T}-\mathrm{T}^{*}=\mathrm{O} \\
\Rightarrow & \mathrm{~T}=\mathrm{T}^{*}
\end{aligned}
$$

T is self-adjoint
Def If T_{1} and T_{2} are self-adjoint operator on a Hilbert space H

Define a relation $\leq \mathrm{on} \mathrm{B}(\mathrm{H})$ as $\mathrm{T}_{1} \leq \mathrm{T}_{2} \Leftrightarrow\left\langle\mathrm{~T}_{1 \mathrm{x}}, \mathrm{x}\right\rangle \leq$
$\left\langle\mathrm{T}_{2} \mathrm{x}, \mathrm{x}\right\rangle \forall \mathrm{x} \in \mathrm{H}$

POSITIVE OPERATOR

A self-adjoint operator T on a Hilbert space is said to be positive.
if $\mathrm{T} \geq 0$

$$
\text { i.e. }\langle T x, x\rangle \geq 0 \forall, x \in H
$$

NORMAL OPERATOR

An operator N on a Hilbert space H is said to be normal operator if $\mathrm{NN}^{*}=\mathrm{N} * \mathrm{~N}$.

Theorem:- T is normal operator on H iff

$$
\text { IITxII }=\text { IIT }^{*} x \mathrm{II} \forall \mathrm{x} \in \mathrm{H}
$$

T is normal

$$
\begin{array}{ll}
\Leftrightarrow & \mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T} \\
\Leftrightarrow & \mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}=0 \\
\Leftrightarrow & <\left(\mathrm{TT}^{*}-\mathrm{T}^{*} \mathrm{~T}\right) \mathrm{x}, \mathrm{x}>=0 \forall \mathrm{x} \in \mathrm{H} \\
\Leftrightarrow & <\left(\mathrm{TT}^{*} \mathrm{x}-\mathrm{x}>-<\mathrm{T} * \mathrm{Tx}, \mathrm{x}>=0\right. \\
\Leftrightarrow & <\left(\mathrm{T}^{*} \mathrm{x}, \mathrm{~T}^{*} \mathrm{x}>-<\mathrm{Tx}, \mathrm{Tx}>=0\right. \\
\Leftrightarrow & <\left(\mathrm{T}^{*} \mathrm{x}, \mathrm{~T}^{*} \mathrm{x}>=<\mathrm{Tx}, \mathrm{Tx}>\right. \\
\Leftrightarrow & \mathrm{IIT}^{*} \mathrm{xII}=\mathrm{IITxII}^{2} \\
\Leftrightarrow & \mathrm{IIT}^{*} \mathrm{xII}=\mathrm{IITxII}^{2}
\end{array}
$$

UNITARY OPERATOR

An operator U on a Hilbert Space H is said to be unitary if $\mathrm{UU}^{*}=\mathrm{U}^{*} \mathrm{U}=\mathrm{I}$.

Theorem If T is a self-adjoint operator on H , then every eigen-value of T is real.

Let λ be an eigen value of T .
Then $\exists \mathrm{x} \neq 0$ Such that $\mathrm{Tx}=\lambda \mathrm{x}$
Now $\langle\mathrm{Tx}, \mathrm{x}\rangle=\langle\lambda \mathrm{x}, \mathrm{x}\rangle$

$$
=\lambda\langle x, x\rangle
$$

$$
=\lambda \operatorname{IIxII}^{2}
$$

As T is self-adjoint
So $\langle\mathrm{Tx}, \mathrm{x}\rangle$ is real $\forall \mathrm{x} \in \mathrm{H}$
$\therefore \lambda$ is real.
So all eigen values of a self-adjoint operator T are real.
So spectrum of T i.e. $\sigma(\mathrm{T})$ is a subset of real numbers.
Theorem If T is a positive operator then every eigen value of T is positive.

As T is a positive operator
$\therefore\langle T x, x\rangle \geq 0 \forall \mathrm{x} \in \mathrm{H}$
As proved above $\langle T x, x\rangle=\lambda$ IIxII 2
So $\lambda \geq 0$
Therefore each eigen value of a positive operator is positive.
so spectrum of a positive operator consists of positive real values

Theorem, If T is a unitary operator on a Hilbert space H then every eigen value of T has absolute value 1 .

If T is unitary operator on a Hilbert space H then
T*T = I

$$
\begin{aligned}
& \text { Now }\langle\mathrm{Tx}, \mathrm{Ty}\rangle=\left\langle\mathrm{T}^{*} \mathrm{Tx}, \mathrm{y}\right\rangle \\
& =\langle\mathrm{Ix}, \mathrm{y}\rangle \\
& =\langle x, y\rangle \\
& \Rightarrow \quad\langle T x, T y\rangle=\langle x, y\rangle \forall x, y \in H
\end{aligned}
$$

By taking $\mathrm{y}=\mathrm{x}$,
< Tx, Tx> $=\langle\mathrm{x}, \mathrm{x}\rangle$
$\mathrm{IITxII}^{2}=\mathrm{IIxII}^{2}$
\Rightarrow IITxII=IIxII
Let λ be an eigen value of T
i.e. $\lambda \in \sigma(T)$

$$
\begin{aligned}
& \text { Then } \exists \mathrm{x} \neq 0 \text { such that } \\
& \mathrm{Tx}=\lambda \mathrm{x} \\
& \text { II } \lambda \mathrm{II}=\mathrm{IITxII} \\
& \quad=\mathrm{IIxII} \\
& \Rightarrow \mathrm{I} \lambda \mathrm{I}=1
\end{aligned}
$$

So if $\lambda \in \sigma$ (T) and T is a unitary operator then absolute value of λ is 1 .

Theorem If T is a self-adjoint or unitary operator on H then the eigen vectors of T , corresponding to distinct eigen values of T are orthogonal.

Let T be a self-adjoint or unitary operator on a Hilbert space H .
Let $\lambda_{1} \in \sigma(\mathrm{~T})$ and $\lambda_{2} \in \sigma(\mathrm{~T})$
$\therefore \exists \mathrm{x}_{1} \neq 0$
and $x_{2} \neq 0$ such that

$$
\mathrm{Tx}_{1}=\lambda_{1 \mathrm{x}_{1}}
$$

and $\mathrm{Tx}_{2}=\lambda_{2} \mathrm{x}_{2}$
Now if T is self-adjoint then both λ_{1} and λ_{2} are real.
So $\lambda_{1}\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=\left\langle\lambda_{1} \mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle$

$$
\begin{aligned}
&=\left.<\mathrm{Tx}_{1}, \mathrm{x}_{2}\right\rangle \\
&=\left\langle\mathrm{x}_{1}, \mathrm{~T}^{*} \mathrm{x}_{2}\right\rangle \\
&=\left\langle\mathrm{x}_{1}, \mathrm{~T}_{\left.\mathrm{x}_{2}\right\rangle}\right. \\
&=\left\langle\mathrm{x}_{1}, \lambda_{2} \mathrm{x}_{2}\right\rangle \\
&= \overline{\lambda_{2}}\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle \\
&= \lambda_{2}\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle \\
&\left(\lambda_{1}-\lambda_{2}\right)\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=0 \\
& \text { As } \lambda_{1} \neq \lambda_{2} \\
& \therefore\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=0
\end{aligned}
$$

So eigen vectors corresponding to distinct eigen values are orthogonal.
Further on assuming T as unitary operator.
We have $\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$

$$
\begin{aligned}
& \therefore\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle \quad=\left\langle\mathrm{x}_{1}, \mathrm{~T}^{*} \mathrm{Tx}_{2}\right\rangle \\
&=\left\langle\mathrm{Tx}_{1}, \mathrm{Tx}_{2}\right\rangle \\
&=\left\langle\lambda_{1} \mathrm{x}_{1}, \lambda_{2} \mathrm{x}_{2}\right\rangle \\
&\left.=\lambda_{1} \overline{\lambda_{2}}<\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle \\
&\left.\left(1-\lambda_{1} \overline{\lambda_{2}}\right)<\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=0 \\
& \text { Now } \lambda_{2} \overline{\lambda_{2}}=\mathrm{I} \lambda_{2} \mathrm{I}^{2} \\
&=1 \text { as } \mathrm{T} \text { is unitary } \\
& \text { So } \overline{\lambda_{2}}= \frac{1}{\lambda_{2}} \\
& \therefore \lambda_{1} \overline{\lambda_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \\
& \neq 1 \text { as } \lambda_{1} \neq \lambda_{2}
\end{aligned}
$$

So $\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=0$
Again eigen vectors of a unitary operator T are orthogonal corresponding to distinct eigen values of T .
Theorem If T is a normal operator on H then x is an eigen vector of T with eigen value λ iff x is an eigen vector of T^{*} with eigen value $\bar{\lambda}$
As T is a normal operator
$\therefore \mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}$
Also for any scalar λ

$$
\begin{aligned}
(\mathrm{T}-\lambda \mathrm{I})^{*} & =\mathrm{T}^{*}-(\lambda \mathrm{I})^{*} \\
& =\mathrm{T}^{*}-\bar{\lambda} \mathrm{I}^{*} \\
& =\mathrm{T}^{*}-\bar{\lambda} \mathrm{I}
\end{aligned}
$$

$\operatorname{Now}(\mathrm{T}-\lambda \mathrm{I})(\mathrm{T}-\lambda \mathrm{I})^{*}=(\mathrm{T}-\lambda \mathrm{I})\left(\mathrm{T}^{*}-\bar{\lambda} \mathrm{I}\right)$

$$
\lambda \bar{\lambda} \quad=\mathrm{TT}^{*}-\lambda \mathrm{T}-\lambda \mathrm{T}^{*}+
$$

$$
=\mathrm{TT}^{*}-\lambda \mathrm{T}-
$$

$$
\lambda \mathrm{T}^{*}+\mathrm{I} \lambda \mathrm{I}^{2}
$$

I) $(\mathrm{T}-\lambda \mathrm{I})$

$$
\text { Also }(\mathrm{T}-\lambda \mathrm{I})^{*}(\mathrm{~T}-\lambda \mathrm{I})=\left(\mathrm{T}^{*}-\bar{\lambda}\right.
$$ $\mathrm{T} * \mathrm{~T}-\lambda \mathrm{T}^{*}-$ $\bar{\lambda}_{\mathrm{T}}-\lambda \bar{\lambda}$

So eigen vectors of a normal operator T are orthogonal corresponding to distinct eigen values.

CONCLUSION

After applying definitions and results, we come to $=$ conclusion that operators on Hilbert space show very

$$
=\mathrm{T}^{*} \mathrm{~T}-\lambda \mathrm{T}^{*}-\bar{\lambda} \mathrm{T}+\mathrm{I} \lambda \mathrm{I}^{2}
$$

As T is normal

$$
=\mathrm{TT}^{*}-\lambda \mathrm{T}^{*}-\bar{\lambda} \mathrm{T}+\mathrm{I} \lambda \mathrm{I}^{2}
$$

So $(\mathrm{T}-\lambda \mathrm{I})(\mathrm{T}-\lambda \mathrm{I})^{*}=(\mathrm{T}-\lambda \mathrm{I})^{*}(\mathrm{~T}-\lambda \mathrm{I})$
$\therefore \mathrm{T}-\lambda \mathrm{I}$ is a normal operator for any scalar λ

$$
\begin{aligned}
\text { Now }(\mathrm{T}-\lambda \mathrm{I})^{*} & =\mathrm{T}^{*}-\bar{\lambda} \mathrm{I}^{*} \\
& =\mathrm{T}^{*}-\bar{\lambda} \mathrm{I}
\end{aligned}
$$

As T- $\lambda \mathrm{I}$ is normal
$\therefore \mathrm{II}(\mathrm{T}-\lambda \mathrm{I}) \mathrm{xII}=\mathrm{II}(\mathrm{T}-\lambda \mathrm{I})^{*} \mathrm{x} \mathrm{II} \forall \mathrm{x} \in \mathrm{H}$
$\Leftrightarrow \mathrm{II}(\mathrm{T}-\lambda \mathrm{I}) \mathrm{x} \mathrm{II}=\mathrm{II}\left(\mathrm{T}^{*}-\bar{\lambda} \mathrm{I}\right) \mathrm{x} \mathrm{II} \forall \mathrm{x} \in \mathrm{H}$
$\Leftrightarrow \mathrm{II}(\mathrm{Tx}-\lambda \mathrm{x}) \mathrm{II}=\mathrm{II}\left(\mathrm{T}^{*} \mathrm{x}-\bar{\lambda} \mathrm{x}\right.$ II
So if x is an eigen vector of normal operator T with eigen value λ then x is an eigen vector of adjoint operator T^{*} with eigen value $\bar{\lambda}$.
Theorem If T is a normal operator on a Hilbert space H then eigen vectors of T corresponding to distinct eigen values are orthogonal to each other.

Let T be normal operator
Let λ_{1} and λ_{2} belongs to $\sigma(\mathrm{T})$ and $\lambda_{1} \neq \lambda_{2}$
So $\exists x_{1} \neq 0$ and $x_{2} \neq 0$
such that

$$
\mathrm{Tx}_{1}=\lambda_{1} \mathrm{x}_{1}
$$

and $\quad \mathrm{Tx}_{2}=\lambda_{2} \mathrm{x}_{2}$
$\therefore \lambda_{1}\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=\left\langle\lambda_{1} \mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle$

$$
\begin{aligned}
& =\left\langle\mathrm{Tx}_{1}, \mathrm{x}_{2}\right\rangle \\
& =\left\langle\mathrm{x}_{1}, \mathrm{~T}^{*} \mathrm{x}_{2}\right\rangle \\
& =\left\langle\mathrm{x}_{1}, \bar{\lambda}_{2} \mathrm{x}_{2}\right\rangle \\
& =\lambda_{2}\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle
\end{aligned}
$$

$\left(\lambda_{1}-\lambda_{2}\right)\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=0$
$\Rightarrow\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle=0$ interesting spectral values. Self-adjoint operators always have advantage of real eigen values. Positive operators have positive real eigen values. Unitary operators have eigen values having absolute value unity. Further eigen vectors

Vol. 1, Issue 2, October 2014
corresponding to distinct eigen values of self-adjoint, unitary and normal operators are pairwise orthogonal.

REFERENCES

[1]. Balmohan V. Limaye: Functional Analysis, New age International Publishers.
[2]. P.K. Jain, OM P Ahuja: Functional Analysis, New Age International Publishers
[3]. D. Somasundaram: First course in Functional Analysis Narosa Publishers.
4]. Dr. Sudhir Kumar Pundir, Functional Analysis CBS Publishers and distributors Pvt. Ltd.
[5]. Saxe, Karen, Beginning Functional Analysis, New York: Springer

