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INTRODUCTION 

A Hilbert space is a vector space H together with an inner 

product <x, y> defined on it such that the norm IIxII=

 xx,  defined on H makes it a complete metric space. 

So a Hilbert space (H, < >) is a complete inner product 

space. 

 An operator on a Hilbert space H is a continuous 

or bounded linear transformation T:H→ H. The set of all 

operators on H is denoted by B (H). 

 Spectrum of an operator T:H→ H is the set of all 

eigen values of T and is denoted by  (T) = { IT  −:  

is singular} 

MATHEMATICAL DISCUSSION 

 Some types of operators are adjoint operator, self-

adjoint, operator positive operator, Normal operator, 

Unitary operator. 

ADJOINT OPERATOR 

 Let T be an operator on a Hilbert space H then 

there exists a unique operator denoted by T*: H→ H such 

that 

 <Tx, y> = <x, T*y>  x, yH. 

 The operator T* is called the adjoint of T.  

 These are some important properties of operators 

(1) (T1 + T2)* = T1* + T2
* 

(2) ( T)* = 
*T  

(3) (T1 T2)*  = T2
*T1

* 

(4) T** = T 

(5) IITII = IIT*II 

(6) <Tx, x> = 0   xH  T = 0 

SELF-ADJOINT OPERATOR 

An operator T on a Hilbert space H is said to be self-

adjoint if  T= T* 

 So < Tx, y> = <x, Ty>  x, yH 

 

 

Theorem. An operator T on a Hilbert space H is self-adjoint 

iff <Tx, x> is real            , xH 

Let T be self-adjoint operator on H. 

  T* = T 

Now  < Tx, x> = <x, T*x> 

    = <x, Tx> 

<Tx, x> = < xTx,  > 

  <Tx, x> is real  xH 

conversely, suppose < Tx, x> R xH 

Where R is the set of real numbers 

<Tx, x> = < xTx,  > 

        = < xTx *,  > 

         = <T*x, x>  xH 

<Tx - T*x, x> = 0  xH 

< (T-T*) x, x>=0  xH 

  T-T* = O 

  T=T* 

T is self-adjoint 

Def  If T1 and T2 are self-adjoint operator on a Hilbert 

space H  

Define a relation ≤ on B(H) as T1  ≤ T2  <T1x, x>  ≤ 

<T2x, x>  xH 

 

POSITIVE OPERATOR 

A self-adjoint operator T on a Hilbert space is said to be 

positive. 

if T ≥0 

 i.e. <Tx, x>  ≥ 0  , xH 
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NORMAL OPERATOR 

An operator N on a Hilbert space H is said to be normal 

operator if NN* = N*N . 

Theorem:- T is normal operator on H iff 

 IITxII = IIT*xII  xH 

T is normal 

  TT* = T*T 

  TT* - T*T = 0 

  <(TT* - T*T)x, x> = 0  xH 

  <(TT*x- x> -<T*Tx, x> = 0 

  <(T*x, T*x >- < Tx, Tx> = 0 

  <(T*x,  T*x> = <Tx, Tx> 

  IIT*xII2 = IITxII2 

  IIT*xII = IITxII 

 

UNITARY OPERATOR 

An operator U on a Hilbert Space H is said to be unitary if 

UU* = U*U = I. 

Theorem   If T is a self-adjoint operator on H, then every 

eigen-value of T is real. 

 

Let  be an eigen value of T. 

 Then   x 0 Such that Tx =  x 

Now < Tx, x>  = < x, x> 

  = <x,x> 

 = IIxII2 

As T is self-adjoint 

So < Tx, x> is real   xH 

   is real. 

So all eigen values of a self-adjoint operator T are real. 

So spectrum of T i.e.  (T) is a subset of real numbers. 

Theorem    If T is a positive  operator then every eigen 

value of T is positive. 

As T is a positive operator 

  <Tx, x> ≥  0  xH 

As proved above <Tx, x> =  IIxII2 

So   ≥ 0 

Therefore each eigen value of a positive operator is 

positive. 

so spectrum of a positive operator consists of positive real 

values  

Theorem,  If T is a unitary operator on a Hilbert space H 

then every eigen value of T has absolute value 1. 

 

If T is unitary operator on a Hilbert space H then 

T*T = I 

 Now < Tx, Ty>  = <T*Tx, y> 

       = <Ix, y> 

       = <x, y> 

   < Tx, Ty> = <x, y>   x, yH 

By taking y = x, 

< Tx, Tx> = <x, x> 

IITxII2 = IIxII2  

  IITxII=IIxII 

Let   be an eigen value of T 

i.e.    )(T  

 Then   x   0 such that 

 Tx =  x 

 II  II= IITxII 

            = IIxII 

 I I =1  

So if    (T) and T is a unitary operator then absolute 

value of   is 1. 

Theorem    If T is a self-adjoint or unitary operator on H 

then the eigen vectors of T, corresponding to distinct eigen 

values of T are orthogonal. 

Let T be a self-adjoint or unitary operator on a Hilbert 

space H. 

Let  1   (T) and  2  (T) 

    x1  0  

and x2  0 such that 

 Tx1 =   1 x1 

and Tx2 =  2 x2 

Now if T is self-adjoint then both  1 and  2 are real. 

So  1 < x1, x2>  = < 1 x1, x2> 

   =<Tx1, x2> 

   =<x1 , T* x2> 

   =<x1 , T x2> 

   =<x1 ,  2 x2> 

   = 2  <x1  , x2> 

   = 2<x1 ,x2> 

  ( 1 -  2) <x1, x2> = 0 

   As  1   2 

  <x1, x2> = 0 
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So eigen vectors corresponding to distinct eigen values are 

orthogonal. 

Further on assuming T as unitary operator. 

We have T*T = I 

<x1, x2>  = <x1 , T*Tx2> 

  = <Tx1, Tx2> 

  =< 1x1,  2 x2> 

  =  1 2 <x1, x2> 

  (1 -  1 2 ) < x1, x2> = 0 

  Now  2 2  = I 2I2 

  = 1 as T is unitary 

 So 2  = 

2

1


 

   1 2  = 

2

1




 

 1  as  1   2 

So <x1 , x2> = 0 

Again eigen vectors of a unitary operator T are orthogonal 

corresponding to distinct eigen values of T.   

Theorem If T is a normal operator on H then  x is an eigen 

vector of T with eigen value   iff x is an eigen vector of 

T* with eigen value   

As T is a normal operator  

  TT* = T* T 

Also for any scalar    

   (T- I)* = T* - ( I)*  

     = T* -  I* 

    = T* -  I 

 Now (T- I) (T- I)*  = (T- I)  (T* -  I) 

= TT* -  T- T*+ 

   

     = TT* -  T - 

 T* + I I2 

   Also (T- I)* (T- I) = (T*-
I) (T- I) 

= 

T*T- T*-

 T-   

     

 =T*T- T*- T+I I2 

 As T is normal 

   = TT* -  T* -  T+I  I 2 

So (T- I) (T- I)* = (T- I)* (T- I) 

T- I is a normal operator for any scalar   

  Now (T- I)*   = T* -  I* 

     = T* -  I 

   As T- I is normal 

  II (T- I)x II = II (T- I)*x II   xH 

  II (T- I)x II = II (T*- I)x II   xH 

  II (Tx- x) II = II (T*x- x II 

So if x is an eigen vector of normal operator T with eigen 

value  then x is an eigen vector of adjoint operator T* with 

eigen value  . 

Theorem If T is a normal operator on a Hilbert space H then 

eigen vectors of T corresponding to distinct eigen values are 

orthogonal to each other. 

 

Let T be normal operator  

Let  1 and  2 belongs to  (T) and  1    2 

So  x1  0 and x2  0 

such that  

 Tx1 =  1 x1 

and  Tx2 =  2 x2 

   1 <x1, x2> = < 1 x1, x2> 

  = <Tx1, x2> 

  = <x1, T*x2> 

  = <x1,  2 x2> 

  = 2 < x1, x2> 

( 1 -  2) < x1, x2> = 0 

<x1, x2> = 0 

So eigen vectors of a normal operator T are orthogonal 

corresponding to distinct eigen values.   

CONCLUSION 

After applying definitions and results, we come to 

conclusion that operators on Hilbert space show very 

interesting spectral values. Self-adjoint operators always 

have advantage of real eigen values. Positive operators have 

positive real eigen values. Unitary operators have eigen 

values having absolute value unity. Further eigen vectors 
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corresponding to distinct eigen values of self-adjoint, 

unitary and normal operators are pairwise orthogonal. 

 

REFERENCES 

[1]. Balmohan V. Limaye: Functional Analysis, New age International 

Publishers. 

[2]. P.K. Jain, OM P Ahuja: Functional Analysis, New Age International 
Publishers. 

[3]. D. Somasundaram: First course in Functional Analysis Narosa 
Publishers. 

[4]. Dr. Sudhir Kumar Pundir, Functional Analysis CBS Publishers and 

distributors Pvt. Ltd. 
[5]. Saxe, Karen, Beginning Functional Analysis, New York: Springer 


