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Abstract: In this technical paper, analysis of functionally graded plates is presented. The bending response of simply 

supported functionally graded plate subjected to mechanical sinusoidal varying load is evaluated using higher order 

shear deformation theory in association with meshless approach. The governing differential equation of the plate is 

obtained using energy principle. Multiquadric radial basic function based on meshless method is applied for 

discreatization of the equation. The effects of material gradient index, span to thickness ratio on the sinusoidal varying 
pressure load of functionally graded material plates are highlighted. 
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I. INTRODUCTION 

 

The past few decades have seen composite materials taken 

the emerging role in the fields of structural applications. 

One of the most demanded composite material is 

functionally graded material. The term FGMs was 

originated in the mid-1980s by a group of scientists in 

Japan. FGMs attain the multistructural status from their 

property gradation. By gradually varying the volume 

fraction of constituent materials, their material properties 

exhibit a smooth and continuous change from one layer to 

another layer. The ceramic and metal constituents of 

FGMs are able to withstand high-temperature 
environments due to their better thermal resistance 

characteristics and also provide stronger mechanical 

performance. In the last few decades many literatures have 

been attracted by the analysis of FGM plates.  
 

A comprehensive review of various analytical and 

numerical models for predicting the bending, buckling and 
vibration responses of FG plates under mechanical and 

thermal loadings was recently carried out by Swaminathan 

et al. [1]. Roque et al. [2] employed the bending behavior 

of FG plates using a meshless collocation method with 

multiquadric RBFs. Pandya and Kant [3] used higher order 

shear deformation theory with 7 unknowns and accounting 

for a cubic variation of the in-plane displacements. For 

analyzing purpose many researchers show their interest in 

meshless method due to their simplicity requirements.   
 

Meshless methods use a set of nodes scattered within the 

problem domain and sets of nodes scattered on the 

boundaries of the domain to represent the problem domain 

and its boundaries. Meshless methods not required mesh 

and information on the relationship between the nodes is 

required. Free vibration analysis of laminated composite 

plates by a meshless local collocation method based spline 

RBF was carried out by Xiang and Kang [4] . Liu and 

Chen [5] introduced free vibration analysis of thin plates 
of complicated shapes using mesh free method. 

 
II. MATHEMATICAL FORMULATION 

 

A rectangular shape plate of edge length a, b along x, y 

axes respectively and thickness h is the thickness along z 

axis whose mid plane is coinciding with x-y plane of the 

coordinate system is considered. The diagram of 

rectangular shaped functionally graded material (FGM) 

plate in rectangular coordinate system is shown in Figure 

1.       

 
Fig 1. Geometry of rectangular FGM plate in rectangular 

coordinate system 
 

The homogenization technique considered in this work is 

the law of mixtures, which provides the following elastic 

properties at each material layer. The top surface of the 

plate is ceramic rich and the bottom surface is metal rich. 
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Where „n‟ is exponent governing the material properties 

along the thickness direction known as volume fraction 

exponent or grading index, 
 

The volume fraction of the metal phase is obtained by 

( ) 1 ( )m cV z V z 
                                                       (2) 

  

The material property gradation through the thickness of 

the plate is assumed to have the following form   
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Here E denote the modulus of elasticity of FGM structure, 

while these parameters come with subscript m or c 

represent the material properties for pure metal and pure 

ceramic plate respectively., h is the thickness of the plate, 

Em and Ec are the corresponding Young‟s modulus of 

elasticity of metal and ceramic and z is the thickness 

coordinate. 
 

The displacement field at any point in the plate made      

up  of uniform thickness is expressed as: 
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The constitutive stress-strain relations for any FGM plate 
are expressed as: 
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Where, the parameters ijQ  are the stiffness coefficients and 

are expressed in terms of elastics constants as: 
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The governing differential equations of plate are obtained 

using energy equation, in mathematical form it is 

expressed as: 
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Where,   U = Strain energy 

                V = work done due to transverse load 
 

The strain energy of the plate due to internal stress 

resultants is expressed as: 
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The governing differential equations of plate are obtained 

using Hamilton‟s principle and expressed as : 
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The force and moment resultants in the plate and plate 

stiffness coefficients are expressed as: 
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The boundary conditions for an arbitrary edge with simply 

supported conditions are as follows:  
 

0, : 0; 0; 0; 0; 0

0, : 0; 0; 0; 0; 0

     

     

y y z xx xx

x x z yy yy

x a u u M N

y b u u M N




      

   

1. SOLUTION METHODOLOGY 
 

The governing differential equations (8) are expressed in 

terms of displacement functions. Radial basis function 

based formulation works on the principle of interpolation 

of scattered data over entire domain. A 2D rectangular 
domain having NB boundary nodes and ND interior nodes 

is shown in Figure-2. 
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Fig 2. An arbitrary two dimensional domains 

 

The variable , , , ,x y z x yu u u     can be interpolated in 

form of radial distance between nodes. The solution of the 

linear governing differential equations (8) is assumed in 

terms of multiquadric radial basis function for nodes 1:N, 

as; 
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Where, N is total numbers of nodes which is equal to 

summation of boundary nodes NB and domain interior 

nodes ND  , , jg X X m c .  is multiquadric radial 

basis function expressed as  2 2 
m

g r c    ,  

 

( , , , , )y yx xz
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j j j j j

     are unknown coefficients. 

 jX X is the radial distance between two nodes.  

Where,    
2 2

     j j jr X X x x y y    and m, c are 

shape parameter. The value of „m‟ and 'c' taken here is 0.5 
and 1.3/(N)0.25.   

 

2. COMPUTATION AND DISCUSSION OF RESULTS:  
 

The study here has been focused on the flexural response 
of simply supported square functionally graded plates 

under line transverse loads. A RBF based meshless code in 

MATLAB 2013 is developed. Several examples have been 

analysed and the computed results are compared. Based on 

convergence study, a 15×15 node is used throughout the 

study. The material properties of FGMs have been taken 

as follows: 
 

Ceramic 151 , 0.3 c cE GPa 
 

 

Aluminium (Al) 70 , 0.3 m mE GPa   
 

In order to show the accuracy and efficiency of the present 
solution methodology, detailed convergence studies for 

simply supported FGM plate (a/h=20) is carried out.  
 

The convergences of the deflection are shown in Fig. 3. It 

can be seen that convergence achieved is within 1 % at 

15×15 nodes. 

 

Fig. 3 Convergence study for deflection w of a simply 
supported FGM plate (a/h = 20, „n‟=2) 

 

Table1  Effect of gradation index 'n' on deflection, stresses 

and Moments of a simply supported FGM Plate(a/h=5) 
 

 'n' 

 0 0.5 1 2 5 Metal 

w  0.013 0.017 0.019 0.021 0.023 0.029 

xx
 2.692 3.137 3.374 3.612 4.005 5.805 

yy
 2.692 3.137 3.374 3.612 4.005 5.805 

xy  1.428 1.663 1.789 1.914 2.118 3.078 

xz  0.406 0.505 0.554 0.601 0.661 0.875 

xxM
 0.033 0.042 0.046 0.049 0.054 0.072 

yyM
 0.033 0.042 0.046 0.049 0.054 0.072 

xyM
 0.018 0.022 0.024 0.026 0.029 0.038 

f

xxM
 0.033 0.042 0.046 0.049 0.054 0.072 

f

yyM
 0.033 0.042 0.046 0.049 0.054 0.072 

f

xyM
 0.018 0.022 0.024 0.026 0.029 0.038 

 

Table1   Effect of span to thickness ratio on deflection, 

stresses and Moments of a simply supported FGM Plate 
(n=2) 
 

 a/h 

 5 10 20 50 100 

w  0.0248 0.0214 0.0205 0.0203 0.0202 

xx
 

3.8887 1.8792 0.9314 0.3716 0.1858 

yy
 

3.8887 1.8792 0.9314 0.3716 0.1858 

xy
 

2.0052 0.9717 0.4818 0.1922 0.0961 

xz
 

0.6668 0.1672 0.0754 0.1066 0.1110 

xxM
 

0.0491 0.0246 0.0123 0.0049 0.0025 

yyM
 

0.0491 0.0246 0.0123 0.0049 0.0025 

xyM
 

0.0288 0.0132 0.0065 0.0026 0.0013 
f

xxM
 

0.0491 0.0246 0.0123 0.0049 0.0025 
f

yyM
 

0.0491 0.0246 0.0123 0.0049 0.0025 
f

xyM
 

0.0288 0.0132 0.0065 0.0026 0.0013 
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            Fig 4.  Effect of grading index 'n' on deflection of a 

square FGM plate (a/h=5) 
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Fig 5.  Effect of grading index 'n' on stresses of a square 

FGM plate (a/h=5) 
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 Fig 6  Effect of grading index 'n' on Mxx and xyM  of a 

square FGM plate (a/h=5) 
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           Fig 7 Effect of span to thickness ratio on deflection 

of a square FGM plate („n‟=2) 
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           Fig 8  Effect of span to thickness ratio on stresses 

of a square FGM plate („n‟=2) 
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Fig 9 Effect of span to thickness ratio on moments of a 

square FGM plate („n‟=2) 
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Fig 10 Effect of grading index 'n' on normalized stress xx
 

of simply supported square FGM plate along the thickness 
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Fig 11 Effect of grading index 'n' on normalized stress 

xy of simply supported square FGM plate along the 

thickness 

 

The result obtained for deflection, stresses and moments 

due to different span ratio for simply supported FGM 

plates with gradation index 2 is shown in table 1 and table 

2 shows the effect of gradation index ‟n‟ for a thick simply 

supported FGM plates.  
 

It is observed from Fig 4, Fig 5 and Fig 6 that the effect of 

grading index is more prominent when the value of n is 

less than 2 for deflection stresses and moments 

respectively. Fig 7 shows the variation in deflection 

become almost negligible as plates become thinner (i.e a/h 

> 30). Fig 8 and Fig 9 shows the effect of span to 

thickness ratio on stresses and moments of a square FGM 

plate with „n‟=2. However it is more prominent for thick 

plate.  
 

Fig 10and11 represent the through thickness variation of 

stresses for different values of gradation index „n‟. 

III.CONCLUSION 
 

Bending response of functionally graded material plate 

(FGM) is presented using shear deformation theory. The 

effect of span to thickness ratio decreases for a/h ≥ 30. The 

effect of gradation index 'n' is prominent for lesser values 

of 'n' and decreases as 'n' increases. The present results can 
be used for validation purpose. Present solution mythology 

is good for obtaining the result and the concentrated load. 

The same can be extended for other types of concentrated 

load like sinusoidal varying line load, point load, patch 

load etc. 
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