

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

IARJSET

Vol. 4, Issue 1, January 2017

On Intuitionistic Fuzzy Slightly πgb-Continuous Functions

Amal M. Al- Dowais¹, Abdul Gawad A. Q. Al-Qubati²

Department of Mathematics, College of Science and Arts, Najran University, KSA¹

Department of Mathematics, College of Science and Arts, Najran University, KSA²

Abstract: In this paper we introduce and study the concepts of intuitionistic fuzzy slightly π gb-continuous functions, we investigate some of their properties. By using intuitionistic fuzzy slightly π gb-continuous-function some properties of separation axioms are discussed.

Keywords: Intuitionistic fizzy topology, intuitionistic fuzzy π gb-closed set, intuitionistic fuzzy clopen set, intuitionistic fuzzy slightly π gb-continuous, 2010 AMS Classification: 54A40, 03E72

I. INTRODUCTION

The concept of fuzzy set was introduced by L. A. Zadah [13]. The fuzzy concept has invaded almost all branches of mathematics. The concept of fuzzy topological space was introduced and develped by C. L. Chang [3]. Atanasov [2] was introduced The concept of imtuitionistic fuzzy set, as a generalization of fuzzy set. This approach provided a wide field to the generalization of various concepts of fuzzy mathematics.

In 1997 Coker[6] defined intuitionis-tic fuzzy topological spaces. Recently many concepts of fuzzy topological space have been extended in intuitionistic fuzzy (IF) topological spaces. Ravi, Mar- garet parimalam, Murugesan and Pandi [9] intrduced the concept of slightly π gb-continuous functions. In this paper we introduce and study the conceptsof intuitionistic fuzzy slightly π gb-continuous in intuitionistic fuzzy topological space. Also we apply that concept to study some properties in separation axioms.

II. PRELIMINARIES

Definition 2.1 [2] Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ < x, \mu_A(x), \nu_A(x) >: x \in X \}$, where the function $\mu_A(x) : X \to [0,1]$ and $\nu_A(x) : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A + \nu_A \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2 [2] Let A and B be IFSs of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ and

$$B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X \} \text{ Then :}$$
(a) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$
(b) $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$
(c) $A^c = \{\langle x, \nu_A(x), \mu_A(x) \rangle : x \in X \}$
(d) $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}$
(e) $A \cup B = \{\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \}$
(f) $O_{\sim} = \{\langle x, 0, 1 \rangle : x \in X \}$
(g) $O^c = 1$ and $1^c = O$

Definition 2.3 [4] Let $\alpha, \beta \in [0,1]$ such that $\alpha + \beta \leq 1$. An intuitionistic fuzzy

point (*IFP*) $p_{(\alpha,\beta)}$ is intuitionistic fuzzy set

$$p_{(\alpha,\beta)} = \begin{cases} (\alpha,\beta) & \text{if} \quad x = p \\ \\ (0,1) & \text{if} \quad otherwise \end{cases}$$

Clearly an intuitionistic fuzzy point can be represented by an ordered pair offuzzy point as follows: $p_{(\alpha,\beta)} = (p_{\alpha}, p_{(1-\beta)})$

In this case, p is called the support of $p_{(\alpha,\beta)}$ and α,β are called the value and no value of $p_{(\alpha,\beta)}$ respectively.

An *IFP* $p_{(\alpha,\beta)}$ is said to belong to an *IFS* $A = \{ < x, \mu_A, \nu_A >: x \in X \}$ denoted by $p_{(\alpha,\beta)} \in A$, if $\alpha \le \mu_A(x)$ and $\beta \ge \nu_A(x)$.

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 4. Issue 1. January 2017

Definition 2.4 [2] Let X and Y be two nonempty sets **Definition 2.9** An IFS A of an IFTS (X, τ) is an : and $f : X \rightarrow Y$ be afunction. Then

- (a) If $B = \{ \langle y, \mu_B(y), \nu_B(y) \rangle \ge y \in Y \}$ is an IF S
- in Y, then the preimage of B under f denoted by

 $f^{-1}(B)$ is the IF S in X defined by

$$f^{-1}(B) = \left\{ < x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) > : x \in \mathbf{X} \right\}$$
(b)

If
$$A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \ge x \in X \}$$
 is an IF S in

X, then the image of A under f denoted by f(A) is the IF S in Y defined by

 $f(A) = \left\{ < y, f(\mu_A)(y), 1 - f(1 - v_A)(y) >: y \in Y \right\}$ Where,

$$f(\mu_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu_A(x) & \text{if } f^{-1}(y) \neq 0_{\sim} \\ 0 & \text{if } otherwise \end{cases}$$

$$1 - f(1 - v_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} v_A(x) & \text{if } f^{-1}(y) \neq 0_{z} \\ 1 & \text{if } otherwise \end{cases}$$

Replacing fuzzy sets [13] by intuitionistic fuzzy sets in Chang definition of fuzzy topological space [3] we get the following.

Definition2.5 [5] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms

 $(T_1) \ 0_{\sim} \ , \ 1_{\sim} \in \tau$

(T₂) If $G_1, G_2 \in \tau$, then $G_1 \bigcap G_2 \in \tau$ (T₃) If $G_i \in \tau$ for each i in I, then $\bigcup G_i \in \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFT in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. the

complement A^{c} of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.6 [5] Let $p(\alpha,\beta)$ be an IFP in IFTS X. An **Definition 2.13** Let f be a mapping from an IFTS (X, τ) IFS A in X is called an IF neighborhood (IFN) of $p(\alpha,\beta)$ if there exists an IFOS B in X such that $p(\alpha,\beta) \in B \subseteq A$.

Definition 2.7 [6] A subset of an intuitionistic fuzzy space X is said to be clopen if it is intuitionistic fuzzy open set and intuitionistic fuzzy closed set.

Definition 2.8 [3] Let (X, τ) be an IFTS and $A = \{ < x, \}$ $\mu_A(x)$, $\nu_A(x) >: x \in X$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy clousre are defined by

 $int(A) = \bigcup \{G : G \text{ is an IFOS in } X \text{ and } G \subseteq A\}$ $cl(A) = \bigcap \{K : K \text{ is an IFCS in } X \text{ and } A \subseteq K \}$

- (1) Intuitionistic fuzzy regular open set(IFROSin short) [6] if int(cl(A))=A.
- (2) Intuitionistic fuzzy regular closed set (IFRCS in short) [6] if cl(intl(A))=A.
- (3) intuitionistic fuzzy π -open set (IF π OS in short)[11] if the finite union of intuitionistic fuzzy regular open sets.
- (4) intuitionistic fuzzy π -closed set (IF π CS in short)[11] if the finite intersection of intuitionistic fuzzy regular closed sets.
- (5) intuitionistic fuzzy generalized open set (IFGOS in short)[12] if $F \subseteq int(A)$

whenever $F \subseteq A$ and F is an IFCS in X.

(6) intuitionistic fuzzy generalized closed set (IFGCS in short) [12] if $cl(A) \subseteq U$

whenever $A \subseteq U$ and U is an IFOS in X.

- (7) intuitionistic fuzzy b-open set (IFbOS in short)[7] if $A \subseteq cl(int(A)) \cup int(cl(A))$.
- (8) intuitionistic fuzzy b-closed set (IFbCS in short)[7] if $cl(int(A)) \cup int(cl(A)) \subseteq A$.

Definition 2.10 [8] Let (X, τ) be an IFTS and A be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy clousre are defined by :

 $bint(A) = \bigcup \{G : G \text{ is an IFbOS in } X \text{ and } G \subseteq A \}$ $bcl(A) = \bigcap \{K : K \text{ is an IFbCS in } X \text{ and } A \subseteq K \}$

Definition 2.11 An IFS A of an IFT S (X, τ) is an : (1)intuitionistic fuzzy gb-open set (IFGbOS in short)[8] if $F \subseteq bint(A)$ whenever $F \subseteq A$ and F is an IFCS inX. (2) intuitionistic fuzzy gb-closed set (IFGbCS in short)[8] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOSinX. (3) intuitionistic fuzzy πg -open set (IF πgOS in short) if F \subseteq int(A)whenever F \subseteq A and F is an IF π CS in X. (4) intuitionistic fuzzy π g-closed set (IF π gCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF π OS in X.

Definition 2.12 An IFS A of an IFTS (X, τ) is an

(1) intuitionistic fuzzy π gb-open set (IF π gbOS in short) If $F \subseteq bint(A)$ whenever $F \subseteq A$ and F is an $IF\pi CS$ in X.

(2) intuitionistic fuzzy π gb-closed set (IF π gbCS in short) if $bcl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IF πOS in X.

into an IFTS (Y, σ) . Then *f* is said to be an :

(1) intuitionistic fuzzy π -irresolute if $f^{-1}(F)$ is intuitionistic fuzzy π -closed in X for every intuitionistic fuzzy π -closed set F of Y.

(2) intuitionistic fuzzy π gb-continuous if $f^{-1}(F)$ is π gbclosed in X for every intuitionistic fuzzy closed set F of Y.

(3) intuitionistic fuzzy π gb-continuous if the inverse image of every intuitionistic fuzzy clopen set in Y is an intuitionistic fuzzy π gb-open (resp. IF π gb-clopen) set in X.

(4) intuitionistic fuzzy totally continuous if in verse image of every intuitionistic fuzzy open set in Y is an intuitionistic fuzzy clopen set in X.

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 4, Issue 1, January 2017

III. MAIN RESULTS

This section is devoted to introduce and investigate of intuitionistic fuzzy slightly π gb-continuous.

Definition 3.1 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy slightly π -generalized b-continuous (brieftly IF slightly π gb-continuous) if the inverse image of every IF clopen set in Y is IF π gb-open in X.

Definition3.2 A function $f:(X,\tau) \xrightarrow{\sim} (Y,\sigma)$ from IFTS (X,τ) to another IFTS (Y,σ) is said to be an IF slightly π gb-continuous if for each IFP p(α,β)∈X and each IF clopen set B in Y containing $f(p(\alpha,\beta))$, there exists an IF π gb-open set A in X such that $f(A) \subseteq B$

Theorem 3.3 Let $f : (X, \tau) \to (Y, \sigma)$ be a function from an IFTS (X, τ) to another IFTS (Y, σ) then the following statements are equivalent

1. *f* is an IF slightly π gb-continuous.

2. Inverse image of every IF clopen set in Y is an IF π gbopen in X.

3. Inverse image of every IF clopen set in Y is an IF π gbclosed in X.

4. Inverse image of every IF clopen set in Y is an IF π gbclopen in X

Proof. (1) \Rightarrow (2) Let B be an IF clopen set in Y and let $(p(\alpha,\beta)) \in f^{-1}(B)$. Since $f(p(\alpha,\beta) \in B$ by (1) there exists an IF π gb-open set A in X containing $p(\alpha,\beta)$ such that $A_{p(\alpha,\beta)} \subseteq f^{-1}(B)$ we obtain that

 $f^{-1}(B) = \bigcup_{p(\alpha,\beta) \in f^{-1}(B)} A_{p(\alpha,\beta)}$, which is an IF π gb-open

in X.

 $(2)\Rightarrow(3)$ Let B be an IF clopen set in Y, then B^C is IF clopen. By $(2)f^{-1}(B^{c}) = (f^{-1}(B))^{c}$ is an IF π gbopen, thus $f^{-1}(B)$ is an IF π gb-closed set.

 $(3) \Rightarrow (4)$ Let B be an IF clopen set in Y.Then by (3) $f^{-1}(B)$ is IF π gb- closed set. Also B^c is an IF **Proof.** Let B be an IFOS in Z, since g is an IF totally clopen and

(3) implies $f^{-1}(B^{c}) = (f^{-1}(B))^{c}$ is an IF π gbclosed set. Hence $f^{-1}(B)$ is an IF π gb-clopen set. (4) \Rightarrow (1) Let B be an IF clopen set in Y containing f is an intuitionistic fuzzy π gb-continuous. $f(p(\alpha,\beta))$. By (4), $f^{-1}(B)$ is an IF π gb-open. Let us take $A = f^{-1}(B)$, then $f(A) \subseteq B$. Hence f is an IF slightly π gb-continuous.

Definition3.4 The intersection of all $IF\pi gb$ -closed sets containing an IF set A is called an IF π gb-closure of A and denoted by π gbcl(A),and the union of all IF π gb-open sets contained in an IF set A is called an IF π gb-interior of A hence $f(bcl(A)) \subseteq V$. Since f is an IF strongly b-closed and and denoted by π gbint(A).

Remark3.5 If $A = \pi gbcl(A)$, then A need not be an IF πgb closed.

Remark 3.6 The union of two $IF\pi gb$ -closed sets is generally not an IF π gb- closed set and the intersection of two IF π gb-open sets is generally not an IF π gb open set

Example3.7LetX= $\{a,b,c\}$ and let $\tau = \{0 \sim , 1 \sim , A,B,C\}$ is IF Ton X, where

 $A = \{ \langle a, 0, 1 \rangle, \langle b, 1, 0 \rangle, \langle c, 0, 1 \rangle \}, B = \{ \langle a, 0, 1 \rangle, \langle b, 0, 1 \rangle, \langle c, 0, 1 \rangle \}$ c,1,0> and $C = \{ < a,0,1>, < b,1,0>, < c,1,0> \}$. Then the

IFSs A^{c}, B^{c} are IF π gbOSs but $A^{c} \cap B^{c} = C^{c}$ is not an IF π gbOS of X, since $C^{c} \subseteq C^{c}$ and $C^{c} \nsubseteq bint(C^{c}) = 0$, And the IFSs A, B are IF π gbCSs but A \cup B = C is not an IF π gbCS of X, since C \subseteq C and bcl(C) = 1~ $\not\subseteq$ C.

Proposition 3.8 Every intuitionistic fuzzy πgbcontinuous is anintuitionistic fuzzy slightly πgbcontinuous. But the converse need not be true.

Example 3.9 Let $X = \{a, b\}, Y = \{u, v\}$ and $A = \{ < a, 1, 0 >, < b, 0, 1 > \},\$ $B = \{ \langle a, 0, 1 \rangle, \langle b, 0.8, 0.2 \rangle \},\$ $C = \{ \langle a, 1, 0 \rangle, \langle b, 0.8, 0.2 \rangle \},\$ $D = \{ < u, 0.7, 0.3 >, < v, 0.5, 0.5 > \}.$

Then $\tau = \{0_{\sim}, 1_{\sim}, A, B, C\}$ and $\sigma = \{0_{\sim}, 1_{\sim}, D\}$ are IFTS on X and Y respectively. Define a mapping $f: (X, \tau)$) \rightarrow (Y, σ) by f(a)= u and f(b) = v. Then f is an IF sllightly π gb-continuous but not an IF π gb-continuous. Since $f^{-1}(D^{c}) = \{<a, 0.3, 0.7>, <b, 0.5, 0.5>\} \subseteq C$ (π -open set) and $bcl(f^{-1}(D^{C}))=1 \sim \not\subseteq C$

Proposition3.10 Every intuitionistic fuzzy π gb-irresolute function is an intuitionistic fuzzy slightly π gb-continuous. But the converse need not be true.

Theorem 3.11 If $f: X \to Y$ is an IF slightly π gbcontinuous and $g: Y \rightarrow Z$ is an IF totally continuous then g \circ *f* is an intuitionistic fuzzy π gb-continuous.

continuous, g-1(B) is an IF clopen set in Y. Now (g $\circ f$)⁻¹ (B)= f^{-1} (g⁻¹ (B)). Since f is an IF slightly π gbcontinuous, f^{-1} (g⁻¹ (B)) is an IF π gbOS in X. Hence g \circ

Lemma 3.12 Let $f: X \to Y$ be bijective, IF π -irresolute and IF strongly b- closed. Then for every IF π gb-closed set A of X, f(A) is an IF π gb-closed in Y.

Proof. Let A be any $IF\pi gb$ -closed set of X and V an IF π gb-open set of Y containing f(A). Since $f^{-1}(V)$ is an IF π -open set of X containing A, bcl(A) $\subseteq f^{-1}(V)$ and bcl(A) is an IFb-closed in X f(bcl(A)) is an IFb-closed in

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 4, Issue 1, January 2017

Y. Sinse $bcl(f(A)) \subseteq bcl(f(bcl(A))) \subseteq V$, $bcl(f(A))\subseteq V$. $y_{(v,\delta)} \notin f^{-1}(A)$. This shows that X is an $IF\pi gb-T_{0, -1}$. Therefore f(A) is an IF π gb-closed in Y.

Theorem 3.13 Let $f: X \to Y$ and $g: Y \to Z$ be an intuitionistic fuzzy functions. If f is a bijective, IF π irresolute and IF strongly b-closed and if

 $g \circ f: X \to Z$ is an IF slightly πgb -continuous, then g is an IF slightly π gb-continuous.

Proof. Let V be an IF clopen subset of Z. Then

 $(g \circ f)^{-1}(V) = (f^{-1} \circ g^{-1})(V) = f^{-1}(g^{-1}(V))$ is IF π gb-closed in X. Then by (3.12), $g^{-1}(V) = f(f^{-1}(g^{-1}(V)))$ is an IF π gb-closed in Y. Therefore g is an IF slightly π gb-continuous.

Theorem 3.14 A mapping $f:(X,\tau) \rightarrow (Y,\sigma)$ from an IFTS (X,τ) to another IFTS (Y,σ) is an IF slightly π gbcontinuous if and only if for each IFP $p_{(\alpha,\beta)}$ in X and IF

clopen set B in Y such that $f(p_{(\alpha,\beta)}) \in B$, $cl(f^{-1}(B))$ is an Since f is an IF slightly π gb-continuous, $f^{-1}(A)$ and IFN of IFP $p_{(\alpha,\beta)}$ in X.

mapping, $p(\alpha,\beta)$ be an IFP in X and B be any IF clopen set in Y such that $f(p_{(\alpha,\beta)}) \in B$. Then $p_{(\alpha,\beta)} \in$ $f^{-1}(B) \subseteq \operatorname{bcl}(f^{-1}(B)) \subseteq \operatorname{cl}(f^{-1}(B))$. Hence $\operatorname{cl}(f^{-1}(B))$ is an IFN of $p_{(\alpha,\beta)}$ in X.

Conversely, let B be any IF clopen set in Y and $p(\alpha,\beta)$ be an IFP in X such that $f(p_{(\alpha,\beta)}) \in B$. Then $p_{(\alpha,\beta)} \in f^{-1}(B)$. According to assumption $cl(f^{-1}(B))$ is an IFN of IFP $p(\alpha,\beta)$ in X. So, $p(\alpha,\beta) \in f^{-1}(B) \subseteq cl(f^{-1}(B))$, and by (definition of IF slightly π gb-continuous) there exists an IF π gb-open A in X such that $p_{(\alpha,\beta)} \in A$ $\subseteq f^{-1}(B)$. Therefore f is an IF slightly πgb continuous.

IV. SOME APPLICATION THEOREMS

Definition 4.1 An IFT S (X, τ) is called (π gb – T0)(co - T0) if and only if for each pair of distinct intuitionistic fuzzy points, $x_{(\alpha,\beta)}$, $y_{(\nu, \delta)}$ in X there exist an intuitionistic fuzzy π gb-open set (IF clopen set) U, \in X such that $x(\alpha,\beta) \in U, y_{(\nu,\delta)} \notin U$.

Theorem4.2 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is an IF slightly π gbcontinuous, bijection and Y is co-T0, then X is an IFπgb-T0.

Proof. Suppose that Y is IF co – T0, For any distinct intuitionistic fuzzy points $x_{(\alpha, \beta)}$, $y_{(\nu, \delta)}$ in X, there exists an IF clopen set A in Y such that $f(\mathbf{x}_{(\alpha,\beta)}) \in A$ and $f(\mathbf{y}_{(\nu,\beta)})$ _δ) $\not\in$ A Since f is an IF slightly π gb-continuous an bijection $f^{-1}(A)$ is an IF π gb-open sets in X such that $\mathbf{x}_{(\alpha,\beta)} \in f^{-1}(\mathbf{A}),$

Definition4.3 An IFTS (X,τ) is called $(\pi gb-T_1)(co-T_1)$ if and only if for each pair of distinct intuitionistic fuzzy points, $x_{(\alpha, \beta)}$, $y_{(\nu, \delta)}$ in X there exists an intuitionistic fuzzy πgb-open sets (IF clopen sets) U, V ∈ X such that $x_{(α, β)}$ $\in U$, $y_{(V, \delta)} \notin U$ and, $y_{(V, \delta)} \in V$, $x_{(\alpha, \beta)} \notin V$.

Theorem4.4 If $f : (X,\tau) \rightarrow (Y,\sigma)$ is an IF slightly π gbcontinuous, injection and Y is $co-T_1$, then X is an IF π gb-T1.

Proof. Suppose that Y is an IF $co - T_1$, For any distinct intuitionistic fuzzy points $x_{(\alpha, \beta)}$, $y_{(\nu, \delta)}$ in X, there exists an IF clopen sets A, B in Y such that f $(\mathbf{x}_{(\alpha,\beta)}) \in \mathbf{A}$, $f(\mathbf{y}_{(\gamma,\delta)}) \notin \mathbf{A}$, $f(\mathbf{x}_{(\alpha,\beta)}) \notin \mathbf{B}$, and $f(\mathbf{y}_{(\gamma,\delta)})$ ∈В.

 $f^{-1}(B)$ are IF π gb-open sets in X such that $x_{(\alpha, \beta)} \in$ **Proof.** Let f be any IF slightly π gb-continuous $f^{-1}(A)$, $y_{(v, \delta)} \notin f^{-1}(A)$, $x_{(\alpha, \beta)} \notin f^{-1}(B)$ and $y_{(v, \delta)}$ $_{\delta)} \in f^{-1}(B)$. This shows that X is an IF π gb-T₁

> **Definition 4.5** An IFT S X is said to be $\pi gb - T_2 or \pi gb$ -Hausdorff (co-T₂or co-Hausdorff) if for all pair of distinct intuitionistic fuzzy points $~x_{(\alpha,~\beta)},~y_{(\nu,\delta)}in~X$ there exits an IF π gb-open sets (IF clopen sets) U, V \in X such that $\mathbf{x}_{(\alpha, \beta)} \in \mathbf{U}, \mathbf{y}_{(\mathbf{V}, \delta)} \in \mathbf{V} \text{ and } \mathbf{U} \cap \mathbf{V} = \mathbf{0}_{\sim}.$

> **Theorem4.6** If $f:(X,\tau)\to(Y,\sigma)$ is an IF slightly π gbcontinuous ,injection and Y is co-T₂, then X is an IF π gb $-T_2$.

> **Proof.** Suppose that Y is IF $co - T_2$ space then for any distinct intuitionistic fuzzy points $x(\alpha,\beta)$, $y(\nu,\delta)$ in X, there exists an IF clopen sets A, B in Y such that $f(\mathbf{x}_{(\alpha, \beta)}) \in \mathbf{A}$, and $f(\mathbf{y}_{(\mathbf{v},\delta)}) \in \mathbf{B}$. Since f is IF slightly π gb-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are IF π gb open sets in X such that $x(\alpha,\beta) \in f^{-1}(A)$, and $y_{(\gamma,\beta)}$ $\in f^{-1}(B)$. Also we have $f^{-1}(A) \cap f^{-1}(B) = 0 \sim \blacksquare$

> Definition4.7 An IFTS X is said to be co-regular (respectively IF slightly π gb-regular) if for each clopen (respectively IF π gb-clopen) set C and each IF $x_{(\alpha, \beta)} \notin C$, there exist an intuitionistic fuzzy open sets A and B such that $C \subseteq A$, $x_{(\alpha,\beta)} \in B$ and $A \cap B = 0 \sim$.

> **Theorem4.8** If f is an IF slightly π gb-continuous injective IF open function from an IF strongly ngbregular space X onto an IF space Y, then Y is IF coregular.

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 4, Issue 1, January 2017

Proof. Let D be an IF clopen set in Yand $y_{(\gamma, \delta)} \notin D$. [11] M.S.Sarsak, N.Rajesh, " π -GeneralizedSemi Preclosed Sets", Int. Take $y_{(v, \delta)} = f(x_{(\alpha, \beta)})$. Since f is an IF slightly πgb -[12] S. S. Thakur and Rekha Chaturvedi, "Regular generalized closed continuous, $f^{-1}(D)$ is an IF π gb-closed set inX. Let $C=f^{-1}(D)$. So $x_{(g,\beta)} \notin C$. Since X is IF strongly π gb- [13] L.A. Zadeh, "Fuzzy Sets", Information and control, 8 (1965),

regular, there exists IFOS's A and B such that $C \subseteq A$, $x_{(\alpha,\beta)} \in B$ and $A \cap B = 0$. Hence we have $D = f(C) \subseteq f(A)$ and $y_{(\nu, \delta)} = f(x_{(\alpha, \beta)}) \in f(B)$ such that f (A) and f (B) are disjoint IF open sets. Hence Y is an IFco-regular.

Definition 4.9 An IFTS X is said to be an IF conormal (respectively IF strongly π gb-normal) if for each IF clopen (respectively IF π gb-closed) sets C₁ and C₂ in X such that $C_1 \cap C_2 = 0$, there exist an intuitionistic fuzzy open sets A and B such that $C_1 \subseteq A$ and $C_2 \subseteq B$ and $A \cap B = 0 \sim$.

Theorem4.10 If f is an IF slightly π gb-continuous injective IF open function from an IF strongly π gbnormal space X onto an IF space Y, then Y is an IFconormal.

Proof. Let C₁and C₂be disjoint IF clopen sets in Y. Since f is an IF slightly π gb-continuous, $f^{-1}(C_1)$ and $f^{-1}(C_2)$ are IF π gb-closed sets in X. Let us take C = $f^{-1}(C_1)$ and $D = f^{-1}(C_2)$. We have $C \cap D = 0_{\sim}$. Since X is an IF strongly π gb-normal, there exist disjoint IF open sets A and B such that $C \subseteq A$ and D \subseteq B. Thus C₁= $f(C)\subseteq f(A)$ and C₂= $f(D)\subseteq f(B)$ such that f(A) and f(B) disjoint IF open sets. Hence Y is an IFco-normal.

REFERENCES

- [1] D. Adnadjevic," On b-Open Sets", Matematioki Vesink, 48 (1996), pp. 59- 64.
- [2] K. T. Atanassov," Intuitionisti fuzzy sets", Fuzzy Sets and Systems, 20(1986), pp.87-96.
- C. L. Chang,"Fuzzy topologica space", J. Math. Anal. Appl. [3] 24(1968), pp.182 -190.
- [4] D. Coker, M. Demirci, "On intuitionistic fuzzy points", Notes IFS, 1,2 (1995), pp. 79-84.
- D. Coker and A. Es. Hyder, "An introduction to intuitionistic [5] fuzzy topological spaces", Fuzzy Sets and Systems, 88(1997), pp. 81-89.
- H. Gurcay, A. Haydar and D. Coker,"On fuzzy continuity in [6] intuitionisyic fuzzy topological spaces", jour.offuzzymath, 5(1997), pp.365-378.
- [7] I. M. Hanafy, "Intuitionistic fuzzy γ continuity", Canad. Math Bull, 52(2009), pp. 1-11.
- [8] P. Rajarajeswari and R. Krishna Moorthy, "On intuitionistic fuzzy generalized b closed sets", International journal of Computer Applications, 63(2013), pp.41- 46.
- O. Ravi, S. Margaret parimalam, S. Murugesan and A. Pandi, "Slightly π g γ -ContinuousFunctions", Journal of New Results in [9] Science,3(2013),pp. 60-71.
- [10] Renuka, R., V. Seenivasan" On intuitionistic fuzzy slightly precontinu- ous functions", International Journal of Pure and AppliedMathematics,86 (2013), pp.993-1004.

- Mathematical Forum, 5 (2010), pp. 573-578.
- sets inintuitionistic fuzzy topological spaces ", Universitatea Din Bacau Studii Si Cercertar Stiintifice, 6 (2006), pp. 257-272.
- pp.338 -353