

International Advanced Research Journal in Science, Engineering and Technology Conference on Advances in Civil Engineering 2018 (CACE-2018) Thakur College of Engineering and Technology, Thakur

Vol. 5, Special Issue 3, February 2018

EXPERIMENTAL INVESTIGATION ONEFFECT OF ALCCOFINE WITH FLYASH AND GGBS ON HIGH PERFORMANCE CONCRETE

Jigar N.Saiya, Ankit A.Tiwari

Student, Civil Engineering, Thakur college of engineering and technology, Mumbai, India¹

Student, Civil Engineering, Thakur college of engineering and technology, Mumbai, India²

Abstract: The necessity of high performance concrete is increasing because of the increasing demand of the construction materials in the construction industry. Efforts for improving the performance of concrete over the past few years suggest that cement replacement materials along with Mineral & chemical admixtures can improve the strength and durability characteristics of concrete. Flyash, GGBS and Alccofine1203 are pozzolanic materials that can be utilized to produce highly durable and economical concrete composites. This project is an attempt to study the behaviour of Alccofine 1203 (5%, 6%,7%,8% and 10% replacement by weight of cement) along with Fly Ash (15%) and GGBS (15%) replacement on fresh & hard property of concrete. As well as optimizing the percentage dosage of chemical admixture to achieve required retention period (upto 3hrs) and workability (Slump and Flow) to increase the productivity of concrete design. This paper also studies the effectiveness of applying value engineering to actual concrete mixtures. The application of value engineering to such concrete mixtures results in increase in performance, optimizing the mix by adding appropriate dosage of admixtures so as to work in different situation and increase its value, increase in durability of structure in which concrete will be used, reduction in cost of concrete and overall cost of construction projects, increasing the market share and competitiveness of concrete producers. This research shows that applying the methodology of value engineering to ready-mixed concrete is an effective way to save around 5% of the total cost of concrete mixtures supplied to construction projects

Keyword: High Performance Concrete(HPC), FlyAsh, GGBS, Alccofine1203, ValueManagement, Quality Improvement.

I. INTRODUCTION

High performance concrete is known as high technology construction material, proving to be very cost effective, reliable, and having long term durability in natural environment. Number of investigations are carried out to produce concrete with desired characteristics such as workability , strength and durability. With the advancement of technology the strength, workability, durability and other characteristics of the ordinary concrete are modified to make it more suitable for work in various situations. So HPC technologies have used for the construction of numerous off-shore structures and long span bridges; repairs & rehabilitation works. The ingredients which are becoming scarce and expensive, has lead to the usage of economically alternative materials. Flyash and Ground granulated blast slag (GGBS) has been used as a replacement for OPC since this material has workability, strength and durability which enhance the characteristics of concrete. Alcofine is a specially processed product based on slag with high reactivity obtained through the process of controlled granulation. The development of High Performance concrete (HPC) has brought about the essential need for additives both chemical and mineral to improve the performance of concrete. Adding value engineering in our project and thus improving the overall quality of concrete will help in increasing value of the concrete mix and reducing the overall cost and thus increasing the durability of the structure in which concrete is used.

International Advanced Research Journal in Science, Engineering and Technology Conference on Advances in Civil Engineering 2018 (CACE-2018) Thakur College of Engineering and Technology, Thakur

Vol. 5, Special Issue 3, February 2018

1.1 Admixture

Mineral Admixture: Mineral admixtures are fine powders mainly composed of silicate glasses or non crystalline silica which in the presence of moisture, calcium and hydroxyl ions, slowly hydrate to form cementing products. The most commonly used mineral admixtures in our country are Flyash and GGBS. For higher garde of mix, Alccofine 1203 is most accepted by various concrete producers. Mostly these admixtures are used in range of 5 - 50% replacement with cement. Chemical Admixture: Besides using mineral admixture, certain chemicals are also used to enhance the performance of concrete like retarder, super-plasticizer. Retarder is used to increase the retention period of concrete (upto 3 hours) and Super-plasticizer is used to reduce water content simultaneously increasing flow of concrete (flow able to pump).

1.2 Role of Admixtures in High Performance Concrete Engineering Performance Economic Performance Environmental Performance

1.3 Micro Ingredients

Fly-Ash: Pozzolans are mainly a type of siliceous or siliceous and aluminous material, which in a finely disintegrated form and it reacts with calcium in the presence of water molecules. Indian standards for using flyash are IS 3812 Part I and Part II. Flyash was used to replace 15% by weight of cement.[8]

GGBS: It is a by-product of the iron manufacturing industry. Its production requires less energy as compared with the energy needed for the production of the Portland cement. The replacement of the Portland cement will lead to significant reduction in carbon dioxide gas emission. Indian standards for using GGBS is IS 12089. GGBS was used to replace 15% by weight of cement.[9]

Alccofine 1203: Alccofine 1203 is a new generationmicro fine concrete producing material and whicis important in respect of workability as well as strength. It lowers water binder ratio, improves packing density of concrete paste and also increases strength in compression and flexure. It possess 10% strength as compared to cement and with addition to it improves strength of concrete to a great extent.

Retarder: TARD-SRC 80 was used as retarder. The dosage of retarder was 0.63 - 0.68% in 1m3 of concrete for retention period of 3 hours.

Super-Plasticizer: Sika K-5218 medium PC (Poly-Carboxylate) was used as superplasticizer. The dosage of it was 0.95% in 1m3 of concrete to achieve a flow of 500-550mm at 3 hours.

II. LITERATURE REVIEW

Some of the literature review on HPC using micro ingredients and to add Value Engineering in concrete mixes is as follows:

Abhijitsinh Parmar and Dhaval M Patel (2013) had replaced cement with Alccofine (8%) and fly ash (15%) to investigate HPC. Various test's was taken into consideration such as compressive strength test at the age of 3 days,7 days and 28 days. The author concluded with results which shows that concrete incorporating with alccofine and fly ash have higher strength and also alccofine has increased the durability of concrete. Adel Mohammed et. al. (2015) studied the effectiveness of applying value engineering to actual concrete mixtures to increase quality, performance, company's market share and to reduce waste, cost and CO2 emissions. This research also shows applying value engineering to ready mixed concrete is an effective way to save cost of concrete mixtures.

Concrete Mix Design

Parameters for mix design M60 grade of concrete ummary of materials required per m3 of concrete as per mix design. The total binder composition in 1m³ of concrete is 600 kg out of which fly ash and GGBS are replaced upto 15% and alccofine replacement varies as 5%, 6%,7%,8% and 10%. Overall 10 trials are listed down for analysis,5 for OPC+FA+Alccofine and 5 for OPC+GGBS+Alccofine.

	Grade		M60
Copyright to IARJSET		IARJSET	

International Advanced Research Journal in Science, Engineering and Technology

Conference on Advances in Civil Engineering 2018 (CACE-2018)

Thakur College of Engineering and Technology, Thakur

IARJSET

Vol. 5, Special Issue 3, February 2018

Condition of exposure	Severe
Required retention	3 hours
Required Flow in mm	500 -550 mm
Type of cement	OPC- 53grade
Brand of cement	Ambuja cement
Mineral admixture	Flyash, GGBS, Alccofine1203
Chemical admixture	SRC 80, K-5218
Fine aggregate Zone	Zone -1
Fines passing through 600 Mic. Sieve	25.4%
Maximum size of aggregate	e 20mm
Coarse aggregate passing through 20mm sieve	87.40%

Table 1: Specification of materials for mix design, M60 grade of concrete [5]

Sr. No.	Materials per m3	Quantity in Kg.
1.	Binder	600
2.	C-Sand	747
3.	Coarse Aggregate	957
4.	Water	174
5.	Retarder	3.78 - 4.08
6.	Super-plasticizer	5.7

Table 2: Materials required per m³ of concrete as per mix design

International Advanced Research Journal in Science, Engineering and Technology

Conference on Advances in Civil Engineering 2018 (CACE-2018)

Thakur College of Engineering and Technology, Thakur

Vol. 5. Spec	ial Issue 3, Fe	ebruarv 2018

	1	Retention
Retarder		time
Dosage (%)	Weight(Kg)	(min)
0.20	1.2	30
0.45	2.7	60
0.5	3.0	90
0.58	3.48	120
0.61	3.66	150
0.64 (GGBS)	3.84	180
0.67 _(FA)	4.02	180

Table 3: Trials performed for analysis

Composition of binder ingredients for each trial Depending upon the site location and distance from plant and site, dosage of retarder can be varied as per requirement[1].

2.1 Test Results and Analysis

2.1.1. Workability Test results

Initially trial were performed and we have checked the retention period and flow of concrete for every 30 minutes interval and we have came to a conclusion that GGBS requires 0.63 - 0.65% and fly-ash requires 0.66-0.68% of retarder dosage to achieve 3 hours of retention period. Similarly for flowability of concrete amount of super-plasticizer used was 0.95% to achieve a flow in the range of 500-550mm.

2.1.2 Flow Table Test Results

Fig.2. Flow Table Test

International Advanced Research Journal in Science, Engineering and Technology

Conference on Advances in Civil Engineering 2018 (CACE-2018)

Thakur College of Engineering and Technology, Thakur Vol. 5, Special Issue 3, February 2018

To achieve required flow the water-binder ratio (0.29), superplasticizer (0.95%) and retarder dosage were kept constant in all trials. Flow values are checked for every 30 minute interval so as to analyse the effect of Alccofine and chemicals admixture on various mixes.[1]

Flow Value in mm

Initial flow value of all trials were 660mm Retention Period at every 30 min interval.

Trial	30	60	90	120	150	180
Mix						
		OPC + F	OPC + Fly-Ash + Alccofine 1203			
TM-01	635	610	585	565	550	540
TM-02	635	610	590	570	555	540
TM-03	640	615	600	575	565	555
TM-04	640	620	605	585	570	565
TM-05	645	630	620	605	595	580
		OPC +	GGBS +	Alccofin	e 1203	
TM-06	630	605	585	555	540	530
TM-07	630	610	585	560	545	535
TM-08	635	610	590	570	550	540
TM-09	635	615	595	575	560	550
TM-10	645	630	610	590	570	560

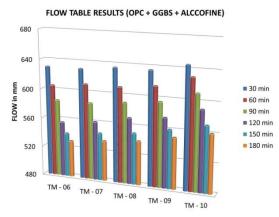


Fig.3. Flow Table Results (OPC + Flyash + Alccofine)

ISSN (Online) 2393-8021 ISSN (Print) 2394-1588

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Conference on Advances in Civil Engineering 2018 (CACE-2018)

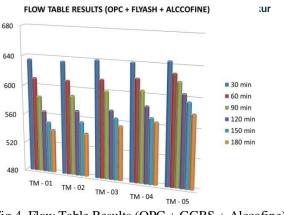


Fig.4. Flow Table Results (OPC + GGBS + Alccofine)

2.1.3 Compression Test:

FLOW in mm

Fig.5. Compression Testing Machine

III. QUALITY IMPROVEMENT

Compression test was conducted for cubesize150x150x150 mm and 100x100x100mm. The main focus behind using two different sizes of cubes for testing is to check the homogeneity of mix. HPC concrete also focuses on homogeneity, and it also enhances the quality of concreting work when it is use for application purpose. Another aim was to minimize the size effect in case of RCC structures. 100mm size cube will give 5% more load value as compare to 150mm size cube. But 100mm size cube proves efficient when high grade of concrete is design especially when compression testing machine is of lower load capacity.

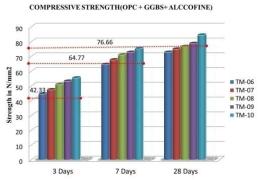


Fig.7. Compressive Strength Analysis(GGBS mixes)

International Advanced Research Journal in Science, Engineering and Technology

Conference on Advances in Civil Engineering 2018 (CACE-2018)

Thakur College of Engineering and Technology, Thakur Vol. 5, Special Issue 3, February 2018

Table 6: Compressive Test Results- M60 Compressive Strength in N/mm²

Trial Mix	3 Days	7 Days	28 Days
-			
TM-00	42.33	64.77	76.66
	OPC +	Fly-Ash + Ale	ccofine1203
TM-01	32.44	47.33	66
TM-02	35.77	51.77	69.77
TM-03	39.11	57.33	72.66
TM-04	41.77	61.77	74.66
TM-05	46	65.55	79.55
	OPC -	+ GGBS + Alc	cofine1203
TM-06	44.44	64.44	72.67
TM-07	47.33	67.55	74.88
TM-08	50.88	70.88	76.66
TM-09	53.11	72.66	78.66
TM-10	55.33	75.11	84.33

IV. VALUE ENGINEERING

The application of value engineering methodology is of great importance to the owners of ready-mixed concrete plants. This methodology can achieve an actual reduction in cost of concrete mixtures, while maintaining the quality at the least. Initially in our project only single admixture which can serve for both retention and flow of concrete. The admixture is CAC and it was used at a dosage of 1.5% to achieve required workability. Instead of using a single admixture which serves both function, using separate admixture for retention and flow at a dosage of 1.6% will not only increase the performance ,also it will reduce cost of concrete. If this is used for mass concrete production then overall performance and cost of structure in which concrete will be used will be optimised.[4]

Type of Admixture	ADMIX 1	ADMIX 2	
Product Name	CAC	SRC	SIKA
		80	5218
Cost /lit (Rs)	72	16	44
Overall Cost /lit (Rs)	72		60

Table 8: Various combination of Chemical Admixture

International Advanced Research Journal in Science, Engineering and Technology

Conference on Advances in Civil Engineering 2018 (CACE-2018)

Thakur College of Engineering and Technology, Thakur

Vol. 5, Special Issue 3, February 2018

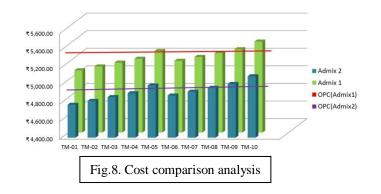


Table 9: Cost comparison analysis as per current price of material (Nov.2017) *Cost Saved of trials TM-01 to TM-10 is compared with OPC mix cost value

Type of admixture					
	ADMIX1	ADMIX2	Cost	*Cost	
Trial	(a)	(b)	Saved	Saved	
Mix	Rs.	Rs.	(a-b)	(%)	
			Rs.		
		Only C)PC		
TM-00	5287.54	4977.94	309.6		
	OPC	OPC + Fly Ash + Alccofine12			
TM-01	5106.94	4774.06	332.88		
TM-02	5150.74	4817.86	332.88		
TM-03	5194.54	4861.66	332.88	7.519	
TM-04	5238.34	4905.46	332.88		
TM-05	5325.94	4993.06	332.88		

	OPC +GGBS+ Alccofine1203			
TM-06	5214.94	4879.18	335.76	
TM-07	5258.74	4922.98	335.76	8.449
TM-08	5302.54	4966.78	335.76	
TM-09	5346.34	5010.58 33	5.76	
TM-10	5433.94	5098.18	335.76	-

Cost Comparison Analysis as per current price of material(Nov.2017)

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology

IARJSET

Conference on Advances in Civil Engineering 2018 (CACE-2018)

Thakur College of Engineering and Technology, Thakur

Vol. 5, Special Issue 3, February 2018

V. CONCLUSION

Using appropriate dosage of admixture will make the concrete to work in different situation. From the results obtained it can be analysed that Fly ash has better flow ability as compare to GGBS while Fly-Ash based mix has lesser compressive strength as compared with GGBS based mixes. It can also be concluded that using two separate admixtures in concrete mixes will not only optimize the performance but will also prove out to be more valuable and it can be concluded that for different purpose, design requirements, customer needs various combination of mixes can be practised keeping in mind customer satisfaction, cost effective and durability of structures. In above concrete Alccofine is most costly item than other ingredients and therefore if Alccofine content is reduced more it will achieve the estimated cost ,what has been estimated using other mixes and will be more valuable when using it for large scale. The application of above mixes can be made to implement on Cable bridges, Infrastructure sector and when used for residential and commercial sector it will reduce the size of structural members and will provide more carpet area and it will prove more valuable when profit gain will be more then invested.

VI. ACKNOWLEDGMENT

We take this opportunity to express our deep gratitude to all at RDC Concrete (INDIA) Pvt Ltd. who have been very kind and helpful to us. We lend our sincere and heartful acknowledgement to our project guides who channelized our raw ideas and gave us the encouragement to persuade our goals and realize this project. We would therefore, like to express our deep gratitude to our guide Dr. Seema Jagtap, Mr. Navnath Sakpal for not only guiding us but also motivating us at every step of our project.

REFERENCES

- [1] RDC CONCRETE (INDIA) Pvt Ltd.
- [2] AbhijitsinhParmar, Dhaval M Patel Studied "Experimental Study on High Properties". Performance Concrete by Using Alccofine and Fly Ash Hard Concrete. Properties International Journal of Engineering Research & Technology (IJERT) Vol.2 Issue 12, December.
- [3] Dr. Seema Jagtap Studied "High Performance Concrete with Mineral Admixtures" (Research Gate) March 2015.
- [4] Application of Value Engineering approach for Improving the Quality and Productivity of Ready-Mixed Concrete by Adel Mohammed, Dr. Walid, Dr. Ahmad, Dr. Ibrahim. Research Gate (2015)
- [5] Indian Standards 10262 2009: Recommended Guidelines for Concrete Mix Design.
- [6] Indian Standards 456 2000: Plain and Reinforced Concrete Code of Practice.
- [7] Indian Standards 383 1970: Specification for Coarse and fine Aggregates
- [8] Indian Standards 3812: Specification of Flyash for use as pozzolona.
- [9] Indian Standards 12089-1987: Specification for Granulated Slag for the Manufacture of Portland Slag Cement.