
IARJSET 
ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 

 
International Advanced Research Journal in Science, Engineering and Technology 

 
Vol. 5, Issue 9, September 2018 

 

Copyright to IARJSET                                                      DOI  10.17148/IARJSET.2018.597                                                            47 

Toxic Comment Classification  

Using Neural Networks and Machine Learning  
 

Revati Sharma
1
, Meetkumar Patel

2
 

Computer Engineering, Ahmedabad Institute of Technology, Ahmedabad, India
1,2 

 

Abstract: A cornucopia of data is developed through conversations, interactions of humans online. This scenario has 

contributed considerably well to the quality of human life but it also involves prodigious dangers as online text 

communications with high toxicity quality cause individual assaults, online provocation and harassing practices. This 

has activated both industrial and research network over the most recent couple of years while there are a few attempts 

to distinguish a proficient model for online toxic comment classification and prediction. Be that as it may, these means 

are still in their earliest stages and new methodologies and structures are required. On parallel, the information blast 

that shows up always, makes the development of new machine learning computational apparatuses for overseeing this 

data, a basic need. Gratefully progresses in big data management, hardware and cloud computing administration permit 

the advancement of Deep Learning approaches showing up exceptionally encouraging execution up until now. Recently 

the use of Convolutional Neural Networks and Recurrent Neural Networks have been approached for computational 

purposes for the text classification systems. In this work, we utilize this way to deal with finding toxic comments, 

remarks in an extensive pool of records given by a current Kaggle's competition with respect to Wikipedia's talk page 

edits which has divided the level of toxicity into 6 labels: toxicity, severe toxicity, obscenity, threat, insult or identity 

hate. 
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I. INTRODUCTION 

 

Every day, we get a tremendous amount of short content data from the blast of online correspondence, web-based 

business and the utilization of advanced gadgets [1]. This volume of data requires text mining apparatuses to carry out 

the various report tasks in an opportune and suitable way. Text Classification is a great point for NLP(Natural 

Language Processing) and a basic segment in numerous applications, for example, web seeking, data filtering, topic 

categorization, and opinion or sentiment analysis [2]. Text classification can be characterized essentially as: Given a set 

of documents D and a set of classes (or labels) C, define a function F that will assign a value from the set of C to each 

document in D [3]. Accordingly, a tremendous pool of machine learning strategies have been connected for text 

classification in different data types with acceptable results. These days, data is normally and usually in short messages 

such as interpersonal organizations, news in website pages, gatherings et cetera. Be that as it may, short messages 

accumulations, having the impediment of short length documents, end up represented by sparse matrices, with minimal 

co-occurrence or shared context.  
 

As a result, defining efficient similarity measures is not straightforward, especially regarding the most popular word-

frequency based approaches, resulting in degrading performance [4]. 
 

Text arising from online interactive communication hides many hazards such as fake news, online harassment and 

toxicity [5]. The obscene, nasty, obnoxious kind of comments or texts which do not only result in online verbal 

violence viz., sexual harassment, personal attacks of one reputed organization to other organizations or personalities to 

denigrate or defame them in a disrespectful and malignant way, bullying and also racisms in hostile language and are 

even sometimes life threats which can be found on blogs, hate sites and comment sections etcetera online social 

platforms. For instance, cyber-bullying affects an individual feeling intimidated and embarrassed about oneself. 
 

The online disinhibition effect can have an effect on one's job security and future employment opportunities. 

Indicatively, the Wikimedia foundation found that 54% of those who had experienced online harassment expressed 

decreased participation in the particular project which occurred [6]. Also, a 2014 Pew Report highlights that 73% of 

adult internet users have seen someone harassed online, and 40% have personally experienced it [5]. Although, there 

are efforts to enhance the safety of online environments based on crowd-sourcing voting schemes or the capacity to 

denounce a comment, in most cases these techniques are inefficient and fail to predict a potential toxicity [7]. 

Automatic virulent comment identification and prediction in real time is of preponderant importance since it'd enable 

the hindrance of many adverse effects for net users. 
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Towards this direction, the work of Wulczyn et al. [6] planned a methodology that blends crowdsourcing and machine 

learning to research personal attacks at scale. Recently, Google and Jigsaw propelled a venture known as Perspective 

[7], which uses machine learning to mechanically find on-line insults, harassment, and abusive speech. Perspective is 

an API (www.perspectiveapi.com) that permits the developers to use the unhealthful detector running on Google‟s 

servers, to spot harassment and abuse on social media or a lot of expeditiously filtering vituperation from the comments 

on a news website. The API uses machine learning models to get the perceived impact a comment might need on a 

voice communication. Developers and publishers will use this score to convey real-time feedback to commenter or 

facilitate moderators do their job, or enable readers to a lot of simply realize relevant data. 
 

A main limitation of those models is that they're not as reliable because it ought to which sometimes the percentage of 

toxicity is not ascertained. The solution presented here is based upon the Kaggle competition which i held as a platform 

globally for modeling through predictions and analysis for a particular problem sector where data scientists, 

mathematicians especially statisticians, data miners come together to compete by performing analysis on the data or 

information models provided by genuine companies and users as an open source to find out the best working systems of 

highest accuracy ratings. 
 

Natural Language Processing (NLP) has profited significantly from the resurgence of deep neural systems (DNNs), 

because of their high performance with less need of designed highlights. There are two fundamental DNN structures: 

convolutional neural networks (CNN) (LeCun et al., 1998) and recurrent neural system (RNN) (Elman, 1990). Gating 

systems have been produced to ease a few confinements of the fundamental RNN, bringing about two winning RNN 

composes: long short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) as well as gated recurrent unit (GRU) 

(Cho et al., 2014). As a rule, CNNs are various leveled i.e hierarchical and RNNs successive i.e sequential designs. By 

what means should we pick between them for preparing language or the textual conversation? In view of the portrayal 

"various leveled (CNN) versus successive (RNN)", it is enticing to pick a CNN for classification tasks like sentiment 

analysis and classification since opinion is normally controlled by some key expressions; and to pick RNNs for a 

sequence demonstrating undertaking like language displaying as it requires adaptable displaying of context reliances. 

Be that as it may, current NLP writing does not bolster such a reasonable conclusion. For instance, RNNs perform well 

on sequence modeling tasks (Tang et al., 2015); and Dauphin et al. (2016) as of late demonstrated that gated CNNs beat 

LSTMs on speech demonstrating undertakings, even in spite of the fact that LSTMs had for some time been viewed as 

more qualified.[8] (i) CNNs and RNNs provide complementary information for text classification tasks. Which 

architecture performs better depends on how important it is to semantically understand the whole sequence. (ii) 

Learning rate changes performance relatively smoothly, while changes to hidden size and batch size result in large 

fluctuations.[8] 

 

II. STATE-OF-ART OF THE EXISTING SYSTEMS 

 

One received approach is the one model and numerous yield layers. Otherwise called multi-assignment learning, this 

approach would have one input layer, one arrangement of hidden layers, and one yield layer for each name. It is not 

quite the same as the One Model Per Label (OMPL) [9]approach, where for each label i.e. the mark, we prepare one 

model to recognize if a perception has a place with that label or not (e.g. foul or not revolting). This approach would 

require huge preparing time for each mark. It is additionally unique in relation to OMPL with exchange learning, which 

is, as its name uncovers it, like OMPL. Be that as it may, rather than preparing each model starting with no outside 

help, one could prepare a constructed display in light of a particular name, and clone it as the reason for future models. 

This approach would require huge preparing time for the first show, however moderately small preparing time for extra 

names. In any case, conveying this model would in any case require taking care of numerous model pipelines. 
 

Recently, Convolutional Neural Networks (CNN) are being applied to text classification or natural language processing 

both to distributed as to discrete embedding of words [10, 12], without using syntactic or semantic knowledge of a 

language [11]. Also, a recurrent CNN model was proposed recently for text classification without human-designed 

features [13] by succeeding to outperform both the CNN model as well as other well-established classifiers. Their 

model captures contextual information with the recurrent structure and constructs the representation of text using a 

convolutional neural network. Meanwhile, CNN has been shown an alternative mechanism for effective use of word 

order for text categorization [11]. An effective CNN based model using word embeddings to encode texts is published 

recently [14]. It uses semantic, embeddings, sentiment embeddings and lexicon embeddings for texts encoding, and 

three different attentions including attention vector, LSTM (Long Short Term Memory) attention and attentive pooling 

are integrated with CNN model. To improve the performance of three different attention CNN models, CCR (Cross-

modality Consistent Regression) and transfer learning are presented. It is worth noticing that CCR and transfer learning 

are used in textual sentiment analysis for the first time. Finally, some experiments on two different datasets demonstrate 

that the proposed attention CNN models achieve the best or the next-best results against the existing state-of-the-art 

models[16]. 
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III.   NEURAL NETWORKS 

 

Whenever Neural Networks are applied to the NLP depictions of text, it only illustrates the occurrence of the words 

within a document and for this purpose, it involves only the vocabulary of known words and how many times they have 

occurred. Any information about he what is the position or the structure of these words or which or where in the 

document they occur is not taken into account. A BoW (Bag-of-Words) display is an elective method for extracting 

features from content that can later be utilized for any sort of investigation for example, classification. This portrayal of 

text depicts the event of words inside a document and for this reason it just includes a vocabulary of known words and 

their relating proportion of the nearness. Any data about the order or structure of words in the report is disposed of in 

this case. The model is just worried about the event of words in the report and not where in the document they happen.  

the models or systems which use these techniques and approaches for text classification and categorization give out a 

great execution. Albeit the hypothetical basic and commonsense proficiency, a BoW show includes a few specialized 

difficulties. The initial phase in an average content investigation strategy is to build the Document-Term-Matrix (DTM) 

from input documents. This is finished by vectorizing documents making a guide from words to a vector space. In the 

following stage a model for either directed or unsupervised learning is connected. Following, we give the points of 

interest of the DTM development for the toxic comment classification issue at hand. 

 

IV.   NEURAL NETWORKS FOR TEXT CLASSIFICATION 

 

We start the strategy by creating the vocabulary of words. Here we pick interesting words showing up in all documents 

disregarding case, punctuation, numbers and regular words that don't contain much data (called stop words). At that 

point as opposed to scoring words in view of the quantity of times each word shows up in a report we utilize the Term 

Recurrence - Inverse Document Frequency (TF-IDF) approach [15]. Along these lines we stay away from the issue of 

high scoring by commanding words that as a rule don't contain 'informing content'. To accomplish this, the recurrence 

of words is rescaled by how frequently they show up in all reports by punishing most visit words over all documents. 

The subsequent scores are a weighting showing significance or intriguing quality of words. TF-IDF have turned out to 

be exceptionally fruitful for classification tasks specifically by uncovering the distinctions among regular gatherings. In 

the last advance of preprocessing we bargain with the sparsity issue. sparse representations  are typically more hard to 

display both for computational reasons and likewise for data reasons, as so little data need to be separated from such a 

huge illustrative space. Here we dispose of terms with higher that 99% sparsity overseeing likewise to decrease the 

dimensionality of the DTM altogether.  

 

As a result following steps were performed for development for text classification: (i)embedding layer which is 

efficient for better results is developed that maps vocab indices to dimensions. (ii)a max pooling which will extract 

features from the embeddings GlobalMaxPooling1D() on the comments which were embedded. (iii)the final result 

being project onto 6-unit output layer squashing it with sigmoid layer. 

 

V. CONVOLUTIONAL NEURAL NETWORK 

 

Delineating the Convolutional Neural Networks for the classification bringing in light the process description for 

particular text classification. These are multi-staged Neural Network architectures for the task of classification: 
 

1. Convolutional Layers, are major components of the CNNs. A convolutional layer consists of a number of 

kernel matrices that perform convolution on their input and produce an output matrix of features where a bias value is 

added. The learning procedures aim to train the kernel weights and biases as shared neuron connection weights[16]. 

2. Pooling Layers, being also integral part of the CNNs,  its function is to progressively reduce the spatial size of 

the representation to reduce the amount of parameters and computation in the network. Pooling layers make a sub 

sampling to the output of the convolutional layer matrices combing neighbouring elements. Pooling layer operates on 

each feature map independently. The most common approach used in pooling is max pooling which takes the 

maximum value of the local neighborhoods. 

3. Embedding Layer is a unique segment of the CNNs for text classification issues. The motivation behind an 

embedding layer is to change the content contributions to a appropriate frame for the CNN. Here, each expression of 

a text report is changed into a dense vector of fixed size. 

4. Fully-Connected Layer is a classic Feed-Forward Neural Network (FNN) hidden layer. It can be interpreted as 

a special case of the convolutional layer with kernel size 1 × 1. This type of layer belongs to the class of trainable 

layer weights and it is used in the final stages of CNNs.[16] 
 

The training of CNN relies on the Back Propagation (BP) training algorithm [17]. The requirements of the BP 

algorithm is a vector with input patterns 𝑥 and a vector with targets 𝑦, respectively. The input 𝑥𝑖 is associated with the 
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output 𝑜𝑖 . Each output is compared to its corresponding desirable 2 target and their difference provides the training 

error. Our goal is to find weights that minimize the cost function[16] 

𝐸𝑤 = 1 𝑛 𝑃 𝑝=1 𝑁𝐿 𝑗=1 𝑜 𝐿 𝑗,𝑝 − 𝑦𝑗,𝑝 2 

 

where 𝑃 the number of patterns, 𝑜 𝐿 𝑗,𝑝 the output of j neuron that belongs to 𝐿 layer, 𝑁𝐿 the number of neurons in 

output layer, 𝑦𝑗,𝑝 the desirable target of 𝑗 neuron of pattern 𝑝. To minimize the cost function 𝐸𝑤, a pseudo-stochastic 

version of SGD algorithm, also called mini-batch Stochastic Gradient Descent (mSGD), is usually utilized [18]. 

 

VI.  CNN FOR TEXT CLASSIFICATION 

 

The CNN have been widely applied to image classification problems due to their inner capability to exploit the two 

statistical properties that characterize image data, namely „local stationarity‟ and „compositional structure‟ [19].Local 

stationarity structure can be translated as the trait of a picture to show reliance between neighbouring pixels that is 

sensibly steady in nearby picture areas. Local stationarity is abused by the CNNs' convolution administrator.  

For text classification issues the unique crude information likewise introduces the previously mentioned factual 

properties in view of the way that neighboring words in a sentence display reliance, be that as it may, their processing 

isn't clear or straightforward. The parts of a picture are just pixels represented to by integer values qualities inside a 

particular run. Then again, the parts of a sentence (the words) must be encoded before encouraged to the CNN [15]. For 

this purpose we may utilize a vocabulary. The vocabulary is built as an index containing the words that show up in the 

set of document texts, mapping each word to an integer value in the vicinity of 1 and the vocabulary size. The 

fluctuation in reports length (number of words in a report) should be tended to, as CNNs require a steady information 

dimensionality. For this reason, the padding procedure is received, loading up with zeros document matrix keeping in 

mind the goal to achieve the most extreme length among all documents in dimensionality. 
  

In the subsequent stage the encoded reports are changed into  matrices for which each line corresponds to single word. 

The created matrices go through the inserting layer where each word (row) is changed into a low-dimension portrayal 

by a dense vector [1]. The strategy at that point keeps following the standard CNN philosophy. At this point, it merits 

specifying that there are two methodologies for the low-dimension portrayal of each word. The first approach called 

'randomized' which is accomplished by setting a distribution over the word, creating a dense vector with settled length. 

The values of the vectors are tuned by means of the training procedure of the CNN. The other extremely well known 

approach additionally assessed here is to utilize settled dense vectors for words, which have created in view of word 

implanting techniques such as the word2vec [22] and GloVe [23]. All in all the word implanting techniques have been 

prepared on a vast volume dataset of words creating for each word a dense vector with a particular dimension and fixed 

qualities. The word2vec implanting strategy for instance, has been prepared on 100 billion words from Google News 

creating a vocabulary of 3 million words. The embedding layer coordinates the information words with the fixed dense 

vector of the pre-prepared embedding strategies that have been chosen. The estimations of these vectors don't change 

amid the preparation procedure, except if there are words not effectively incorporated into the vocabulary of the 

embedding strategy in which case they are instated haphazardly. 

 

VII. RECURRENT NEURAL NETWORKS  

 

RNN takes words in a sentence in a sequential order and is able to learn the long-term dependencies of texts rather than 

local features[24]. 
 

The long-term dependencies learned by RNN can be viewed as the sentence level representation. The sentence-level 

representation is taken to the fully connected network and the softmax output reveals the classification result. Unlike 

feed forward neural networks, RNNs are able to handle a variable-length sequence input by having a recurrent hidden 

state whose activation at each time is dependent on that of the previous time[24]. 
 

To train the RNNs we update the weights bby figuratively moving backwards in time changing hence updating the 

weights which is called the Back Propagation Through Time (BPTT). For example, in order to calculate the gradient at 

t=4 we would need to back propagate 3 steps and sum up the gradients. As information length develops, RNNs trained 

through BPTT move toward becoming unfit to figure out how to interface data which results in problem called as 

Vanishing/Exploding gradient problem. This is precisely where Long Short-Term Memory neural networks (LSTMs) 

go ahead stage. They are expressly intended to keep away from the long haul reliance issue. The center thought behind 

LSTMs is the cell state, which is pretty much like a transport line. It goes from end to end of the whole chain, with just 

a few minor straight communications. Subsequently, it is simple for data to simply stream along it without being 

changed. 
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VIII. LSTMS FOR TEXT CLASSIFICATION 

 

Sequence modelling being essential for better training of model through RNN algorithms-LSTM can be built by the 

framework keras sequential model with Tensor Flow running at the backend. The sole reason for using the Kers is that 

it is built fully in python codes and hence easy to debug and modify if there is a need to combine various standalone 

modules such as neural layers, activation functions, optimizers, regularization schemes into one to develop new 

modules. For developing the sequential model , pre-processed and tokenized data is required which ia again handled by 

the APIs provided by Keras Framework. Pre-processing the text data is done in some successive steps with keras:(i)first 

the given texts or the sentences are split into words in a list for a meaningful sequence by text_to_word_sequence 

which by default converts text to all lower case splitting out the punctuations for further ease.(ii)once these sequence of 

words is generated, the function provided by keras : hashing_trick() frees the limitation of word tracking and counting 

by tokenizing the text and hence generating an integer encoded version of the document. 
 

The word embedding strategies used here is word2Vec being one of the top techniques coded in python to provide 

words as inputs into the neural networks which majorly overcomes or outweighs the shortcomings simple vectorization 

of bag of words model which is just production of vectors to given words, but the word to Vec technique helps 

maintain a semantic relationship between words of text i.e. how a word can be related to other by generating dense 

matrices or vectors of integer encoded texts based on the distance between most related word being the least and words 

with least or no semantic relationship being farther. This relationship however is lost in the simple vectorization 

techniques. We load this embedding matrix into an Embedding layer using embedding index dictionary and word index 

matrices. 
 

An Embedding layer should be fed sequences of integers, i.e. a 2D input of shape (samples, indices). These input 

sequences should be padded so that they all have the same length in a batch of input data (although an Embedding layer 

is capable of processing sequence of heterogeneous length, if you don't pass an explicit input_length argument to the 

layer). 
 

All that the Embedding layer does is to map the integer inputs to the vectors found at the corresponding index in the 

embedding matrix, i.e. the sequence [1, 2] would be converted to [embeddings[1], embeddings[2]]. This means that the 

output of the Embedding layer will be a 3D tensor of shape (samples, sequence_length, embedding_dim). 
 

LSTMs having the cell states for controlling the flow of information i.e which to accept and sink in completely and 

which to let go or get rid off that are controlled and protected by the three gates composed of the sigmoid layer whose 

outputs 1 and 0 depicts the herenow mentioned instructions  respectively. For understanding and predicting the next 

word based on the previous ones, the gender pattern must be learned by the cell states so that relevent and correct 

pronouns are used. For this the cell states with the help of the sigmoid layer also the input gate layer, decided what 

values need to be updated to the new subject replacing the old ones. Tanh layer updates the memory. 
 

Using the keras framework, we will be developing : (i)a bidirectional LSTM layer, (ii)one-dimensional global-max 

pooling layer,(iii) dense 50 neuron layer for better memory powers, (iv) two 0.1 dropouts to prevent overfitting, (v)a 

last dense 6-neuron output layer. Simple recurrent neural networks‟ additive operations lag in terms of the flexibility 

and results when compared to the multiplicative operations between word embedding through gate structures. 

 

IX. OVERALL RESULTS 

 

Table I Accuracy performance of different algorithms (in %) 

Epochs NN CNN LSTM 

3 0.9884 0.9801 0.9840 

5 0.9860 0.9803 0.9870 

7 0.9891 0.9804 0.9877 

 

Table II Time performance of different algorithms (in s) 

Epochs NN CNN LSTM 

3 2.753 235.8 168.5 

5 2.800 211.1 192.3 

7 9.703 235.0 198.0 
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CONCLUSION 

 

There have been ceaseless trials experimenting and computing the presence of toxicity of various kinds on the online 

platforms including the micro and macro blogging sites by the industries as well as the research communities for an 

efficient model that detects and predicts the online toxic comments. This holds importance in the research field due to 

the tremendously growing online interactive communication among users. This work is dedicated to finding the best 

possible optimum solutions for online toxic comment classification which further classifies the toxic comments into 6 

labels provided by the datasets on kaggle platform. These datasets are from the wikipedia talk page edits. Using the 

word embedding techniques and also comparing the primary level neural network algorithms results with intricate 

Convolutional Neural Networks and Recurrent Neural Network compose: LSTM (Long-Short Term Memory) results , 

the obtained analysis show that the LSTM perform better than the CNNs in terms of both the accuracy and time 

performance given the same number of epoch and hence are preferable to use rather than CNN with word-level 

embeddings. More accurate and promising results can be obtained by further improving the word embeddings by using 

more finely pre-processed data as well as advancements in developing the proposed LSTM systems. 
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