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Abstract: Internet of Things (IOT) is the technology that can help integrate both physical and digital worlds. With 

associated technologies like Wireless Sensor Networks (WSN), communication standards and Radio Frequency 

Identification (RFID), to mention few, it has got plenty of use cases in the real world. One such use case is healthcare 

industry. Since healthcare industry needs seamless integration and quality in health care services, IoT has become 

crucial for taking the industry to the next level in providing satisfactory services. There are many benefits of integrating 

IoT with the infrastructure of healthcare units. One important benefit is real time health monitoring. With wearable 

technology patients can have body sensors and doctor can view vital signs of patients live. This could help in providing 

real time healthcare services so as to provide timely diagnosis and treatments. It also avoids many conventional barriers 

like travelling and wasting time. Still it is in its inception therefore, this paper throws light on the present state-of-the-

art of IoT and its integration with healthcare units. It provides useful insights on various aspects of integration besides 

giving recommendations.  
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I. INTRODUCTION 

 

Healthcare is an essential part of life. Unfortunately, the steadily aging population and the related rise in chronic illness 

is placing significant strain on modern healthcare systems [1], and the demand for resources from hospital beds to 

doctors and nurses is extremely high [2]. Evidently, a solution is required to reduce the pressure on healthcare systems 

whilst continuing to provide high-quality care to at-risk patients. The Internet of Things (IoT) has been widely 

identified as a potential solution to alleviate the pressures on health-care systems, and has thus been the focus of much 

recent research [3] [4]. A considerable amount of this research looks at monitoring patients with specific conditions, 

such as diabetes [5] or Parkinson's disease [6]. Further research looks to serve specific purposes, such as aiding 

rehabilitation through constant monitoring of a patient's progress [4]. Emergency healthcare has also been identified as 

a possibility by related works [7], [8], but has not yet been widely researched. 

 

Several related works have previously surveyed specific areas and technologies related to IoT healthcare. An extensive 

survey is presented in [9], with focus placed on commercially available solutions, possible applications, and remaining 

problems. Each topic is considered separately, rather than as part of an overarching system. In [10], data mining, 

storage, and analysis are considered, with little mention of integration of these into a system. Sensor types are 

compared in [11], with some focus placed on communications. However, it is hard to draw an image of a complete 

system from this paper. Finally, in [8], sensing and big data management is considered, with little regard for the 

network that will support communications. 

 

This paper therefore makes a unique contribution in that it identifies all key components of an end-to-end Internet of 

Things healthcare system, and proposes a generic model that could be applied to all IoT-based healthcare systems. This 

is vital as there are still no known end-to-end systems for remote monitoring of health in the literature. This paper 

further provides a comprehensive survey of the state-of-the-art technologies that fall within the proposed model. Focus 

is placed on sensors for monitoring various health parameters, short- and long-range communications standards, and 

cloud technologies. This paper distinguishes itself from the previous major survey contributions by considering every 

essential component of an IoT-based healthcare system both separately and as a system. 
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II. HEALTHCARE AND THE INTERNET OF THINGS 

 

Research in related fields has shown that remote health monitoring is plausible, but perhaps more important are the 

benefits it could provide in different contexts. Remote health monitoring could be used to monitor non-critical patients 

at home rather than in hospital, reducing strain on hospital resources such as doctors and beds. It could be used to 

provide better access to healthcare for those living in rural areas, or to enable elderly people to live independently at 

home for longer. Essentially, it can improve access to healthcare resources whilst reducing strain on healthcare systems, 

and can give people better control over their own health at all times. In fact, there are relatively few disadvantages of 

remote health monitoring. The most significant disadvantages include the security risk that comes with having large 

amounts of sensitive data stored in a single database, the potential need to regularly have an individual's sensors 

recalibrated to ensure that they're monitoring accurately, and possible disconnections from healthcare services if the 

patient was out of cellular range or their devices ran out of battery. Fortunately, these issues are all largely solvable, and 

are already being addressed in the literature, as will be highlighted throughout the remainder of this paper. As progress 

continues to be made to reduce the disadvantages, IoT-based systems for remote health monitoring are becoming an 

increasingly viable solution for the provision of healthcare in the near future. 

 

A. A Model for Future Internet of Things Healthcare Systems 

After reviewing this wide range of existing IoT-based health-care system, several requirements for the design of such 

systems become apparent. Each of these papers emphasizes the use of sensors for monitoring patient health. All regard 

wearable sensors, namely wireless and externally-wearable sensors, as essential to their respective systems. Several 

works [12], [6] also suggest the use of environmental or vision-based sensors around the home. However, this restricts 

the usefulness of the system to one physical location. It would be preferable to implement all essential sensors as small, 

portable, and externally wearable nodes. This would provide patients with a non-intrusive and comfortable solution that 

is capable of monitoring their health wherever they go. This would make patients more receptive to using health 

monitoring technology than they would be if implantable sensors or cameras were required. Additionally, repairing or 

replacing externally wearable nodes would be simple when compared to implanted sensors or vision-based sensors 

installed in the home. Existing systems highlight that communications are also essential for an Internet of Things 

healthcare system. In several existing system models [5], [6], [13], short-range communications, such as Bluetooth, are 

suggested for transferring sensor data to a smart phone to be processed. Long-range communications such as LTE can 

then be used to transfer the processed information from the patient to the healthcare provider, typically a doctor, 

through SMS or the Internet. The key limitation of this is that smart phones typically have limited battery life, requiring 

frequent recharging; a patient with a battery would be a patient disconnected from health-care providers. A low-

powered node designed specifically for managing healthcare information would be preferable. 

 

1) Wearable Sensor & Central Nodes: Wearable sensor nodes are those that measure physiological conditions. 

Recommended sensors are those that measure the vital signs - pulse, respiratory rate, and body temperature - as these 

are the essential signs for determination of critical health. Further sensors that could be implemented are blood pressure 

and blood oxygen sensors, as these parameters are often taken alongside the three vital signs. Special-purpose sensors 

such as blood-glucose, fall detection, and joint angle sensors could also be implemented for systems targeting a specific 

condition. The central node receives data from the sensor nodes. It processes this information, may implement some 

decision making, and then forwards the information to an external location. A dedicated central node would be 

preferred to a smart phone as battery life could be improved by having only functionality relevant to a healthcare IoT 

system. 

 

2) Short-Range Communications: For sensors to communicate with the central node, a short-range communications 

method is required. There are several important requirements to consider when choosing a short-range communications 

standard, including effects on the human body, security, and latency. The chosen method should have no negative 

effects on the human body, as any such effects could cause additional health concerns for patients. It should also 

provide strong security mechanisms to ensure that sensitive patient data cannot be accessed by an attacker. Finally, 

low-latency is essential for time-critical systems, such as a system that monitors critical health and calls for an 

ambulance if the need arises. In such systems, time delays could be the difference between life and death. In 

applications that are not time-critical, low-latency would not need to be prioritized as highly, but is still preferable. 

 

3) Long-Range Communications: Data obtained by the central node is not useful unless some-thing can be done with 

it. This data should be forwarded to a database where relevant parties (such as caretakers or doctors) can securely 

access it. There are again several considerations when selecting a suitable long-range communications standard for use 

in a healthcare system, including security, error correcting capabilities, robustness against interference, low-latency, 

and high availability. As with short-range communications, strong security is important to ensure that sensitive patient 

data remains private and cannot be altered or imitated. Low-latency is again important in time-critical applications, 
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such as emergency healthcare, where delays in communication could have detrimental effects on patients. High-quality 

error correcting capabilities and significant robustness against interference are essential, as these ensure that the 

message sent is the same as the message received. This is important in all healthcare applications, but particularly in 

emergency situations. Lastly, high availability is essential to ensure that messages will be delivered at all times, 

regardless of where the patient is physically located. Again, this is of particular importance to time-critical applications, 

but is preferable for all systems. 

 

4)Secure Cloud Storage Architecture & Machine Learning: Medical information obtained from patients must be 

stored securely for continued use. Doctors benefit from knowing a patient's medical history, and machine learning is 

not effective unless large databases of information are available to it. Based on the literature, cloud storage is the most 

viable method for storing data. However, providing accessibility for healthcare professionals without compromising 

security is a key concern [14], [15] that should be addressed by researchers developing healthcare IoT systems. 

Additionally, machine learning has repeatedly been identified in the literature as a means for improving health-care 

systems [12], [6], [4], though it has not been widely explored. Machine learning offers the potential to identify trends in 

medical data that were previously unknown, provide treatment plans and diagnostics, and give recommendations to 

healthcare professionals that are specific to individual patients. As such, cloud storage architectures should be designed 

to support the implementation of machine learning on big data sets. 

 

B. Potential Use Cases for the Proposed Model 

The generic model we have proposed for guiding development of future Internet of Things healthcare systems has a 

number of use cases. To provide context, this subsection discusses several of these use cases, which include aiding 

rehabilitation, assisting management of chronic conditions, monitoring changes in people with degenerative conditions, 

and monitoring critical health for the provision of emergency healthcare. 

Following our proposed model, a rehabilitation system for knee injuries could be developed by using wearable 

accelerometer sensors on either side of the knee, to allow for the position and angle of the knee to be calculated. These 

measurements could be recorded during several activities, such as normal walking and rehabilitation exercises. They 

could be communicated via short-range communications to a comfortable, wrist-wearable central node, which could 

then forward information to the cloud via long-range communications. In the cloud, a record of the patient's progress 

will continue to expand with each received message. Machine learning algorithms could be implemented to identify the 

patient's progress, predict when they will be fully rehabilitated, and determine whether any exercises are working better 

than others. This system could easily be adapted for other or additional injuries by modifying which wearable sensors 

are used. Our model could also be used to develop a system capable of assisting with the management of chronic 

conditions such as hypertension. Blood pressure could be monitored at several locations on the body at set intervals 

throughout the day and communicated to the cloud via a wrist-worn central node. Again, a comprehensive record of the 

patient's blood pressure could be built and machine learning could be used to identify trends such as when the patient's 

blood pressure is highest. This information could also be used to determine optimal times for the patient to take any 

medication that they may require to manage their condition, and remind the patient of that using a buzzer or alarm on 

the central node. 

 

III. WEARABLE HEALTHCARE SYSTEMS3 

 

WBANs have been identified as a key component of a healthcare system founded on Internet of Things technology, and 

as such the development of accurate sensors with low form factor are essential for the successful development of such a 

system. In this article, we focus on sensors that are non-obtrusive and non-invasive; we exclude sensors such as 

implantable. Considered are five fundamental sensors - three for monitoring the vital signs of pulse, respiratory rate, 

and body temperature, and a further two for monitoring blood pressure and blood oxygen, both commonly recorded in a 

hospital environment? 

 

A. Pulse Sensors: Perhaps the most commonly read vital sign, pulse can be used to detect a wide range of emergency 

conditions, such as cardiac arrest, pulmonary embolisms, and vasovagal syncope. Pulse sensors have been widely 

researched, both for medical purposes and for fitness tracking. Pulse can be read from the chest, wrist, earlobe, finger-

tip, and more. Earlobe and fingertip readings provide high accuracy, but are not highly wearable. A chest-worn system 

is wearable, but wrist sensors are generally considered most comfortable for a long-term wearable system [16]. 

Commercially, several fitness tracking chest straps and wrist watches are available with pulse measurement 

functionality. These include HRM-Tri by Garmin [17], H7 by Polar [18], FitBit PurePulse [19], and TomTom Spark 

Cardio [20]. However, these companies all disclose that their devices are not for medical use and should not be relied 

upon for detecting health conditions. As such, the sensing systems employed by these devices cannot be directly 

implemented into a critical health monitoring system. Much research has been conducted into suitable methods for 

sensing pulse. Sensor types developed, used, and analyzed in recent works include pressure, Photo Plethysmo Graphic 
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(PPG), ultrasonic, and radio frequency (RF) sensors. PPG sensors operate by an LED transmitting light into the artery, 

with a photodiode receiving the amount not absorbed by the blood, as shown in Figure 1. Changes in the amount of 

light can be recorded and a pulse rate can thus be determined. Pressure sensors aim to mimic a healthcare professional 

manually reading the radial pulse by pressing down with their fingers. As shown in Figure 2, the sensor is placed firmly 

against the wrist, and pressure is continuously measured to acquire a pulse waveform. 

 

 
Figure 1. Photoplethysmographic pulse sensor. 

 

 
Figure 2. Pressure-based pulse sensor. 

 

In [21], a flexible and highly-sensitive pressure sensor for pulse detection is developed and tested, showing promising 

results. However, increasing the sensitivity to better detect pulse also increases the amount of noise that is detected due 

to movement of the wearer. This sensor was tested in at-rest conditions, and further research would be required to 

determine that it performed well during motion. Pressure sensors and PPG sensors are combined in [22] and [23], 

where pulse sensor modules are developed with arrays of nine PPG sensors and one pressure sensor. Pulse is taken 

from multiple points on the wrist, providing clear pulse readings and the potential to use these readings for diagnostics 

of certain diseases such as diabetes. 

 

B. Respiratory Rate Sensors: Another of the vital signs is respiratory rate, or the number of breaths a patient takes per 

minute. Monitoring respiration could aid in the identification of conditions such as asthma attacks, hyperventilation due 

to panic attacks, apnea episodes, lung cancer, obstructions of the airway, tuberculosis, and more. Due to the importance 

of respiration, many previous works have developed sensors for measuring respiratory rate. In inspecting the previous 

works, several types of respiratory rate sensor emerge. The first is a nasal sensor based on a thermistor, as is used in 

[24]. The principle that these sensors are based on is that air exhaled is warmer than the ambient temperature. As such, 

the sensor uses the rise and fall of temperature to count the number of breaths taken. This is shown to work reasonably 

well, but accuracy may be compromised by other sources of temperature fluctuations - for example if worn by a chef 

working in a kitchen. It is also not highly wearable, as it is obstructive and easily noticeable. Echocardiogram (ECG) 

signals can also be used to obtain respiration rate. This is called ECG Derived Respiration (EDR), and is used in [25] to 

determine respiration patterns and detect apnea events. This method reads respiratory rate reasonably well, but is again 

limited by the wear-ability. ECG contacts are uncomfortable and would likely cause irritation to the skin if used 

continuously. Additionally, ECG contacts are not reusable and would need to be regularly replaced. 

 

C. Body Temperature Sensors: The third vital sign is body temperature, which can be used to detect hypothermia, 

heat stroke, fevers, and more. As such, body temperature is a useful diagnostics tool that should be included in a 

wearable healthcare system. Recent works surrounding the measurement of body temperature all use thermistor-type 
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sensors. In [26] and [27], the common negative-temperature-coefficient (NTC) type temperature sensors were used, 

while positive-temperature-coefficient (PTC) sensors were considered in [28] and [29]. In all studies, the thermostats 

were shown to measure a suitable range of temperatures for monitoring the human body, with acceptable levels of 

error. Therefore, it is strongly recommended that these sensor types continue to be used by future system designers. 

 

D. Blood Pressure: Whilst not a vital signs itself, blood pressure (BP) is frequently measured alongside the three vital 

signs. Hyperten-sion (high BP) is a known risk factor for cardiovascular disease, including heart attack. It is also one of 

the most common chronic illnesses, affecting 32% of adult Australians. Of those affected, 68% had uncontrolled or 

unmanaged hypertension [30]. As such, incorporating BP into a WBAN for healthcare would provide vital information 

for many patients. Nonetheless, designing a wearable sensor for continuously and non-invasively monitoring blood 

pressure remains a challenge in the field of healthcare IoT.  A significant number of works [31] [32] have attempted to 

obtain an accurate estimate of BP through calculation of pulse transit time (PTT) - the time taken between pulse at the 

heart and pulse at another location, such as the earlobe or radial artery. Another work endeavored to measure this 

property between the ear and wrist [33], while another looked to calculate it between the palm and the fingertip of a 

hand [34]. PTT is known to be inversely proportional to systolic blood pressure (SBP), and is typically determined 

using an electrocardiogram on the chest and a PPG sensor on the ear, wrist, or alternate location. 

 

E. Pulse Oximetry Sensors: Pulse oximetry measures the level of oxygen in the blood. Like blood pressure, blood 

oxygen level is not a vital sign, but does serve as an indicator of respiratory function and can aid in diagnostics of 

conditions such as hypoxia (low oxygen reaching the body's tissues). As such, pulse oximetry is a valuable addition to a 

general health monitoring system. Pulse oximeters measure blood oxygen by obtaining PPG signals. Usually, two 

LEDs - one red, one infrared - are directed through the skin. Much of this light is absorbed by the hemoglobin in the 

blood, but not all. The amount of light not absorbed is measured by receiving photodiodes, and the difference between 

the received lights is used to calculate blood oxygen. As highlighted in Figure 3, LED lights can either be passed 

through an appendage (normally a finger) to a photodiode on the opposite side, or can be directed at an angle so that 

some light reflects to a photodiode on the same side of the appendage. These are called absorbance-mode and 

reflectance-mode PPG sensors respectively. 

 
Figure 3. Absorbance-mode vs. reflective-mode PPG sensors for pulse oximetry. 

 

Classically, pulse oximeters are worn as a finger clip wired to a medical monitor. Several recent works have attempted 

to make more portable devices. In [35], a low-power pulse oximeter is designed with the aim of improving wear ability. 

Two techniques are used to reduce power consumption. The first - named ``minimum SNR tracking'' - continuously 

calculates the current signal-to-noise-ratio (SNR) and adjusts the length of time that the LED is in the ``on'' state for 

accordingly - the higher the SNR is, the longer that the LED needs to be on to gain accurate readings. The second, 

named ``PLL tracking'', estimates when the peaks and troughs of the PPG signal are likely to occur, and samples only 

at these times to acquire this important information. Up to 6x less power was consumed through implementing both 

techniques, and the worst error recorded was a 2% difference between actual and measured blood oxygen levels. This is 

a significant contribution towards making pulse oximeters more wearable, but reductions in the level of error are 

desirable. 

 

F. Other Wearable Sensors For Healthcare: Aside from the sensors that measure critical health parameters, there are 

several special-purpose wearable sensors that may be useful in systems focused on monitoring a specific condition. 

Echocardiograms (ECGs) can be used to evaluate heart health, and several wearable sensors have been developed to 

acquire these signals. In [36], an armband-based ECG sensor was developed and measures with reasonable accuracy. 

ECG sensors have also successfully been developed for integration in helmets [37] and more traditional chest-straps 

[38]. The helmet in [37] also features an electroencephalogram (EEG) sensor. EEGs measure brain activity, and could 

generally be used to monitor seizures, sleep disorders, and progress after a head injury. Other EEG systems have been 

developed for specific purposes, such as for detecting driver drowsiness [39] or stress management [40]. Both systems 

measure EEG through a relatively wearable headband. 
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IV. COMMUNICATIONS STANDARDS 

 

Communications related to Internet of Things for healthcare can be classified into two main categories: short-range 

communications, and long-range communications. The former is used to communicate between devices within the 

WBAN, whilst the latter provides connection between the central node of the WBAN and a base station (such as a 

healthcare provider). In this paper, both types of communications are considered with equal importance. 

 

A. Short-Range Communications: In the context of wearable healthcare systems, short-range communications are 

often used between nodes, particularly between sensor nodes and the central node where data processing occurs. 

Although short-range communications standards can be used for other purposes (i.e. developing mesh networks for 

smart lighting), this survey focuses on the purpose of developing a small WBAN that is comprised of only a few 

sensors and a single central node. Many short-range communications standards exist, but perhaps the most commonly 

used ones in IoT are Bluetooth Low Energy (BLE) and ZigBee. The key features of these two standards are highlighted 

in Table 1, and this section further analyzes these standards and considers their suitability for implementation into an 

IoT healthcare system. 

 

B. Long-Range Communications: Low-Power Wide-Area Networks (LPWANs) are a subset of long-range 

communications standards with high suitability for IoT applications. The range of a LPWAN is generally several 

kilometers, even in an urban environment. This is significantly longer than the range of traditional IoT communications 

types such as WiFi or Bluetooth, whose ranges are in the order of meters and thus would require extensive and costly 

mesh networking or similar to be plausible for healthcare. 

 

V. CLOUD-BASED IOT HEALTHCARE SYSTEMS 

 

Cloud technologies have been widely researched due to their usefulness in big data management, processing and 

analytics. Several related works have surveyed the literature on using cloud technologies for IoT purposes such as 

smart grid [41] and mobile cloud computing for smart-phones [42], [43], where complex computations are of loaded 

from low-resource mobile devices to the high-power environment of the cloud, before the result is returned to the 

mobile device. These works consider data storage and data processing as key advantages of cloud technologies. 

Further related works have reviewed the state of cloud-centric healthcare. The use of cloud technology for health record 

storage is considered in [44], which also overviews cloud technologies as a complete field. Storage is considered 

further [10] and [45], with particular focus on how a large database could be used for data analysis and trend 

determination. While each of these related works provides valuable insight into the field of cloud technologies, there is 

no known article that considers all advantages, disadvantages, challenges, and opportunities that cloud presents to 

healthcare systems based on WBANs and the IoT. In this section, we bridge the gap in the literature by presenting 

recent works regarding cloud-centric healthcare, analyzing key challenges, and providing recommendations for future 

research directions. 

 

A. Data Processing and Analytics: There are several types of data processing that can be per-formed using cloud 

technologies, but the most relevant are computational of loading and machine learning. Computational of loading 

involves using the cloud to perform complex data processing beyond the capabilities of low-resource wear-able 

devices. By sending raw or partially processed sensor data to the cloud, the computing resources of many machines can 

be utilized for processing. Using this high-powered computing environment over processing on the standalone mobile 

device offers many advantages; more complex algorithms can be executed, results can be obtained significantly faster 

and battery life will be extended in mobile devices due to less processing occurring internally. 

Complicated sensor nodes such as those measuring ECG data, blood pressure, or accelerometers for fall detection 

would benefit greatly from computational of loading. For example, ECGs have a standard shape, and different 

deviations from this shape can indicate several different heart problems including arrhythmia, heart in ammation, and 

even cardiac arrest. A small, low-powered sensor node could not analyze ECG readings rapidly using machine learning 

algorithms to determine the patient's state of health. However, if the raw data was offloaded to cloud, high-power 

processing could be performed to determine the shape of the ECG before machine learning algorithms compare it to the 

characteristic shape, identify any serious differences between the shapes, and determine what condition is causing 

them. 

 

B. Security and Privacy in the Cloud: Security remains a key issue in cloud-based systems. In a healthcare 

environment, it is essential that a patient's health information is readily accessible to authorized parties including 

doctors, nurses, specialists, and emergency services. It is also essential that the patient's sensitive health data is kept 

private. If malicious attacks revealed the patient's health data, it could have many negative ramifications for the patient, 

including exposing them to identity theft or making it dif cult for them to obtain insurance. Worse still, if the malicious 
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attacker altered a patient's health record, it could have detrimental effects on the patient's health. Access control policies 

and data encryption are two means of securing cloud-centric healthcare systems. An access control policy specifies who 

is authorized access to the patient's health data, and how much access they are allowed. It would also implement an 

authentication mechanism (e.g. password, facial recognition, etc.) that verifies the identity of the party attempting to 

access the data. Meanwhile, data encryption provides security for the data whilst in data storage. Strong data encryption 

would prevent an attacker from reading sensitive health information, even if they did gain access to the database. 

 

VI. FINDINGS AND RECOMMENDATIONS 

 

The lessons learned through conducting this survey highlight several areas for further research. In terms of sensors, 

much progress has been made but there are still no available devices that match the accuracy of hospital-grade devices 

without compromising energy efficiency or wearability. This is especially true of complex devices such as blood 

pressure and respiratory rate sensors, both of which would be invaluable to the field of medicine. As such, further 

research efforts should be made towards improving the quality of these sensors until they are highly accurate, reliable, 

and comfortably wearable. In our own future works, we will be placing particular focus on developing a blood pressure 

monitor that is more wearable than the works presented in this paper, without compromising accuracy. We will also 

look at reducing the impact of motion on sensors, particularly for respiratory rate and pulse sensors. 

There is still much room for improvement in security and privacy for cloud-based healthcare. No known encryption 

scheme is ideal for protecting data whilst providing accessibility for authorized parties and enabling machine learning. 

ABE and FHE are schemes that provide appealing characteristics, but are not lightweight enough for implementation 

into wearable devices. Improving these schemes is the first active area of research. Upon improving the schemes 

individually, a lightweight ABE-FHE hybrid scheme should be considered, as it could potentially provide all the 

desirable characteristics for cloud-based healthcare security. 

Overall, there is no known end-to-end system for general or specific purposes that contains all components in our 

proposed model; wearable sensors, short- and long-range communications, cloud-based storage, and machine learning. 

Developing such a system would be a significant achievement in the field of IoT-based healthcare, and should be 

considered as the ultimate goal for researchers in this area. In our own future works, we will be striving to reach this 

goal through the development of a wearable, IoT-based system for the provision of emergency healthcare that 

incorporates health sign monitoring, machine learning for diagnostics, and long-range communications via LPWANs to 

notify emergency service providers when a patient needs urgent help. 

 

CONCLUSION AND FUTURE WORK 

 

In this paper we reviewed the present state of the art of IoT integrated healthcare system including the technologies 

behind it, wearable sensors, standards, opportunities and implications. Many wearable devices that can be used to have 

real time health monitoring with IoT connected to healthcare infrastructure. They are used to measure oxygen levels in 

blood, blood pressure and other vital signs. Communication standards with short range and long rage are discussed. The 

possible usage of cloud computing is explored. Since IoT generates huge amount of data, cloud storage and data 

analytics are essential for successful implementation of IoT with healthcare unit. The security risks with cloud are also 

covered. Encryption and access control policies with respect to safeguarding healthcare units integrated with IoT is 

discussed. From the research it is understood that Healthcare industry benefits with IoT integration. In the same 

fashion, it can be used with many industries in the real world. In future we investigate the suitability of IoT integration 

with other industries.  
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