
IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 33

A Novel System Defined Network Solution

for User Legitimacy Assurance

in the Docker Containers

Pinkpreet Kaur
1
, Anupama Gupta

2
, Er. Harpreet Kaur

3

Computer Science and Engineering, LLRIET, Moga, India
1,3

Computer Science and Engineering, GZSCCET, Bathinda, India
2

Abstract: The aim of the work is to provide an overview of virtualization methods, while focusing on Docker. This

new virtualization stage, which incredibly contrasts from the customary, virtual machine based way to deal with

virtualization, has started gigantic enthusiasm for Linux holders. Accordingly, numerous Docker based activities have

risen extending from straightforward order line apparatuses to whole working frameworks. To pick up a more profound

comprehension of Docker's inside components, the proposed work shows working with Docker's Remote API. In this

work, an attempt has been made to address the imperative security issues of the Docker compartments. Additionally,

security calculations and strategies have been proposed to address DoS attacks related issues in the Docker holder

innovation. The preparatory investigations and testing of the security strategies are promising. Results show that the

Validation, Authentication and security is noticeably increased in proposed model as comparison to existing model.

Keywords: Information Security; Docker Technology; User Authentication; AES; Cryptography

1. INTRODUCTION

The web in straightforward terms is characterized as an interconnected arrangement of computer systems. The extent of

web in day to day life is immeasurable. It provides an extensive variety of data, administrations and assets which enable

all areas to be connected all around. As the need of web is emerging with time, different issues identified with its

security comes in to existence. The purpose behind web frailty is fundamentally its plan in light of the fact that the

preeminent concern was its usefulness instead of its security. The security of web is a major concern these days. The

issues identified with web security are confirmation, respectability, accessibility, classification and non-repudiation. In

this paper, fundamental core interest is on weakness to accessibility. The accessibility implies that the data, the

processing frameworks, and the security controls are all available and operable in conferred state at a few irregular

purposes of time (Tipton and Krause, 2004). Among all security attacks, the Distributed Denial of Service (DDoS)

attacks are those which prevent customers and clients to get to all points of interest of administrations accessible to

them from server side. DDoS attack brings about long framework timeouts, lost incomes, expansive volumes of work to

recognize attacks and to plan sufficient reaction measures (Sardana and Joshi, 2009). The Denial of Services (DoS)

attack is Distributed Denial of Services (DDoS) attack since it is propelled simultaneously to various machines. DDoS

attacks are not new unsettling influence to web, they returned late in August 1999 and after that relentlessly their

seriousness is developing. Some perceived DoS attacks are SYN Flood, tear, smurf, ping of death (Sachdeva et al.

2010). There have been expansive scale assaults focusing on numerous prominent sites (Yuan and Mills, 2005). Fig. 1

describes the concept of DDOS attacks.

These locales incorporate twitter, facebook, Amazon and so forth. (Mirkovic et al. 2004). In any case, the most widely

recognized type of DDoS attacks is a parcel flooding attack, in which a substantial number of apparently honest to

goodness TCP, User Datagram Protocol (UDP), or Internet Control Message Protocol (ICMP) bundles are coordinated

to a particular goal. DDoS attacks can't be distinguished and halted effortlessly in light of the fact that manufactured

source addresses and other strategies are utilized to disguise assault sources (Kumar, Joshi and Singh, 2006).

According to Peng et al. 2007, assurance against these assaults is testing for mostly two reasons. To start with, the

quantity of zombies included in a DDoS attack is substantial and misuse of these zombies traverses substantial land

zones. The volume of movement sent by a solitary zombie may be little, however the volume of collected activity

touching base at the casualty host is overpowering. Second, zombies ordinarily parody their IP addresses under the

control of assailant, which makes it extremely hard to follow the attack movement back even to zombies. In this paper,

an outline of DDoS attack and different counteractive action and alleviation systems for DDoS attacks alongside their

favorable circumstances and weaknesses is talked about.

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 34

Figure 1: DDOS Attack

DDoS attack does not depend on specific system configuration or framework shortcoming. It essentially abuses the

enormous asset asymmetry between the Internet and the casualty. Since Web engineering is open in nature, any

machine appended to it is publicly noticeable to another machine connected to empower the correspondence. The

programmer or aggressor group takes the unfortunate preferred standpoint of this open nature to find any shaky

machine associated with the Internet. The found machine is in this way tainted with the attack code. The tainted

machine can further be utilized to find and contaminate another machine associated etc. The aggressor subsequently

progressively prepares another attack. Contingent on the assaulting code, the programmers send control directions to

aces which thus control specialists. The zombies under the control of aces transmit assault bundles which focalize at

casualty to debilitate its assets.

DDoS attack essentially focuses on casualty's computational or communicational assets, for example, data transmission,

memory, CPU cycle, record descriptors and cushions and so forth. The enlist stage is first stage in event of DDoS attack

in which the assailant finds the powerlessness in the casualty framework and select different specialists, these numerous

operators additionally called as bots or zombie. These zombies frame a botnet including all such arranged machines

which are dependable to run attack code under normal charge what's more, control by the aggressor. The second stage is

the adventure stage in which the weakness is misused in the selected zombies. In the third stage, known as contaminate

stage, bots are tainted with the attack code. Last stage is the utilization stage which utilizes the specialists to send the

attack code to casualty framework. Arora et al. (2011) have classified DDoS attacks into two general classes: flooding

attacks and helplessness attacks. Flooding DDoS attacks devour assets, for example, arrange transmission capacity.

These attacks surge the system with such a high volume of movement which expends their accessible system assets are

and authentic client demands can't get past, bringing about debased efficiency. Powerlessness assaults utilize the normal

conduct of conventions, for example, TCP and HTTP to the assailant's scope.

Network assaults surge a PC with such a high volume of association solicitations, that all accessible working

framework assets are devoured what's more, the PC can no longer procedure honest to goodness client demands.

Nonetheless, assets of interfacing system are not an issue in the event of business servers as these are facilitated by the

ISPs. Be that as it may, server assets, for example, handling limit, cushion restrain and so on., are put under worry by

surge of apparently genuine solicitations produced by DDoS attack zombies. Each ask for devours some CPU cycles.

Once the add up to demand rate is more than the administration rate of server, the demands begin getting cradled in the

server, and after a few times because of support over run, approaching solicitations are dropped. The clog and stream

control signals compel true blue customers to diminish their rate of sending solicitations, though assault parcels

continue coming. At last, a phase comes when as it were assault movement is coming to at the server. In this way,

administration is denied to honest to goodness customers. Carlson et al. (1998) expressed that as assault quality

develops by utilizing various sources, the computational necessities of sifting activity of malevolent streams turn into a

weight at the objective. The present work shows how the usage of Docker has improved the security of the

communication. The work is evaluated using various performance metrics and a valid comparison is made between the

existing work and the proposed work.

Reference architectures (RA) in the field of software architecture or enterprise architecture can be seen as a template for

a particular system domain. It provides a common vocabulary with which implementations are discussable and

commonalities being identifiable. An RA generalizes a set of solutions Kratzke (2014). These solutions are structured

for the depiction of one or more concepts based on the harvesting of a set of patterns that have been observed in a

number of successful implementations. The fastest computers listed in the Top 500 are able to execute 1016 FLOPS.

The next generation of computer clusters will move into new dimensions and be a hundred times faster. Such exascale

computers will not have significantly more nodes, but considerably more cores per node. It is predicted that this

increase of CPU performance will not be matched by other resources resulting in an imbalance between CPU

performance on the one hand and I/O performance on the other hand Pickartz et al. (2014).

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 35

2. RELATED WORK

Ranjan (2014) proposed that there are a few lacks in the current Platform as a service (PaaS) stage. PaaS stage of the

application facilitating condition is single and give just the working condition specific programming dialect or scripting

dialect. Furthermore, the parts of PaaS stage are shut. Finally, virtual machines devour over the top assets. So, the PaaS

stage proposed web applications will concentrate on and address the accompanying issues. The stage ought to give the

runtime condition to an assortment of uses. It not just backings prevalent programming and scripting dialects and

furthermore give more grounded similarity and more adaptable working condition. So, the virtual machine is

additionally given as a runtime situation to application. Furthermore, the stage cannot just give the capacity that giving

an open get together system to clients and enable an outsider to give abilities considering this stage. Bansal and Kaur

(2015) proposed the light weight virtualization techniques for the issue of mapping of customers' demand to a particular

web server and tie the solicitations originating from customers to port 80 with 8081 and 8082 and furthermore utilized

apparatuses for contrasting the execution of linux compartments and virtual machines. This method contained various

pivotal focal points like live movement, security and so forth.

Yang (2015) proposed that containers are convenient, the applications can be packaged in to a solitary unit and can be

conveyed to different situations without rolling out any improvements to the holder. They utilized some benchmark

apparatuses for measuring the quality and shortcomings on various stages as far as capacity, handling and system. Their

outcomes demonstrate that holders by and large accomplish preferred execution over hypervisors. They likewise

presented how docker is not quite the same as linux holders. They examined and measured boot speed and CPU

execution of every stage and said Docker doesn't squander CPU assets and capacity is little, and boot-time, time of

creating and circulating pictures are short in docker which is the benefit of utilizing docker in cloud. Docker can be

utilized with the stage as an administration or application organization to lessen the overhead of system

administrator/framework administrator. Anderson et al. (2015) discussed that OS level based virtualization is an

approach in which working arrangement of the host is imparted to the virtual example. This implies the host bit is

imparted to the virtual example and that virtual occasion is known as compartments, that is the reason occasionally it is

known as containerization or lightweight virtualization.

Different apparatuses are utilized to accomplish lightweight virtualization, for example, OpenVZ , Linux holders

(LXC), Docker, Rocket and Kubernates. Authors have utilized Docker for execution and keeping up the servers on a

similar host. Docker is a lightweight virtualization apparatus which is utilized for the application facilitating in a cloud

domain. Different cloud suppliers utilized docker for giving administrations to purchasers, for example, Platform as a

Service (PaaS) and Software as a Service (SaaS). Joy (2015) presented the design for the usage of servers utilizing

lightweight virtualization utilized Docker. Two web servers are executed on docker with a port tie strategy, in this

Webserver-1's port 80 is tied with the host port 8081 and Webserver-2's port 80 is tied with 8082 port of host and both

the servers are taking volume from the host i.e. an index on the host is mounted as volume for the servers. Yu and Huan

(2015) suggested that the lightweight virtualization procedure has influenced virtual machines more compact, to work

more effective and less demanding to administration. The season of live relocation can be enormously lessen when

connected to compartments in view of the lightweight virtualization system, which is extremely valuable to server

farms. This exhibited a logging and replay approach for live relocation of Docker compartments. With this approach,

both the down time and aggregate movement time are lessened. Yin and Shang (2015) proposed research and usage

PaaS stage in light of Docker. PaaS is a type of distributed computing administration assets and gives application

improvement condition. As the current PaaS stage facilitating and virtual machine condition disentanglement of the

issue of unnecessary utilization of assets, they have directed inside and out research on the PaaS stage. Authors

proposed a component to make PaaS stage in light of Docker.

The complexity of cloud-based analytics environments threatens to undermine their otherwise tremendous values. In

particular, configuring such environments presents a great challenge. Zhang et al. (2015) alleviate this issue with an

engine that recommends configurations for a newly submitted analytics job in an intelligent and timely manner. The

engine is rooted in a modified k-nearest neighbor algorithm, which finds desirable configurations from similar past jobs

that have performed well and apply the method to configuring an important class of analytics environments: Hadoop on

container-driven clouds. Preliminary evaluation suggests up to 28% performance gain could result from this method.

Alampalayam et. al (2016) discussed the idea of containerization and virtualization is getting footing in the cloud based

IT conditions. Docker motor is prominent usage for disentangling and streamlining containerization innovation. IT

industry understands various mechanization and increasing speed highlights and offices through the embracement of the

Docker-supported containerization worldview, which is a working framework (OS) level and lightweight virtualization.

However, the security issues influence the far reaching and certain utilization of Docker stage.

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 36

3. PROPOSED WORK

DoS has been a major issue in the IT world by making gainful IT frameworks and assets unusable through a cleverly

planned endeavors of bulldozing the frameworks with undesirable stuffs and demands. Holders are likewise not taken

off alone and subsequently there is a request for advanced answers for going around DoS attacks Sardana & Joshi

(2009) . In this section, an improved strategy to address DoS attacks and actualizing the technique to show its capacity

in disposing of DoS attacks have been defined.

3.1 Methodology

The various steps that are followed are as follows:

Step1: Key exchange to create the session between server and client. This would be done at pre-phase to establish the

connection. Keys would be generated into a random fashion. So, it would be non-predictable.

Step2: After step1, the container data would be stored in encrypted format with private key. So, the unauthorized user

could not be able to read the data.

Step3: The files would be in read-only format which the recommended process requires to secure the containers

content.

3.2 Work Flow

Figure2: Flow chart showing the process of authentication

The proposed workflow has been demonstrated with the help of flowcharts. First flowchart shown in Figure 2 depicts

the process of authentication. In this process, key table is generated on both client and server side with random key

generator. User tries to create a session after which the server demands key from client and client sends any key from

key table. Then, the server matches that key with key table. If key matches, the user is authenticated. Otherwise,

unauthenticated. Second flowchart (Figure 3) presents the concept of Docker and AES encryption process. This security

process is done on server side.

Authentication

Generate key tables on

client and Server

Send a key to Server

User is Authenticated

Stop

If Key

matches

No

Yes

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 37

Figure 3: Flow chart showing the process of Docker and AES Encryption

3.3 Proposed Algorithm

Algorithm 1: Randomized Function to generate random number
1. Initialize the random number generator.

2. Create a radii value for each point in the sphere. These values are in the open interval (0, 3), but are not

uniformly distributed. The values are created using following mathematical equation:

3. Randomly select and concatenate the values to create one time password (OTP).

4. Return OTP.

Algorithm 2: Randomized Function to generate captcha

1. Initialize the random number generator.

2. Generate the alphanumeric string from an array set.

Array = A (Set of small, capital alphabets & numeric values 0-9)

Random number = R (with unique values).

 Captcha String = C with 5 values.

Authentication

Save

Stop

Success

No

Yes

Cipher Data

Key Generation for

Encryption

Create Image

Create Docker File

Create Docker Container

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 38

C = A[R, (A-Z)]

C = A[R, (a-z)]

C = A[R, (0-9)]

C = A[R, (A-Z)]

C = A[R, (a-z)]

C = [A[R, (A-Z)], A[R,(a-z)], A[R,(0-9)], A[R,(A-Z)], A[R,(a-z)]]

Algorithm 3: AES Algorithm Encryption Process
1. Input Image

2. Convert the image into Data Matrix (d)

3. Data Matrix Validation  validate(d)  dM

4. Data Matrix Segmentation  segment((dM)  dm
i

5. Input Security Key (Sk)

6. Key Expansion(Sk)

7. Initial Round  Add Round Key (Sk)

8. Rounds  For Loop

a. Sub Bytes(dm
i
)

b. Shift Rows(dm
i
)

c. Mix Columns(dm
i
)

d. Add Round Key(dm
i
)

9. Rounds  End For Loop

10. Final Round  Mix Columns(False)

a. Sub Bytes(dm
i
)

b. Shift Rows (dm
i
)

c. Add Round Key(dm
i
)

11. Data Matrix Merger  merge(dm
i
)  dEM

12. Data Matrix Reverse validation  revalidate(dEM)  dE

4. RESULTS AND DISCUSSIONS

The proposed work has been done in MATLAB. The parameters required for simulation are listed in Table 1. The

screenshot for building and encrypting key table is shown in Figure 4.

Table 1: Simulation Parameters

Network Parameters Values

CPU Intel Celeron 1.6 GHZ

RAM 4 GB

HDD 500 GB

Operating System Microsoft Windows 7 (64-bit)

Software MATLAB 2013 a

Programming Language MATLAB

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 39

Figure 4: Building and encrypting key table

The key tables are built on both client and server side and shows the encryption and decryption process with key. The

client sends key from key table when server demands. If the key matches then user is authenticated. This is shown in

Figure 5.

Figure 5: Authentication Process

Figure 6 shows the creation of session with Docker server. In this container, the commands are created and then written

in docker file and then these commands and files are run. Subsequently, the commands are written in Docker file. This

is shown in Figure 7. Key is generated for AES Cryptography as shown in Figure 8. This same key is then used for

encrypting and decrypting the text.

Figure 6: Create session with docker server

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 40

Figure 7: Docker file

Figure 8: Key Generated for encrypting text

Text is encrypted using AES algorithm with the key that is generated in Figure 8. This encryption is done on server

side. This encryption is shown in Figure 9. The text that is encrypted is that text whose path is in docker.m file.

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 41

Figure 9: Encrypting Text using AES algorithm

Text is decrypted using AES algorithm. This decryption is done on server side. The text that is encrypted in Figure 9 is

decrypted with same key that is used for encrypting the text. This process is shown in Figure 10.

Figure 10: Decrypting Text using AES algorithm

The proposed system has been tested with the 25 random persons having age between 16 years to 42 years who logged

into the system. The age variation has been counted as the factor towards testing the ease of access to the proposed

authentication scheme. The number of successful attempts and success rate by the testing user set is shown in Table 2.

The Bar Graph representing the login accuracy by the testing users of various age groups is shown in Figure 11. The

security scheme has been tested for average Login success rate, probability of failed login attempts, choice of features,

etc.

Table 2: The successful attempts and success rate by the testing user set

Sr.

No.

Age

Group

Total Persons in

the Age Group

Total

Attempts

Successful

Attempts

Success

Rate

1 <20 5 102 100 98.03%

2 <30 13 280 267 95.35%

3 <40 6 115 111 96.52%

4 <42 1 16 14 87.50%

IARJSET
ISSN (Online) 2393-8021

 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 5, Issue 12, December 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5126 42

Figure 11: Bar Graph representing the login accuracy by the testing users of various age groups

CONCLUSIONS AND FUTURE SCOPE

The implemented work includes the new multi-level password scheme, which is designed to prevent the security risks

of the currently popular graphical password schemes. The new scheme has been proposed for its use in the power user

portal for data access on cloud server. This scheme is designed using the GUIDE (Graphical User Interface

Development environment) tool of MATLAB. When a user enters the pattern passwords, a numerical code for the

pattern password is generated on the basis of the grid point indexing numbers. For future work, further innovations on

the existing solutions is needed to fortify the security requirements for containerized workloads and environments.

REFERENCES

[1]. Arora, K., Kumar, K., & Sachdeva, M. (2011). Impact analysis of recent DDoS attacks. International Journal on Computer Science and Engineering, 3(2),

877-883.

[2]. Braun, M., & Xie, G. G. (2002). A Feedback Mechanism for Mitigating Denial of Service Attacks against Differentiated Services Clients. NAVAL

POSTGRADUATE SCHOOL MONTEREY CA DEPT OF COMPUTER SCIENCE.

[3]. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., & Davies, E. (1998). An architecture for differentiated services. RFC 2475, December.

[4]. Chang, R. K. (2002). Defending against flooding-based distributed denial-of-service attacks: a tutorial. IEEE communications magazine, 40(10), 42-51.
[5]. Kargl, F., Maier, J., & Weber, M. (2001, April). Protecting web servers from distributed denial of service attacks. In Proceedings of the 10th international

conference on World Wide Web (pp. 514-524). ACM.

[6]. Khattab, S. M., Sangpachatanaruk, C., Melhem, R., l Mosse, D., & Znati, T. (2003, August). Proactive server roaming for mitigating denial-of-service

attacks. In Information Technology: Research and Education, 2003. Proceedings. ITRE2003. International Conference on (pp. 286-290). IEEE.

[7]. KotagiriRamamohanarao, T. C. Protection from Distributed Denial of Service Attack Using History-based IP Filtering.

[8]. Sardana, A., & Joshi, R. (2009). An auto-responsive honeypot architecture for dynamic resource allocation and QoS adaptation in DDoS attacked

networks. Computer Communications, 32(12), 1384-1399.

[9]. Tipton, H. F., & Krause, M. (2003). Information security management handbook. CRC Press.
[10]. Yau, D. K., Lui, J., Liang, F., & Yam, Y. (2005). Defending against distributed denial-of-service attacks with max-min fair server-centric router

throttles. IEEE/ACM Transactions on Networking (TON), 13(1), 29-42.

[11]. Yuan, J., & Mills, K. (2005). Monitoring the macroscopic effect of DDoS flooding attacks. IEEE Transactions on Dependable and Secure

Computing, 2(4), 324-335.

[12]. Zhao, W., Olshefski, D., & Schulzrinne, H. (2000). Internet quality of service: An overview. Columbia University, New York, New York, Technical

Report CUCS-003-00.

[13]. Jin, H., Deng, L., Wu, S., Shi, X., Chen, H., & Pan, X. (2014). MECOM: Live migration of virtual machines by adaptively compressing memory
pages. Future Generation Computer Systems, 38, 23-35.

[14]. Kratzke, N. (2014). A lightweight virtualization cluster reference architecture derived from open source paas platforms. Open Journal of Mobile

Computing and Cloud Computing, 1(2), 17-30.

[15]. Lee, B. Y., Park, J. H., & Yoo, J. S. (2012). Software Architecture of the Grid for implementing the Cloud Computing of the High Availability. The

Journal of the Korea Contents Association, 12(2), 19-29.

[16]. Ma, F., Liu, F., & Liu, Z. (2010, July). Live virtual machine migration based on improved pre-copy approach. In Software Engineering and Service

Sciences (ICSESS), 2010 IEEE International Conference on (pp. 230-233). IEEE.

[17]. Pickartz, S., Gad, R., Lankes, S., Nagel, L., Süß, T., Brinkmann, A., & Krempel, S. (2014, August). Migration techniques in HPC environments.
In European Conference on Parallel Processing(pp. 486-497). Springer, Cham.

[18]. Rad, P., Muppidi, M., Agaian, S. S., & Jamshidi, M. (2015, September). Secure image processing inside cloud file sharing environment using lightweight

containers. In Imaging Systems and Techniques (IST), 2015 IEEE International Conference on (pp. 1-6). IEEE.

[19]. Rey, J., Cogorno, M., Nesmachnow, S., & Steffenel, L. A. (2015, March). Efficient prototyping of fault tolerant Map-Reduce applications with Docker-

Hadoop. In Cloud Engineering (IC2E), 2015 IEEE International Conference on (pp. 369-376). IEEE.

[20]. Seo, K. T., Hwang, H. S., Moon, I. Y., Kwon, O. Y., & Kim, B. J. (2014). Performance comparison analysis of linux container and virtual machine for

building cloud. Advanced Science and Technology Letters, 66, 105-111.

[21]. Sun, M., & Ren, W. (2013). Improvement on Dynamic Migration Technology of Virtual Machine Based on Xen [J]. International Form, IEEE, 2(10),
124-127.

[22]. Yoon, J., Park, C., & Song, U. S. (2013). Building the Educational Practice System based on Open Source Cloud Computing. Journal of Digital Contents

Society, 14(4), 505-511.

[23]. Zhang, R., Li, M., & Hildebrand, D. (2015, March). Finding the big data sweet spot: Towards automatically recommending configurations for hadoop

clusters on docker containers. In Cloud Engineering (IC2E), 2015 IEEE International Conference on (pp. 365-368). IEEE.

