

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 1, January 2019

Synthesis, Characterization and Antimicrobial Studies of Triazole - Thiazolidine Clubbed Heterocyclic Compounds

Nunna G Rameshbabu¹, Dr.Sheetal Gulati², Dr.H.S.Patel³

Research Scholar, Rabindranath Tagore University, Bhopal (M.P.), India¹

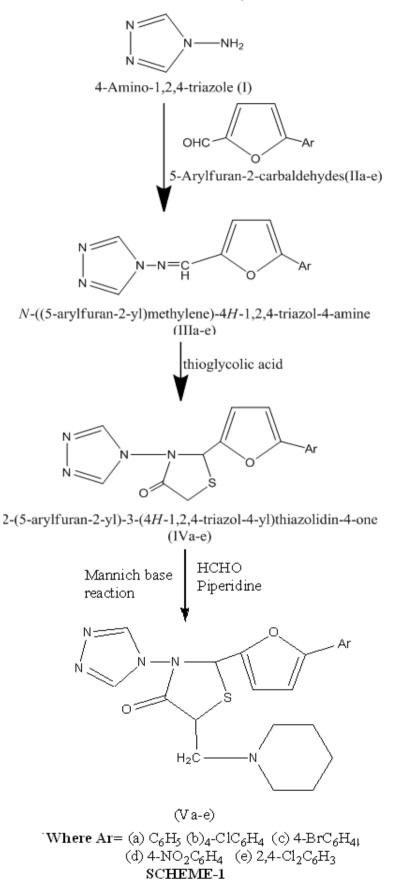
Professor, Department of Chemistry, Rabindranath Tagore University, Bhopal (M.P.), India²

Ex.Head and professor, Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar (Gujarat), India³

Abstract: 4-Amino-1,2,4-traizol (I) on condensation with 5-Phenyl substituted-2- furan carboxaldehyde (IIa-e) yield schiff bases namely N-[(5-Arylfuran-2-yl)methylen]-4H-1,2,4-triazol-4-amine (IIIa-e). Each of schiff base on cyclization with Thioglycolic acid afforded 2-(5-Arylfuran-2-yl)-3-(4H-1,2,4-triazol-4-yl) thiazolidin-4-one (IVa-e). Following this mannich base reaction of each IVa-e with Formaldehyde and Piperidine give 2-(5-Arylfuran-2-yl)-5- (piperidin-1-yl methyl)-3-(4H-1,2,4-triazol-4-yl)thiazolidin-4-one (Va-e). All the compounds of each series were characterized by spectral features and elemental contents. The compounds were also screened for their antimicrobial behavior.

Key words: Triazole, Schiff base, 4-Thiazolidine, Spectral Studies, Antibacterial and Antifungal Activities

I. INTRODUCTION


Recently considerable interest adopted to synthesis of 1,2,4-Triazole derivatives having prominent pharmaceutical activities¹⁻⁶. 4-Thiazolidinones and their derivatives are also reported industrially for their antitubercular, antibacterial, antifungal, anticonvulsant activities⁷⁻⁸. One of the heterocyclic compound i.e. Furfural is an agricultural waste material have various reaction properties for production of polymers, drugs, dyes etc.⁹⁻¹². The literature survey reveals that no such work reported in this direction, hence the present communication deals with the synthesis, characterization and antimicrobial activity of novel heterocyclic having 1,2,4-Traizol-4-thiazolidinone merged system. the work will be scanned in the following scheme.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 1, January 2019

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 1, January 2019

II. EXPERIMENTAL

Material and Methods

The IR spectra were taken in KBr on a Nicolet 400D spectrometer and ¹H NMR spectra were scanned in DMSO solvent on a Bruker spectrometer at 400 MHz. LC-MS of all samples taken on LC-MSD-Trap-SL_01046. 5-Arylfuran-2carbaldehydes (IIa-e) were prepared according to reported method¹³. All other reagents used were of A.R.grade.

Synthesis of N-[(5-Arylfuran-2-yl)methylene]-4H-1,2,4-triazol-4-amine (IIIa-e)

4-Amino-1,2,4-triazole (I) (0.01mole) and the 5-Arylfuran-2-carbaldehydes (IIa-e) mixed in ethanol (25 ml) and refluxed for 6 hrs. The solid mass was filtered, washed by dry ether and air dried. The details of all these compounds are furnished in Table -1.

					Elemental Analysis			
Comnd	Molecular formula	LC-MS	Yield %	M.P. *	%С	% H	%N	
Compd.	(Mol.wt.)	Data	r leia %	⁰ C	Found	Found	Found	
					(Calcd.)	(Calcd.)	(Calcd.)	
IIIa	$C_{13}H_{10}N_4O$	240	85	196-197	65.5	4.2	23.5	
ша	(238)	240	65	190-197	(65.54)	(4.23)	(23.52)	
IIIb	C13H9N4OCl	285	82	202-204	57.2	3.3	20.5	
IIIU	(272)	283	02	202-204	(57.26)	(3.33)	(20.55)	
IIIc	C13H9N4OBr	329	78	198-199	49.2	2.8	17.6	
me	(317)	529	78	196-199	(49.23)	(2.86)	(17.67)	
IIId	$C_{13}H_9N_5O_3$	297	75	204-206	55.1	3.1	24.7	
mu	(283)	297	15	204-200	(55.13)	(3.20)	(24.73)	
IIIe	$C_{13}H_8N_4OCl_2$	327	79	197-199	50.8	2.6	18.2	
me	(307)	521	/9	197-199	(50.84)	(2.63)	(18.24)	

Table:-1	Analy	vtical	Data	Of	Com	nounds	(IIIA-I	Œ
1 auto1	mai	yucar	Data	OI.	COIII	pounds	1117-1	-1

* Uncorrected

Synthesis of 2-(5-Arylfuran-2-yl)-3-(4H-1,2,4-triazol-4-yl)thiazolidin-4-one (IVa-e)

The compounds (IIIa-e) (0.01 mole) in Tetrahydrofuran (40 ml) and Thioglycolic acid (0.01 mole) with a 20 mg of anhydrous $ZnCl_2$ was heated an at 100°C for 10 hrs. The solvent was removed, the residue obtained was dissolved in toluene and passed through a column of silica gel using toluene: chloroform (7:3 v/v) mixture as an eluent. The eluate was concentrated and the product crystallized from isopropanol to get 4-Thiazolidinones (IVa-e). The details of these compounds are presented in table-2.

Table:-2 Analytical Data of Compounds (IVa-e)

Comnd					Elen	nental Ana	lysis					
Compd.	Molecular formula	LC-MS	Yield %	M.P. *	%С	%Н	%N	%S				
	(Mol.wt.)	Data	i leiu 70	⁰ C	Found	Found	Found	Found				
					(Calcd.)	(Calcd.)	(Calcd.)	(Calcd.)				
IVa	$C_{15}H_{12}N_4O_2S$	314	68	231-232	57.6	3.8	17.9	10.2				
Iva	(312)	514	08	231-232	(57.68)	(3.87)	(17.94)	(10.27)				
IVb	$C_{15}H_{11}N_4O_2SC1$	329	62	214-215	51.9	3.1	16.0	9.2				
100	(346)	329 02	529 02	02	02	02	02	214-213	(51.95)	(3.20)	(16.16)	(9.25)
IVc	$C_{15}H_{11}N_4O_2SBr$	406	63	226-228	46.0	2.8	14.3	8.1				
IVC	(391)	400	05	220-228	(46.05)	(2.83)	(14.32)	(8.20)				
IVd	$C_{15}H_{11}N_5O_4S$	371	68	219-220	50.4	3.0	19.5	8.9				
Ivu	(357)	5/1	08	219-220	(50.42)	(3.10)	(19.60)	(8.97)				
IVe	$C_{15}H_{10}N_4O_2SCl_2$	395	63	224-226	47.2	2.6	14.6	8.3				
ive	(381)	393	05	224-220	(47.26)	(2.64)	(14.70)	(8.41)				

*Uncorrected

Mannich base formation of 2-(5-Arylfuran-2-yl)-5-(piperidin-1-yl methyl)-3-(4H-1,2,4-triazol-4-yl) thiazolidin-4-one (Va-e)

The each of above 4-Thiazolidinone derivatives (IVa-e) was refluxed with piperidine and formaldehyde ($\approx 37\%$ w/w) solutions at stoichiometric ratio in 1,4-dioxane. The product was filtered, washed by ethanol and air-dried. The analytical data are given in Table-3.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 1, January 2019

Table:-3 Analytical Data of Compounds (Va-e)

olecular formula	LC-MS									
		Yield %	M.P. *	%С	%Н	%N	%S			
(Mol.wt.)	Data	Tielu 70	⁰ C	Found	Found	Found	Found			
				(Calcd.)	(Calcd.)	(Calcd.)	(Calcd.)			
$C_{21}H_{23}N_5O_2S$	422	70	120 121	61.5	5.6	16.9	7.8			
(409)	422	70	100-101	(61.59)	(5.66)	(17.10)	(7.83)			
$C_{21}H_{22}N_5O_2SC1$	159	65	106 109	56.8	4.9	15.7	7.2			
(443)	450	65	05	05	450 05	190-198	(56.81)	(4.99)	(15.78)	(7.22)
$C_{21}H_{22}N_5O_2SBr$	502	66	202 204	51.6	4.5	14.3	6.5			
(488)	303	00	205-204	(51.64)	(4.54)	(14.34)	(6.57)			
$C_{21}H_{22}N_6O_4S$	169	61	211 212	55.4	4.8	14.0	7.0			
(454)	408	04	211-212	(55.49)	(4.88)	(14.08)	(7.05)			
$C_{21}H_{21}N_5O_2SCl_2$	405	61	215 217	52.7	4.4	14.6	6.6			
(477)	495	01	215-217	(52.72)	(4.42)	(14.64)	(6.70)			
($\begin{array}{c} \hline C_{21}H_{23}N_5O_2S \\ (409) \\ \hline C_{21}H_{22}N_5O_2SC1 \\ (443) \\ \hline C_{21}H_{22}N_5O_2SBr \\ (488) \\ \hline C_{21}H_{22}N_6O_4S \\ (454) \\ \hline C_{21}H_{21}N_5O_2SC1_2 \\ \end{array}$	$\begin{array}{c c} \hline C_{21}H_{23}N_5O_2S \\ (409) \\ \hline C_{21}H_{22}N_5O_2SC1 \\ (443) \\ \hline C_{21}H_{22}N_5O_2SBr \\ (488) \\ \hline C_{21}H_{22}N_6O_4S \\ (454) \\ \hline C_{21}H_{21}N_5O_2SC1_2 \\ (477) \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

*Uncorrected

III. BIOLOGICAL SCREENING

Antibacterial activities

The antibacterial activities of all the compounds were studied against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (E.coli, and klebsiella promioe) at a concentration of $50\mu g/ML$ by agar cup plate method¹⁴. A methanol system was used as control in this method. Similar conditions using tetracycline as a control was used standard for comparison. The results in terms of percentage area of inhibition growth of bacteria are given in table- 4 to 6. The results show that compounds IIIe, IVe and Ve are more toxic for bacteria.

	Gram	+Ve	Gram -Ve		
Compounds	Staphylococcus aureus	Bacillus subtilis	E.coli	Klebsiella promioe	
IIIa	54	53	56	48	
IIIb	56	53	51	56	
IIIc	57	55	65	54	
IIId	63	58	59	53	
IIIe	68	67	77	61	

|--|

	Gram +	Ve	Gram -Ve		
Compounds	Staphylococcus aureus	Bacillus subtilis	E.coli	Klebsiella promioe	
IVa	56	54	58	51	
IVb	58	58	59	56	
IVc	60	59	67	54	
IVd	64	60	69	53	
IVe	71	72	77	66	

Table:-6 Antibacterial Activity of	Compounds (Va-e)
------------------------------------	------------------

	Gram -	+Ve	Gram -Ve		
Compounds	Staphylococcus aureus			Klebsiella promioe	
Va	58	55	59	53	
Vb	60	59	60	57	
Vc	61	61	68	55	
Vd	66	63	70	54	
Ve	73	74	78	68	

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 1, January 2019

Antifungal activities

The fungicidal activity of all the compounds was studied at 1000 ppm concentration in vitro. Plant pathogenic organisms used were Nigrospora Sp, Aspergillus niger, Botrydepladia thiobromine, and Rhizopus nigricum, Fusarium oxyporium. The antifungal activity of all the compounds (IIIa-e), (IVa-e) and (Va-e) were measured on each of these plant pathogenic strains on a potato dextrose agar (PDA) medium. The PDA media were poured into sterile petri plates having 100 mg sample, then the Petri dishes were kept inside for 5 days, 5 days culture (i.e. fungi) was inoculated into Petri plates. All the plates were kept aside per 5 days, the percentage inhibition for growth of fungi was calculated as follows

Percentage of inhibition = 100(X-Y) / X

Where, X =Area of colony in control plate

Y = Area of colony in test plate

The results of various compounds (IIIa-e), (IVa-e) and (Va-e) is shown in Tables-7,8 and 9.

Table:-7 Antifungal Activity of Compounds (IIIa-e)

		U		· /				
Zone of Inhibition of growth at 1000 ppm (%)								
CompoundsNigrospora Sp.Aspergillus NigerBotrydepladia ThiobromineRhizopus NigricumFusariu oxyporiu								
IIIa	56	50	61	55	67			
IIIb	66	67	63	62	68			
IIIc	67	66	69	61	66			
IIId	69	68	70	74	64			
IIIe	70	72	73	75	76			

Table:-8 Antifungal Activity of Compounds (IVa-e)

Zone of Inhibition of growth at 1000 ppm (%)								
Compounds	Nigrospora Sp.	Aspergillus Niger	Botrydepladia Thiobromine	Rhizopus Nigricum	Fusarium oxyporium			
IVa	59	53	62	57	69			
IVb	67	69	65	66	70			
IVc	70	67	71	64	69			
IVd	72	70	73	76	66			
IVe	72	74	75	77	79			

Table:-9 Antifungal Activity of Compounds(Va-e)

Zone of Inhibition of growth at 1000 ppm (%)								
Compounds	Nigrospora Sp.	Aspergillus Niger	Botrydepladia Thiobromine	Rhizopus Nigricum	Fusarium oxyporium			
Va	61	54	63	58	70			
Vb	68	70	67	67	72			
Vc	71	68	72	65	73			
Vd	74	71	74	78	67			
Ve	76	75	76	79	80			

IV. RESULTS AND DISCUSSION

The 4-Amino-1,2,4-triazole (I) on reaction with 5-Arylfuran-2-carbaldehydes (IIa-e), perform schiff bases N-[(5-Arylfuran-2-yl)methylene]-4H-1,2,4-triazol-4-amine (IIIa-e). The structures of (IIIa-e) were confirmed by elemental analysis and IR spectra bands at 1625-1650 (C=N), 3040-3080 cm⁻¹ (C-H, of Ar.),1185(C-O-C), 3385(-OH), 2850 cm⁻¹ (-OCH₃), 2950, 1370 cm⁻¹ (-CH₃), 1080(-Cl),1555, 1375(-NO₂) and the ¹H NMR signals 6.62-9.01 (9H, m, Ar - H), 8.41-8.80 (1H, s,-N=CH). The C, H, N analysis data of all compounds are agree with desired structure.

Similarly 2-(5-Arylfuran-2-yl)-3-(4H-1,2,4-triazol-4-yl)thiazolidin-4-one (IVa-e) shows IR spectra bands at 1680cm^{-1} (C=O of thiazolidinone ring), 720cm^{-1} (C-S-C of thiazolidinone ring), $3080-3090 \text{cm}^{-1}$ (CH₂ of thiazolidinone ring), $3040-3080 \text{cm}^{-1}$ (C-H, of Ar.), $3450-3560 \text{ cm}^{-1}$ (-OH), 1185(C-O-C), 3385(-OH), 2850 cm^{-1} (-OCH₃), 2950, 1370 cm^{-1} (-CH₃), 1080(-Cl),1555, $1375(\text{-NO}_2)$ and ¹H NMR signal 3.80-3.90 (2H, s,-CH₂ of the ring), 5.94-5.95 (1H, s,-CH), 6.32-8.44 (9H, m, Ar - H). The C, H, N, S analysis data of all compounds are shown in Table-2.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 1, January 2019

The Mannich base products were confirmed structurally by the elemental analysis, IR and NMR spectral features. The bands at 1680cm^{-1} (C=O of thiazolidinone ring), 720cm^{-1} (C-S-C of thiazolidinone ring), $3080-3090 \text{cm}^{-1}$ (CH of thiazolidinone ring), $3040-3080 \text{cm}^{-1}$ (C-H, of Ar.),2950, 1370 cm^{-1} (-CH₂), 1080(-Cl),1555, $1375(\text{-NO}_2)$. The ¹H NMR signal 3.80-3.90 (2H, s,-CH of the ring), 5.94-5.95 (1H, s,-CH), 6.32-8.44 (9H, m, Ar - H),2.54(4H,t,-CH₂),1.55-1.62(6H,m,CH₂). The C, H, N, S analysis data of all compounds are shown in Table-3.

The assessment of elemental analytical data discloses that the elemental contents are consistence with the expected structure shown in Scheme-1. The IR data also express for assignment of the predicted structure. The final structure of all compounds is confirmed by LC-MS. LC-MS data of all compounds are presented in Tables-1,2 and 3.

CONCLUSION

The reaction of 4-Amino-1,2,4-triazole (I) with 5-Arylfuran-2-carbaldehydes (IIa-e) yields Schiff bases of N-[(5-Arylfuran-2-yl)methylene]-4H-1,2,4-triazol-4-amine (IIIa-e), which on reaction with Thioglycolic acid yielded 2-(5-Arylfuran-2-yl)-3-(4H-1,2,4-triazol-4-yl)thiazolidin-4-one (IVa-e) and their Mannich base products (Va-e), their structured were proved by the elemental and spectral analysis. Newly prepared compounds were shows moderate to good antibacterial and antifungal activities.

ACKNOWLEDGEMENT

The authors are thankful to Department of Chemistry, Rabindranath Tagore University, Bhopal, (M.P.) for providing laboratory facilities.

REFERENCES

- [1]. Shalini Bajaj, Partha Pratim Roy and Jagadish Singh, (2017) Anti-Cancer Agents in Medicinal Chemistry, 17, 1869-1883
- [2]. H. Ibrahim Ugras, Ismet Basaran, Turgut Kilic, Umit Cakir, (2006) J. Heterocyclic Chem., 43, 1679.
- [3]. Ram U. Ambhure, Sunil R. Mirgane, Devidas U. Thombal, Rajesh B. Nawale, Rajendra P. Marathe and Rajendra P. Pawar, (2017) Mod. Org. Chem. Res., 2(1).
- [4]. Shah Alam Khan, Priyanka Ahuja and Asif Husain, (2017) J. Chinese chemical society,64(8),918.
- [5]. Purvesh J. Shah, Hasmukh S. Patel, Bhupendra P. Patel, (2013) Journal of Saudi Chemical Society, 17, 307.
- [6]. Y. Yi, X. Q. Wei, M. G. Xie, and Z. Y. Lu, (2004) Chinese Chemical Letters., 15(5), 525.
- [7]. Purvesh J. Shah, (2016) Heterocyclic Letters, 6 (1), 111.
- [8]. Laith Q. Al-Mawsawi, Raveendra Dayam, Laleh Taheri, Myriam Witvrouw, Zeger Debyser and Nouri Neamati, (2007) Bioorg. Med. Chem. Lett. 17(23), 6472.
- [9]. Wolfgang Hanefeld, Martin Schlitzer, Norbert Debski, Helmut Euler, (1996) J.Heterocycl.Chem., 33, 1143.
- [10]. S.Aslam, N.Asif, M. N.Khan, M.A.Khan, M.A.Munawar and M.Nasrullah, (2013) Asian J. of Chemistry, 25(14),7738.
- [11]. B. Shivarama Holla, B. Sooryanarayana Rao, K. Shridhara, P.M. Akberali, (2000) IL Farmaco, 55,338.
- [12]. Rudolf Kada, Dušan Ilavský, Jarmila Štetinová, Lubomír Zalibera and Jiří Paďour, (1994) Collect. Czech.. Chem. Commun., 59, 444.
- [13]. Christian S. Rondestvedt, Jr, (1960) Org.Reactions, 11, 190.
- [14]. Kodihalli C. Ravindra, Hosadu M. Vagdevi and Vijayvithal P. Vaidya., (2008) ARKIVOC 2008 (xi) 1-10.