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Abstract: A simple approach to estimate far-field intensity of index-guiding photonic crystal fibers (PCFs) with given 

geometrical parameters and wavelength of light is reported. The approach is based on a previously developed simple 

formulation of the effective cladding indices of the same type of fibers, which is valid in the entire single mode region 

of such fibers. This region is defined by a prescribed upper limit of a parameter, called relative air-hole diameter. The 

validity of the approach has already been tested by comparing the results obtained from it with those obtained by other 

available methods. Since far-field measurements are helpful in characterizing various optical fibers, the far field 

intensity distribution of the same PCFs is studied here by application of the same formulation. The approach should find 

wide attention, for its simplicity and easy use, by system designers and users of index-guiding PCFs.  

 

Keywords: Index-Guiding Photonic Crystal Fibers, Effective Cladding Index, Effective Index of Fundamental Guided 
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I. INTRODUCTION 

 

Photonic Crystal Fibers (PCFs), consisting of a pure silica core with a number of periodically spaced air-holes in the 

cladding region, have attracted great attentions from the last decade of the previous century [1], due to their various 

noticeable features. These include Endlessly Single Mode (ESM) operation [2], large or ultrasmall Mode Field 

Diameters (MFDs) and hence corresponding effective areas [3], ultraflattened dispersions [4, 5], high birefringences 

[6], large nonlinearities [5], supercontinuum generation [7], and so on. The PCFs provide a better optoelectronic tool in 

various modern fields, such as imaging, telecommunications, spectroscopy, metrology and other new emerging areas 

[8]. So, these fibers, in near future, are to become ultimately reliable transmission medium for the propagation of 

electromagnetic waves in suitable context.  

 

PCFs are normally fabricated from undoped silica only [1]. The waveguiding phenomenon in them is due to the air-

holes in a periodic or regular microstructure, running along the entire length of the fibers. These holes form the cladding 

region. When the central hole is missing, it creates a defect, which works as the high index core of the waveguide and 

the waveguide is said to be a solid-core or index guiding PCF. The core region, where light becomes trapped, can 

support a guided mode. Since the core index is greater than the effective or average cladding index, the principle of 

light guiding is analogous to Total Internal Reflection (TIR) in Conventional Step Index Fibers (CSIFs) [2]. But, 

because of the distribution of the lower index air-holes in the cladding region, this guiding mechanism is referred as 

Modified Total Internal Reflection (m-TIR) [3]. Also, in short wavelength range, a separate waveguiding mechanism, 

based on Photonic Band Gap (PBG) concept dominates. In this case, the periodically arranged air-holes in PCFs create 

PBGs, which can prevent fields to propagate in the cladding region for a fixed wavelength range.  

    To analyze theoretical descriptions of PCFs and predict their propagation characteristics, various numerical methods, 

like the Effective Index Method (EIM) [2], the multipole method (MPM) [9], the Finite-Element Method (FEM) [10], 

the Finite-Difference Method (FDM)[11], etc. have been developed and reported in the available literature. The main 

objective of all these methods is to calculate the effective cladding index of PCFs, accurately, to study those fibers, 

because of their complex structures and absence of any rotational symmetry in them [12]. This index, which is 

conventionally denoted by FSMn ,
 
is the index corresponding to the fundamental cladding mode of the PCF. This 

particular mode is better known as the Fundamental Space-Filling Mode (FSM) according to EIM over a wide range of 

wavelength and relevant geometrical parameters- the air-hole diameter and the hole-pitch. The FSMn  is the key factor, 

on which several important modal properties of PCFs, like numerical aperture, MFD, beam divergence, dispersion, 

bending loss, splice loss, etc. depend [2], ultimately. Almost all the numerical methods, are time consuming and costly. 

So, it is a practical as well as a pedagogical need for one, using and working with PCFs, to find any simple and general 

approach to obtain the effective cladding index FSMn  of PCFs with a tolerable accuracy and no need of heavy 

numerical computations. Using EIM, in which a solid-core PCF is treated like a Conventional Step Index Fiber (CSIF), 
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with its core and cladding indices replaced by those of silica and the FSMn  of the PCF, respectively, a simple and 

elegant formulation for the said index of the same type of PCFs is presented in [13]. The formulation is valid in the 

entire single mode region, defined by relative air-hole diameter or /d -values less than or equal to 0.45 [14].  Also, it 

enables one to obtain FSMn -s, easily and directly, for wide ranges of values of all the opto-geometrical parameters of 

PCFs. Furthermore, it is adaptable in terms of those parameters to fit to different physical situations. This is the real 

merit of the approach, which is not obvious for the previous EIMs [2, 12, 15, 16].  The said formulation has been used, 

effectively, for easy evaluation of various propagation characteristics of the PCF [13]. Since far-field measurements are 

also helpful in characterizing various optical fibers, it would have been much better and advantageous, if the far-field 

intensity distribution of solid-core PCFs could be estimated using the same approach as typical examples of field 

intensity calculations.  

In this paper, it is investigated whether the simple formulation for effective cladding index can be used to compute far-

field intensity distribution of the index-guiding PCF with an aim to present a simple and novel scheme. Conversely, if 

one knows the far field measurements of the same type of PCFs, or the far-field pattern is provided, it is possible to 

determine various important unknown parameters of those fibers [17], like the effective normalized frequency, radius of 

the core, air hole diameter, spacing between two consecutive air-holes, effective cladding index ( FSMn ), etc.  

 

II. ANALYSIS  

 

A.  Preview and Formulation  

    An all-silica PCF with triangular lattice of uniform air-holes of diameter d , running along the whole length of the 

fiber, as in Fig. 1, is taken into consideration. The holes are placed symmetrically around a central defect or an omitted 

air-hole, which is acting as the fiber core. It is made up of solid silica. The air-hole matrix has lattice-constant or hole-

pitch . This region is assumed to act as the cladding of the fiber. The structure remains same in the longitudinal 

direction. Since the core-index COn  is greater than the effective or average cladding index FSMn , the fiber can guide 

light by TIR as in case of a CSIF for longer wavelength values and by PBG mechanism for shorter wavelengths.   

 

 
Fig. 1  The index guiding photonic crystal fiber 

 

    The propagation constants   of the modes, which are guided through the core of the PCF, are given by the relation 

[2]: 

                                                                             FSMCOkn  
                                                                  

(1) 

where k  /2 ,  is the operating wavelength, FSM is the propagation constant of the FSM, the fundamental 

mode in the infinite photonic crystal cladding without any core or defect. So, FSM is the maximum value of 
 
in the 

cladding region of the concerned PCF. 

 

The effective cladding index or the refractive index of the FSM is given by 

                                                                           k
n FSM

FSM




                                                                         

(2) 

The procedure to find the index FSMn
 
of the PCF is stated in the Appendix section. 
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    Now, from the analogy with a CSIF, the effective cladding index FSMn  is used to find the effective normalized 

frequency or V -parameter of the PCF, 
effV , given as [2, 12, 15]: 

 

  2/122
2

FSMCO

eq

eff nnV 




                                                     

(3a) 

                                                                            

22

effeff WU 
                                                                           

(3b) 

 

where is the wavelength of the light and 
eq is the effective core radius, which is considered to be  /√3 [12, 15] 

with 

  2/122
2

effCO

eq

eff nnU 



                                                                 (4) 

 

and      2/122
2

FSMeff

eq

eff nnW 



                                                      (5) 

 

The 
effn

 
is the effective index of the fundamental guided mode and the two parameters 

effU  and 
effW are the effective 

normalized phase and attenuation constants, respectively, of the chosen PCF, similar to a CSIF. 
 

B.  Application to Far-field Pattern 

In the equivalent CSIF of the PCF, the mode field distribution is dependent only on the radial coordinate r, indicating 

that the far field pattern is cylindrically symmetric. The modal solution of the wave propagation through the PCF, 

which can be used to derive the expression for far field intensity distribution of light wave through it, is obtained from 

the effective index model, given by [17]       

                                                     
 

 0 eff

0 eff

1
ψ = J U R

J U
,  R < 1 

                                              
 

 0 eff

0 eff

1
= K W R

K W
,  R > 1                                                      (6) 

where R = r /
effa  and 

effa = / 3 , as stated earlier. 

 

If the near–field pattern is ψ(x, y) and u denotes the amplitude of far field pattern, it is given as in the following [18]:  

     
0ik lξ+mη

- -

u  = C ψ ξ,η e dξdη

∞ ∞

∞ ∞

                                                         (7) 

where l = x /r, m = y/r, l  and m  being the direction cosines of the observation direction, as depicted in Fig. 2 and 0
k  is 

free space wave number. 

 
Fig. 2   The point P is the observation point for far-field pattern at a distance r from the centre of the exit end  of the 

fiber, where direction of observation makes angle θ with the z-axis [18]  
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The fundamental mode distribution of a circular core optical fiber is cylindrically symmetric. Thus, the far-field pattern 

is also cylindrically symmetric and the field distribution along the x-axis ( m = 0 and l  = sinθ ) is given by 

    0ik lξ

- -

u = C ψ ξ,η e dξdη

∞ ∞

∞ ∞

                                                  (8) 

 

As ψ depends only on coordinate r, we can substitute  = r cos  and  = r sin  and Eq. (8) changes to 

      0ik rsinθcos

- -

u θ = C rdrψ r e d

∞ ∞

∞ ∞

   

   0   0

- -

= 2 C rdrψ r J k rsinθ d

∞ ∞

∞ ∞

     [since    
2π

iΩcos

0

0

1
J Ω = e d

2π

   ]                       (9) 

     

If 0k sinθ  in Eq. (9) is replaced by q , it can be written as 

     


  0
0

u q = 2πC Ψ r J qr rdr                                                    (10) 

 

Substituting Eq. (6) into Eq. (10), one can obtain 

 

 
 

 
 
 

 0 0

    
        

     
 

a 0 effeff eff

0 0
0 a

eff eff0 eff 0 eff

J UU r W r2πC
u θ = J J qr rdr + K J qr rdr

a aJ U K W
 

 
   

 
 

   
2

eff
0 0

 
 
  
 

1 0 eff

eff 0 eff 0
0 1

0 eff 0 eff

J U2πCa
= J U ζ J αζ ζdζ + K W ζ J αζ ζdζ

J U K W

                          (11) 

where  = effqa = effa
0k sinθ  and  =

eff

r

a
. 

For θ  = 0
0
, the far field amplitude is given by 

 

 
 

 
 
 

 
2

eff
0 00

 
  

  
 

1 0 eff

eff eff
0 1

0 eff 0 eff

J U2πCa
u = J U ζ ζdζ + K W ζ ζdζ

J U K W
                       (12) 

 

    Using the properties of Bessel function, Eq. (12) reduces to 

 

 
 

   
 

  
  

  

2
1 eff 0 eff 1 effeff

eff eff0 eff 0 eff

J U J U K W2πCa
u 0 = +

U WJ U K W

 

                                                
 

 2
1 effeff 2

eff2

eff eff0 eff

J U2πCa
= V

U WJ U
      [from the equation for fundamental guided mode in the  

equivalent CSIF and Eq. (3b) ] 

 

Thus, the relative far-field pattern is given by 

 
 

 

   
 
 

   

 1





 
1 1

0 eff

0 eff 0 0 eff 0

0 eff0 0

1 eff 2

eff2

eff eff

J U
J U ζ J αζ ζdζ + K W ζ J αζ ζdζ

K Wu θ
u θ = =

u 0 J U
V

U W

                   (13) 
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    From the standard integrals, the first integral in the denominator of the right hand side of Eq. (13) is equal to  

 

       eff 1 eff 0 0 eff 1

2 2

eff

U J U J α - αJ U J α

U - α
  for  effU  and 

   2 2

0 eff 1 effJ U + J U

2
 for   effU . 

 

Similarly, the second integral in the same side of that equation is equal to  
 

       eff 1 eff 0 0 eff 1

2 2

eff

W K W J α - αK W J α

W +α
. 

 

Substituting these into Eq. (23), the equation reduces to  
 

         
   

   
 
 1

 
 
  

2 2
0 effeff eff

0 12 2 2 2

eff 1 effeff eff

J UU W
u θ = J α - αJ α

U J UU - α W +α
,   for   effU  

                                            

 
     

2 2

eff eff 2 2

0 12

eff eff 1 eff

U W
= J α + J α

2V U J U  
,   for   effU                                  (14) 

     

Thus, the normalized far field intensity distribution by 
 

   
   

   
 
 1 { }

 
 
  

2 2
2 0 effeff eff 2

0 12 2 2 2

eff 1 effeff eff

J UU W
I θ = u θ = J α - αJ α

U J UU - α W +α
, for   effU  

                                 

 
    2{ }   

2 2

eff eff 2 2

0 12

eff eff 1 eff

U W
J α + J α

2V U J U
,   for   effU                   

             (15)
 

      

III.  RESULTS AND DISCUSSIONS  

 

A.  Opto-Geometrical Parameters and Procedure 

In order to obtain the FSMn -values of index guiding PCFs and hence the coefficients in the formulation for the same 

index, wide ranges of hole-pitch   and the normalized hole-diameter or relative air-hole size, /d  -values with 

variations in the wavelength of light , within the range of 0.2 to 2.0 µm are considered. The PCF has COn  =1.45 and 

the approach is briefly elucidated in Appendix. Since CSIFs show minimum attenuation loss at 1.55 µm and minimum 

total dispersion at around 1.3 µm, they are commonly used in this region of wavelengths and the wavelength range, 

taken here, is including both the minimum loss and minimum dispersion wavelengths. The region can be extended to 

longer wavelengths, easily, if required. Then with the FSMn –values, obtained from the coefficients for different /d   

and particular  , the corresponding effective normalized frequencies,
effV  of the same PCF are found, by using Eq. 

(3a), with core radius 
eq =  / 3 , as mentioned previously. From the obtained 

effV -values, the corresponding U –

values, or effU are computed, as roots, by solving the relevant transcendental equation in a CSIF [18]. Then, the 

corresponding effn and effW  are obtained from Eqs. (4) and (3b) or (5), accordingly, and the effU , effW and effV are 

substituted into Eq. (15). 

 

B. Estimation of far field intensity  

The normalized far field intensity  I θ -values are found for a wide range of values of normalized radiation angle 

(= effa
0k sinθ ), from 0 to 10, by using Eq. (15). This range of  -values is in consistence with [17]. Fig. 3 shows the 

plot of far field intensity of the PCF in Decibel (dB) unit as a function of ( ) for /d  values ranging from 0.2 to 0.4 
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in steps of 0.1 at two different wavelengths. In fig. 3(a),  I θ in dB is plotted for  = 1.55 μm and an arbitrary       

 =3 μm, whereas fig. 2(b) shows the variation in  I θ for  =1.3 μm and same . Both –values are   consistent 

with [17].  In Fig. 3, shifts are observed in the peaks of the first lobe of the far field intensity patterns. These result from 

the changes in 
effV  due to changes in the index FSMn  with change in wavelength   and relative air-hole size /d  . 

This indicates that the far field intensity of the PCF strongly depends on its /d  value.  

 

 
(a)      

 

 
(b) 

 

Fig.  3  Far-field intensity patterns of photonic crystal fibers with /d  = 0.2, 0.3, 0.4 and core radius 

3/ at wavelengths of  a) 1.55 μm and b) 1.3 μm 

 

From the physical point of view, if /d  of an index guiding PCF increases due to increase in d –value with   

unaltered, the effective cladding index decreases. Since the core-cladding refractive index difference increases, light 

becomes more confined into the core and the near-field and hence the far-field intensity becomes higher for a specific   

 . The reverse is also true if /d  is lowered. These are easily observed from both Figs. 3(a) and 3(b). Again, if   

decreases with both /d   and   remaining unchanged, more light remains within the core, resulting in an increase in 

the far-field intensity. The reverse is also true for an increase in  . These are also clearly evident from the above two 

figures. Thus, the far-field intensity patterns, obtained here, are physically correct and the simple formulation for 

effective cladding index of solid-core PCFs can be easily used in predicting far-field patterns of the same. 

 

 

0 1 2 3 4 5 6 7 8 9 10
-350

-300

-250

-200

-150

-100

-50

0



In
te

n
s
it

y
(d

B
)

d/=0.2

d/=0.4

0 1 2 3 4 5 6 7 8 9 10
-300

-250

-200

-150

-100

-50

0



In
te

n
s
it

y
(d

B
)

d/ = 0.2

d/ = 0.4



IARJSET 
  ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 
 

  
International Advanced Research Journal in Science, Engineering and Technology 

 
Vol. 6, Issue 5, May 2019 

 

Copyright to IARJSET                                                      DOI  10.17148/IARJSET.2019.6523                                                               164 

IV. CONCLUSION 

 

A simpler and easier analysis to estimate the far field intensity of index guiding PCFs in terms of their opto-geometrical 

and waveguide parameters is presented. This is based on an appropriate formulation for effective cladding index, which 

can be oriented in a versatile manner to fit to the desired physical situation. The approach should find wide and ready 

use by system analysts of PCFs and people, preferring simple approaches with less numerical computations in 

predicting propagation characteristics of solid-core PCFs. 

Appendix: Previous Formulation 

The normalized parameters v  and u for the infinite cladding region of the concerned PCF are as given in the following 

[1, 13]:  

                                                            
 

1/2
2 1COv k n                                                                   (A1) 

                                                         and    

2/1

2

2
2











k
nku CO


                                                  (A2) 

                                                              with    
2 2 2u w v    .                                                            (A3) 

To find the effective cladding index FSMn , a hexagonal unit cell with a basic air-hole at its centre is approximated to a 

circle in a regular photonic crystal structure [2, 19]. Then from relevant boundary conditions for the fields and their 

derivatives in terms of appropriate special functions, corresponding to a fixed v -value, found from Eq. (A1) for fixed 

  and  -values, the concerned u -value is obtained from the following equation [1]: 

 

         

         

1 1 0 0 1

0 1 1 1 1 0

n n n

n n n

wI a w J bu Y a u J a u Y bu

uI a w J bu Y a u J a u Y bu

  

    

                                   (A4) 

where 
2

n

d
a 


,   

1/2

3

2
b



 
   
 

. 

Using Eq. (A4), Russell provided a polynomial fit to u , valid only for /d  = 0.4 and COn
 
= 1.444 [1]. That is 

required to be simpler and applicable for all /d  values of practical interest in the entire single mode region of a PCF, 

for which, /d  ≤ 0.45. Then the roots of Eq. (A4) or the u -values are obtained for different /d   and  -values, 

taking COn =1.45, as in [12, 15] and the corresponding FSMn -s are obtained by replacing / k  
in Eq. (A2) with 

FSMn . Then the following equation is written [13]: 

                                                    

2 CBAnFSM                                                           (A5) 

where A , B  and C are three different optimization parameters, dependent on both the relative hole-diameter /d   

and the hole-pitch  .  The A , B and C -values are found by least square fitting of FSMn  in terms of  to Eq. 

(A5) for a fixed /d   with variations in  .  Then, different A , B  and C -values are  simulated for various 

/d   in the endlessly single mode region of the PCF, which result in the empirical relations for A , B and C in Eq. 

(A5), in terms of /d  , as given below [13]: 
2

0 1 2

d d
A A A A

   
     

    
                                                         (A6) 

2

0 1 2

d d
B B B B

   
     

                                                                

(A7) 

      

2

0 1 2

d d
C C C C

   
     

    
                                                           (A8) 
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where iA , iB  and iC  ( i = 0, 1 and 2) are the optimization parameters for A , B and C respectively, which are 

same as those in Eq. (A5).  

 

Computing these A , B and C from Eq. (A6-A8), FSMn -s can be directly obtained for any /d   and λ-values in 

the endlessly single mode region of PCFs using Eq. (A5). Then various 
iA , 

iB  and 
iC ( i = 0, 1 and 2) are simulated 

with different  -values and the following empirical relations are written in terms of  [13]: 

           

2

0 1 2i i i iA A A A                                                               (A9) 

           

2

0 1 2i i i iB B B B                                                               (A10) 

                    and                  
2

0 1 2i i i iC C C C                                                                    (A11) 

where for each i , in the values of ijA , ijB and ijC , j  has values 0,1 and 2. 

Table I: Font Sizes for Papers Values of Coefficients for FSMn  with COn =1.45 

 i=0 i=1 i=2 

j=0 j=1 j=2 j=0 j=1 j=2 j=0 j=1 j=2 

 

Aij 

 

1.448716 

 

 

0.000626 

 

 

-

0.000055 

 

0.019655 

 

 

-

0.006738 

 

0.000518 

 

0.016806 

 

-

0.003600 

 

0.000210 

 

Bij 

 

-

0.001844 

 

-

0.000385 

 

0.000066 

 

-

0.058269 

 

0.021157 

 

-

0.001671 

 

-

0.122305 

 

0.030405 

 

-

0.001969 

 

Cij  

 

0.001908 

 

 

-

0.000295 

 

0.000006 

 

 

0.016393 

 

 

-

0.007367 

 

0.000636 

 

 

-

0.021490 

 

0.004703 

 

 

-

0.000319 
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