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Abstract: A Hopfield neural network transfers information with feed-back connections. These are similar to magnetic 

materials where stability of the bit storage plays a crucial role in exchanging strength through the spin(+1 or -1) 

orientations. More stability helps in storage of multilevel data such as image data. A Complex Valued Hopfield Neural 

Network (CHNN) with a multi-stable Hopfield model has low stability in two-dimensional phase. Rotor Hopfield 

Neural Network (RHNN) added to CHNN increases its stability in multidimensional phase. Hyperbolic Hopfield 

Neural Network (HHNN) is an extension of CHNN by Clifford algebra. In our proposing system, we are extending the 

theories of stability between HHNN and RHNN by investigating this process through the projection rule. HHNN is 

independent of the resolution factor and there is a gradual increase in the noise tolerance. Thus, it is comparatively 

more stable than RHNN. 
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I. INTRODUCTION 

 

Artificial neural networks is imitation of biological brain. The main motive of neural networks is to recognize patterns 

in your data. An artificial neural network stores large amount of data and is capable of detecting complex non-linear 

relationships implicitly. Neural Networks play an important role in image processing with high efficiency, pattern 

recognition and signal processing [1]. 

 

Hopfield network is a form of neural network with feedback connections. It is a uni-layer network that consists of fully 

connected recurrent neurons. It is generally used to auto-associate and optimize the given task [2]. Hopfield network 

behaves as a content-addressable memory system with binary threshold nodes
2
 (0, -1, +1). These are similar to 

magnetic materials where stability of the bit storage plays a vital role in exchanging their strength through spin 

orientations (+1 or -1) [29]. Thus, Stability has the potency to determine the appropriateness of neural network to 

accomplish a given task [23-26]. 

 

II. EXTENSION OF  HOPFIELD MODELS FOR STABILITY 

 

Recently, different models of Hopfield neural networks have been introduced. Hopfield neural networks were extended 

using Clifford algebra. These extensions directly deal with complex numbers and quaternion's of higher algebra. The 

complex and quaternion fields are 2-D and 4-D Clifford algebra respectively [10]. 
 

The neural network which directly deals with the complex numbers are framed as Complex Valued Hopfield Neural 

Networks (CHNN). Rotor Hopfield Neural Network (RHNN) is an added extension to Complex Valued Hopfield 

Neural Network (CHNN) in multi-dimensional phase. It is a multistate Hopfield model with excellent storage capacity 

and noise tolerance but also employ 2D vector form. The storage capacity of a RHNN is twice as that of a CHNN but it 

also requires double the connection weight parameters as of CHNN. CHNNs have less noise robustness compared to 

that of RHNN because they store rotated patterns where as RHNNs do not store rotated training patterns [11]. 

However, conventional learning methods for RHNNs such as Hebbian and gradient descent learning rules present 

difficulties regarding different parameters [16]. For example, storage capacity, noise robustness etc. 
 

In this paper, we consider a projection rule for RHNN and demonstrate that the noise robustness of RHNN is better 

than that of CHNN. The proposed algorithm improves the noise robustness of RHNN [11]. As the number of training 

patterns increases, the noise robustness of CHNN rapidly deteriorates [18]. On the other hand, the noise robustness of 

RHNN reduces less rapidly for the same case. RHNN can easily recover from rotated patterns, unlike CHNN. We show 

this ability by computer simulation. 
 

Hyperbolic Hopfield Neural Network (HHNN) is another extension of Complex Valued Hopfield Neural Network 

(CHNN) by Clifford algebra (higher order algebraic calculations) [12]. Hyperbolic algebra is a 2-D Clifford algebra 

and also act in higher dimensional phase. We also have analyzed hyperbolic backpropagation learning algorithms [25].  
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Several multistate models of Hopfield using hyperbolic algebra have been proposed. Hyperbolic algebra is does not act 

as a field but a ring since it has zero divisors. It is a commutative algebra. HHNNs and CHNNs need the equal number 

of connection weights. An HHNN with a directional activation function has been proposed to improve the noise 

tolerance [13].  

 

Observations of computer simulation using the projection rule that we consider are as follows: 

1) HHNN’s noise tolerance, is independent of the resolution factor. It decreases rapidly as the number of 

training patterns increase [12]. 

2) CHNN’s noise tolerance, rapidly decreases as the resolution factor increase and gradually decreases as the number 

of training patterns increase.    

  

CHNNs are impractical for high-resolution like image data while HHNNs are practical only for a small number of 

training patterns. 

The projection rule is done in a single learning algorithm that realizes fast training. Self-loops are usually removed in 

this projection rule. Meanwhile in the case of HHNNs, they can’t be removed and so they can cause many pseudo 

memories and deteriorate noise tolerance. Behavior of the real parts of self-loops are investigated by computer 

simulation. The number of self-loops increase with the number of training patterns. Thus, the noise tolerance of 

HHNNs deteriorates as the number of training there is an increase in patterns [12]. 

 

The condition for stability of HHNNs is extended. The extended stability condition is applied to the projection rule and 

its noise tolerance is improved. We show this improvement in noise tolerance in the form of computer simulations.  

 

III. STABILITY OF ROTOR HOPFIELD NEURAL NETWORKS WITH PROJECTION RULE 

 

We will prove a theorem for the projection rule of RHNNs for its stability. Let’s prove by using projection rule. 

The r
th

 training vector is denoted as follows: 

   xr =  

x1
r

x2
r

⋮
xN

r

                           (1) 

Wherexn
r is a vector. We define the training matrix as given below: 

   X =  x1 , x2 , x3 … . . xR              (2) 

Where R is the number of training vectors, and is less than 2N (number of considerations). X is a 2N×Rmatrix. The 

training vectors {xr} are necessary to be linearly independent. Then, Lemma 1 is said to be true. 

Lemma 1: XTXis positive definite. 

Proof:  XTXis obviously a symmetric matrix of order R. Let us consider a vector m =  m1 , m2, m3 …… , mR 
T  

Then, we obtain the following inequality equation: 

          T  XTX =  Xm T Xm                                             (3) 

                       =  Xm 2  ≥ 0                                              (4) 

Therefore, XTXis nonnegative. Suppose Xm = 0Then, the following equality is true: 

     mr x
r = 0R

r=1                                                  (5) 

Sincem ≠ 0 the training vectors {xr} are linear dependent. This contradicts our assumption of the Training vectors. 

From Lemma 1, there exists   XTX −1We can consider the connectionweight matrix W=X  XTX −1XTThen, W X =X 

hold s for all r from Therefore, all the training vectors are fixed. This training algorithm(learning) is referred to as our 

Projection rule. Let’s consider the use of the projection rule. In CHNNs, the diagonal components of W are often 

replaced with 0. This substitution is not allowed in RHNNs [19]. In CHNNs, the training vectors are fixed even after 

the diagonal components disappear. But, in the case of RHNNs, the training vectors are not fixed without the diagonal 

components when K (resolution factor
4
) is large. We prove the following significant theorem on the stability of RHNNs 

with the projection rule in synchronous mode. 

 

Theorem 1: An RHNN with a projection rule W=X  XTX −1XTand synchronous mode converges to a fixedpoint. 

Proof: From Lemma 1, S= XT Xis positive definite. For an eigenvector v corresponding to an eigen value λ, S−1v =
λ−1v 

Therefore, v is an eigenvector of S−1corresponding to λ−1 

This implies that S−1is positive definite. 

We consider any vector m =   m1, m2 , m3 …… , mR 
T ≠ 0 

mTWm = mTX  XTX −1XTm                              (6) 

              =  XTm TS−1 XTm ≥ 0                          (7) 
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Since S−1is positive definite, the last inequality is true. Therefore,is nonnegative definite. Theorem 1 is not true in the 

case of CHNNs, and this represents oneof the great advantages of RHNNs. 

 

 
 

Fig.1.Although CHNNs may be trapped at a cycle, RHNNs with projection rule will not be. The patterns in cycles are 

not the training patterns. To recall a training pattern, both CHNNs and RHNNs must converge to a fixed point. 

 

CHNNs and RHNNs are often applied to associative memories to store multilevel data (image data). These are 

necessary to remove noise from training patterns with noise. The training patterns are fixed points. Patterns in cycles 

are not training patterns. Convergence to a fixed point is effective for correct recall (Fig. 1). 

 

IV. STABILITY OF HYPERBOLIC HOPFIELD NEURAL NETWORKS USING PROJECTION RULE 

 

The projection rule is done in a single learning algorithm that realizes fast training. The storage capacity is N − 1. Let  

xz =  x1
z ,  x2

z ,  x3
z … .  xN

z  Tbe the r
th

 training pattern, R is the number of training patterns, then the training matrix is 

given as 

X =  x1x2x3 …… . . xR (8) 

Projection rule for CHNNs is described as 

B = P  PTP −1PT  (9) 

 
 

Fig. 2. The direction of weighted sum input is differing from that of the training pattern, if the self-loops were removed. 

If only the real part of self-loop is removed, the direction is kept. However, the HHNN does not converge to affixed 

point and can be trapped at a cycle. Based on Theorems, the real part of self-loop is removed. 

 

V. RESULTS 

 

a)Rhnn And Chnn: 

 

                          
  K=4 P=10                                                                                            K=4  P=20        
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K=4  P=30 

 

 
K=8  P=10      

          

 
K=8  P=20   

         

 
K=8  P=30 
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K=16  P=10 

 

 
K=16  P=20 

 

 
K=16  P=30 

 

 
Fig.3.Computer simulations results different data with impulse noise. 

 

X-Success Rate   Y- Noise Level 

 

From B P = P, we have B x 
r
= x 

r
Let bijbe the (i, j )component Of B. From B

T
 = B is a real number, and biiis true 

forbij =
b ij
 Then, its connection weight matrix is given by i ≠ j(14)FromW = B − diag B, WT = Wand diagW = O. 

For the s
th

 training pattern, fromB xs = xs the sum of inputs weights to neuron I is 

 

 Ii
s  =  bij  xj

s     −    bii  xi
s

N

j=1
                                           (10) 

=  1 − bii xi
s                                                     (11) 

If  bii, then we have  f Ii
s = xi

s  Therefore, if all the diagonalcomponents of Aare smaller than 1, all the training patterns 

are fixpoints’ define the matrix 

C = P  PTP −1PT                                   (12) 

 

The projection rule of the HHNNs is given W = C from W P = P, we find that all the training patterns are fixed points. 

The projection rule for the HHNNs satisfies condition. The self-loops, which are the diagonal components of W, that 
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cannot be removed. If the self-loops are removed, the training patterns will not be fixed points.  HHNN with the self-

loops does not converge to a fixed point. However, the practically it does happen and did converge to a fixed point. 

Noise tolerance rapidly decreased whenever number of training patterns increased. Thus, we can say that stability of 

HHNN is better compared to that of CHNN. 

 

b)Hhnn and Chnn: 

 

 
K=4  P=10 

 

 
K=4  P=30 

 

 
K=4  P=50 

 

 
K=8  P=10 
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K=8  P=30 

 

 
K=8  P=50 

 

 
K=16  P=10 

 

 
K=16  P=30 

 



IARJSET 
  ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 
 

  
International Advanced Research Journal in Science, Engineering and Technology 

 
Vol. 6, Issue 7, July 2019 

 

Copyright to IARJSET                                                      DOI  10.17148/IARJSET.2019.6707                                                                 47 

 
K=16  P=50 

 

Fig.4.Computer simulations results using various different data with impulse noise. 

The noise tolerance of CHNN is gradually decreases as K increases and gradually decreases as P increases. 

Proposed HHNN is independent of K and decreases as P increases. 

 

X-Success Rate Y-Noise Level 

 

 
So far, computer simulations on CHNNs, RHNNs, proposed HHNNs have been conducted using randomly generated 

data and impulsive noise to investigate their noise tolerance.  

 

Our assessed information through these computer simulations: 

1)    After randomly selecting training pattern, noise has been added. Random state is selected from S at the rate r, each    

neuron state is replaced with the selected one. 

2)    The trial is regarded as success if original pattern is completely recovered, else, it is regarded as failure. 

 

Different K and P values are considered. K (resolution factor) = [4,8,16], P (noise tolerance) = [10, 30, 50]  

For each (K, P) pair, we generated 100 training pattern sets - The noise rate r varied from 0.0 to 0.8 in steps of 0.05. For 

each r, we conducted 100 trials. A total of 10,000 trials were conducted for each triplet(K, P, r).  

For the range of values of P varied from 10 to 50 in steps of 10, we conducted 100 trials and the behavioral changes in 

all the extensions of neural networks are noted. As P increased, the noise tolerance of proposed HHNNs decreased 

gradually. When we compare it to RHNN its noise is almost similar to that of CHNN. While, noise tolerance was 

almost independent of K. But in case of CHNNs its noise tolerance is rapidly deteriorated as K increased, and gradually 

decreased as P increased.  

 

For P = 10, the CHNNs underperformed HHNNs noise tolerance. As P increased, the noise tolerance of CHNNs 

rapidly deteriorated. For P = 50, the noise tolerance of proposed HHNNs deteriorated faster than that of CHNNs. There 

is a gradual difference between CHNN and RHNN than CHNN and RHNN. 

 

The following conclusions are derived from the simulation results: 

1) The noise tolerance of CHNNs gradually deteriorated as P increased, and rapidly as K increased. 

2) The noise tolerance of proposed HHNNs was independent of K, and gradually deteriorated as P increased. 

3) Connection weights parameters used in HHNN are half of that of RHNN. 

 

CHNNs showed low noise tolerance for large K as a result of forming pseudo memories. This is because of the inherent 

property Rotational variance of CHNN which forms pseudo memories for large K values.  On the other hand, HHNNs 

settle the rotational in-variance. However, when the proposed projection rule is employed, it is not possible to remove 

the self-loops. All neuron states are stabilized by the positive real parts of self-loops. The computer simulations showed 

that the real parts of self-loops became larger as P increased. Thus, when P was small, the proposed HHNNs had better 

noise tolerance than the RHNNs, but when P was large, proposed HHNNs underperformed the others and reduced the 

real parts of self-loops and thus improved noise tolerance even in cases where P was large [12]. 
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VI.   CONCLUSION  

 

An RHNN is an extension of a CHNN that improves storage capacity and noise tolerance. If the connection weight 

matrix is nonnegative, then the CHNN in synchronous mode converges to a fixed point. We extended this theorem to 

RHNNs. We also investigated the stability of RHNNs in the case of the projection rule. We proved that RHNNs 

converges to a fixed point. This is the one of the biggest advantages of RHNNs. In real time, for data such as image 

data, K (resolution factor) tends to be large. Since the noise tolerance of CHNNs is low under such conditions, they are 

not practical for the storage of high-resolution data [15]. Whereas in the case of HHNNs, noise tolerance is robust to K 

[6]. The noise tolerance is majorly affected by self-loops. Hence, we consider a proposed HHNNs, we modified the 

self-loops based on extended stability conditions to improve noise tolerance under large P conditions. Thus, the noise 

tolerance is improved with proposed HHNNs. But when we compared both RHNNs and HHNNs through CHNNs, 

HHNNs show best results than RHNNs as taking resolution factors and noise tolerances into consideration. 

Quaternionic Hopfield Neural Networks (QHNNs) is a twin-multistate activation function. QHNNs require half 

connection parameters as that of number of  CHNNs[14]. We plan to extend the stability concepts in QHNNs using 

projection rule. 
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