

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 11, November 2019

Binary Contra Regular [^]Generalized Continuous Functions in Binary Topological Spaces

Ms. Savithiri.D¹, Dr. Janaki.C²

Research Scholar, Department of Mathematics, L.R.G Govt Arts College (W), Tirupur, India¹

Assistant Professor, Department of Mathematics, L.R.G. Govt Arts College (W), Tirupur, India²

Abstract: In this article, we introduce and investigate the notion of binary contra regular $^$ generalized continuous (shortly μ_b contra r^g-continuous), binary almost contra regular $^$ generalized continuous (shortly μ_b almost contra r^g-continuous) functions and discussed their relationships with other binary contra continuous functions and obtained some of their characteristics.

Keywords: Binary contra r^g continuous, binary almost contra r^g continuous, T[^]_{1/2} space

MSC: 54A05, 54C05, 54A99

I. INTRODUCTION

Based on a study, the concept of binary topology from X to Y is introduced by the authors [4]. Further the concepts of binary closure, binary interior and binary continuity also introduced by them.

If A is a subset of X and B is a subset of Y, then the topological structures on X and Y provide a little information about the ordered pair (A, B). In 2011, S. Jothi S.N. [4] introduced a single structure which carries the subsets of X as well as the subsets of Y for studying the information about the ordered pair (A, B) of subsets of X and Y. Such a structure is called a binary structure from X to Y. Mathematically a binary structure from X to Y is defined as a set of ordered pairs (A, B) where $A \subseteq X$ and $B \subseteq Y$. Already binary regular ^ generalized closed sets and binary regular ^ generalized continuous functions are introduced by [8] in general topological spaces.

In continuation, in the present paper we have defined and explored several properties of binary contra regular ^ generalized and almost contra regular ^ generalized continuous functions. Also some of its properties have been discussed.

II. PRELIMINARIES

Definition 2.3[2]: Let X and Y be any two non empty sets. A binary generalized topology from X to Y is a binary structure $\mu_b \subseteq P(X) \times P(Y)$ that satisfies the following axioms:

(i) $(\phi,\phi) \in \mu_b$ and $(X,Y) \in \mu_b$.

(ii) $(A_1 \cap A_2, B_1 \cap B_2) \in \mu_b$ whenever (A_1, B_1) and $(A_2, B_2) \in \mu_b$

(iii) If $\{(A_{\alpha}, B_{\alpha}) : \alpha \in \Delta\}$ is a family of members of μ_b , then $(\cup A_{\alpha}, \bigcup B_{\alpha}) \in \mu_b$.

If μ_b is a binary generalized topology from X to Y then the triplet (X, Y, μ_b) is called a binary generalized topological space and the members of μ_b are called binary generalized open sets.

The compliment of an element of $P(X) \times P(Y)$ is defined component wise. That is the binary compliment of (A, B) is (X - A, Y - B). The elements of X×Y are called the binary points of the binary topological space (X, Y, μ_b) . If X = Y then μ_b is called a binary topology on X in which case we write (X, μ_b) as a binary space.

Definition 2.2[4]: Let (X, Y, μ_b) be a binary generalized topological space and $A \subseteq X$, $B \subseteq Y$. Then (A, B) is called binary generalized closed if (X - A, Y - B) is binary generalized open.

Definition 2.3[4]: Let (A,B), $(C,D) \in P(X) \times P(Y)$. Then

(i) (A, B) \subseteq (C, D) if A \subseteq C and B \subseteq D. (ii) (A, B) \cup (C, D) =(A \cup C, B \cup D).

(ii) (A, B) \cap (C, D) =(A \cap C, B \cap D).

Definition 2.4[4]: Let (X, Y, μ_b) be a binary generalized topological space and $(x, y) \in X \times Y$, then a subset (A, B) of (X, Y) is called a binary generalized neighbourhood of (x, y) if there exists a binary generalized open set (U, V) such that $(x, y) \in (U, V) \subseteq (A, B)$.

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 11, November 2019

Definition 2.5[4]: Let (X, Y, μ_b) be a binary generalized topological space and $A \subseteq X, B \subseteq Y$. Let $(A, B)^{1^*} = \bigcap \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary generalized closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha}) \}$ and $(A, B)^{2^*} = \bigcap \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary generalized closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha}) \}$. Then the pair $((A, B)^{1^*}, (A, B)^{2^*})$ is called the binary generalized closure of (A, B) and denoted by $\mu_b Cl(A, B)$.

Remark 2.6[2]: The binary generalized closure $\mu_b Cl(A,B)$ is binary generalized closed such that $(A,B) \subseteq \mu_b Cl(A,B)$.

Definition 2.7[2]: Let (X, Y, μ_b) be a binary generalized topological space and $A \subseteq X, B \subseteq Y$. Let $(A, B)^{1^\circ} = \bigcup \{A_\alpha : (A_\alpha, B_\alpha) \text{ is binary generalized open and } (A_\alpha, B_\alpha) \subseteq (A, B) \}$ and $(A, B)^{2^\circ} = \bigcup \{B_\alpha : (A_\alpha, B_\alpha) \text{ is binary generalized open and } (A, B)^{2^\circ} = \bigcup \{B_\alpha : (A_\alpha, B_\alpha) \text{ is binary generalized open and } (A, B)^{2^\circ} = \bigcup \{B_\alpha : (A_\alpha, B_\alpha) \text{ is binary generalized open and } (A, B)^{2^\circ} \text{ is called the binary generalized interior of } (A, B) \text{ and denoted by } \mu_b \text{Int}(A, B).$

Remark 2.8[2]: The binary generalized interior μ_b Int(A,B) is binary generalized open such that μ_b Int(A,B) \subseteq (A,B).

Definition 2.9[2]: A subset (A,B) of topological space (X, Y, μ_b) is called a binary regular open set (shortly μ_b regular open set) if (μ_b Int(μ_b cl A,B)) \subseteq (A,B).

Definition 2.10[7]:Let (X,Y,μ_b) be a binary topological space. Let $(A,B) \subseteq (X,Y)$. Then (A,B) is called a binary regular $^$ generalized closed set (shortly $\mu_b r^g$ -closed set) if there exists a binary regular open set (U,V) such that $\mu_b gcl(A,B) \subseteq (U,V)$ whenever $(A,B) \subseteq (U,V)$.

Definition 2.11[8]:Let (Z,η) be a topological space and (X,Y, μ_b) be a binary topological space. Then the map f: $Z \rightarrow X \times Y$ is called a **binary regular^generalized continuous (shortly r^g-continuous) function** if $f^{-1}(A,B)$ is r^g closed in (Z,η) for every binary closed set (A,B) in (X,Y, μ_b) .

Let us introduce some definitions to binary topology which already exists in general topology.

Definition 2.12[7]: Let (Z,η) be a topological space and (X,Y,μ_b) be a binary topological space. Then the map $f:Z \to X \times Y$ is called

(i) a **binary g-continuous** function if $f^{-1}(A,B)$ is gclosed in (Z,η) for every binary closed set (A,B) in (X, Y, μ_b) .

(ii) a **binary g*-continuous** function if $f^{1}(A,B)$ is g*closed in (Z,η) for every binary closed set (A,B) in (X, Y, μ_b) .

(iii) a **binary rwg-continuous** function if $f^{1}(A,B)$ is rwg closed in (Z,η) for every binary closed set (A,B) in (X, Y, μ_b) . (iv) a **binary rgw-continuous** function if $f^{1}(A,B)$ is rgw closed in (Z,η) for every binary closed set (A,B) in (X, Y, μ_b) .

Definition 2.13[3]: Let (Z,η) be a topological space and (X,Y,μ_b) be a binary topological space. Then the map $f:Z \to X \times Y$ is called a binary RC continuous map if $f^1(A,B)$ is regular closed in (Z,η) for each binary open set (A,B) in (X, Y, μ_b) .

Definition 2.14[3]: A function $f: \mathbb{Z} \to X \times Y$ is called a **binary regular set connected** if $f^{-1}(A,B)$ is clopen in (\mathbb{Z},η) for each binary regular open set (A,B) in (X, Y, μ_b) .

Definition 2.15[6]: A topological space (Z,η) is said to be (i) a T[^]_{1/2} space[6] if every r[^]g closed set is gclosed.

(ii) locally indiscrete[3] if every open subset of \boldsymbol{Z} is closed.

III. BINARY CONTRA REGULAR ^ GENERALIZED CONTINUOUS FUNCTIONS

Definition 3.1: A function f: $Z \rightarrow X \times Y$ is said to be a binary contra continuous (shortly μ_b contra continuous) function if the inverse image of every binary open set (U,V) of $X \times Y$ is closed set in (Z, η).

Definition 3.2: A function f: $Z \rightarrow X \times Y$ is said to be a binary contra regular^generalized continuous (**shortly** μ_b **contra r^g continuous**) function if the inverse image of every binary open set (U,V) of $X \times Y$ is r^g closed set in (Z, η). **Example 3.3:** Let $Z = \{a,b,c,d\}, X = \{x_1,x_2\}, Y = \{y_1,y_2\}, \eta = \{\phi, Z,\{a\},\{c\},\{a,c\},\{c,d\}, \{a,c,d\}\}, \mu_b = \{(\phi,\phi),(\{x_1\},\{y_2\}),(\{x_2\},\{y_1\}), (X,Y)\}$. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\{x_1\},\{y_2\}) = f(d), f(b) = (\{x_2\},\{y_1\}) = f(c)$. Then f

 ${}^{1}{(\phi,\phi)} = \phi, f^{1}({x_1}, {y_2}) = {a,d}, f^{1}({x_2}, {y_1}) = {b,c}, f^{1}(X,Y) = Z$. Here f is μ_b contra r^g continuous function. **Definition 3.4[3]:** A binary space (X, Y, μ_b) is **binary locally indiscrete** if every binary open subset of (X, Y, μ_b) is binary closed.

Definition 3.5: A binary topological space (X, Y, μ_b) is **binary r^g locally indiscrete** if every binary r^g open subset of (X, Y, μ_b) is binary closed.

Theorem 3.6: Let $f: (Z,\eta) \rightarrow (X,Y,\mu_b)$ be a function.

(i) If f is binary r^g continuous and (Z,η) is r^g locally indiscrete then f is binary contra r^g continuous.

(ii) If f is binary r^g continuous and Z is $T^{1/2}$ space then f is binary contra r^g continuous.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 11, November 2019

Proof: (i) Suppose f is μ_b r^dg continuous. Let Z be locally indiscrete and let V be a μ_b open set in (X,Y, μ_b). Since f is μ_b r^dg continuous, f¹(V) is r^dg open in (Z, η). By hypothesis, f¹(V) is closed in Z. Every closed set is r^dg closed hence f is μ_b contra r^dg continuous.

(ii) Let f be μ_b r^og continuous and Z is T^{1/2} space. Let V be a μ_b open set in (X,Y, μ_b). Since f is μ_b r^og continuous, f¹(V) is r^og closed in (Z, η). Since Z is T^{1/2} space, f¹(V) is gclosed in (Z, η). Every gclosed set is r^og closed hence f is binary contra r^og continuous.

Theorem 3.7: Every binary RC continuous function is binary contra r[^]g continuous function. **Proof:** Straight forward.

Remark 3.8: The converse of the above theorem need not be true as shown in the following example.

Example 3.9: Let $Z = \{a,b,c,d\}$, $X = \{x_1,x_2\}$, $Y = \{y_1,y_2\}$, $\eta = \{\phi, Z,\{a\},\{c\},\{a,c\},\{c,d\}, \{a,c,d\}\}$, $\mu_b = \{(\phi,\phi),(\phi,\{y_2\}),(X,Y)\}$. Clearly η is a topology on Z and μ_b is a topology from X to Y. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\phi,\phi)$, $f(b) = (\phi,\{y_2\})$, $f(c) = (\{x_2\},\phi)$. Clearly f is a binary contra r^g continuous function but it is not a binary RC continuous function since $f^{-1}((\phi,\{y_2\}) = \{b\}$ is r^g closed but it is not regular closed set in (Z,η) .

Theorem 3.10: Every binary contra continuous function is binary contra r[^]g continuous function. **Proof:** Straight forward from the definition.

Remark 3.11: The converse of the above theorem need not be true as shown in the following example.

Example 3.12: Let $Z = \{a,b,c\}$, $X = \{x_1,x_2\}$, $Y = \{y_1,y_2\}$, $\eta = \{\phi, Z, \{a\}, \{b\}, \{a,b\}\}$, $\mu_b = \{(\phi,\phi), (\{x_2\}, \{y_2\}), (X,Y)\}$. Clearly η is a topology on Z and μ_b is a topology from X to Y. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\phi, \{y_2\})$, $f(b) = (\{x_2\}, \phi)$ and $f(c) = (\phi, \phi)$. Then f is binary contra r^g continuous but it is not binary contra continuous function since $f^{-1}(\{x_2\}, \{y_2\}) = \{a,b\}$ is r^g closed but it is not closed in (Z, η) .

Theorem 3.13: Every binary contra g continuous, binary contra g* continuous function is binary contra r^g continuous function.

Proof: Obvious from the definition.

Remark 3.14: The converse of the above theorem need not be true as shown in the following example.

Example 3.15: Let $Z = \{a,b,c\}$, $X = \{x_1,x_2\}$, $Y = \{y_1,y_2\}$, $\eta = \{\phi, Z, \{b\}, \{a,b\}\}$, $\mu_b = \{(\phi,\phi), (\{x_2\}, \{y_1\}), (X,Y)\}$. Clearly η is a topology on Z and μ_b is a topology from X to Y. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\{x_2\}, \{y_1\})$, $f(b) = f(c) = (\phi, \phi)$. Then f is a binary contra r^g continuous function but it is not a binary contra g continuous and g^* continuous function since the inverse image of $(\{x_2\}, \{y_1\}) = \{a\}$ is r^g closed but is not g closed and g*closed in (Z, η) .

Theorem 3.16: Every binary contra r^g continuous function is rwg continuous, binary contra rgw continuous function.. **Proof:** Obvious from the definition.

Remark 3.17: The converse of the above theorem need not be true as shown in the following example.

Example 3.18: Let $Z = \{a,b,c,d\}, X = \{x_1,x_2\}, Y = \{y_1,y_2\}, \eta = \{\phi, Z,\{a\},\{c\},\{a,c\},\{c,d\}, \{a,c,d\}\}, \mu_b = \{(\phi,\phi),(\{x_2\},\{y_2\}),(X,Y)\}$. Clearly η is a topology on Z and μ_b is a topology from X to Y. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\phi,\phi),(\{x_2\},\{y_2\}) = f(b) f(c) = (X,Y)$. Then f is binary contra r^g continuous function but it is not both binary contra rwg and rgw continuous functions since $f^{-1}(\{x_2\},\{y_2\}) = \{b\}$ is r^g closed and it is not both rwg closed and rgw closed in (Z,η) .

Theorem 3.19: Suppose R^GO(Z, η) is closed under arbitrary unions. If f: Z \rightarrow X×Y is binary contra r^g continuous function and X×Y is regular, then f is binary r^g continuous.

Proof: Let x be an arbitrary point of (Z,η) and (A,B) be a binary open set of X×Y containing f(x). The regularity of Z implies that there exists an open set (U,V) containing f(x) in X×Y such that $\mu_b gcl(U,V) \subseteq (A,B)$. Since f is binary contra r^g continuous then there exists $Q \in R^{GO}(Z,\eta)$ such that $f(Q) \subseteq \mu_b gcl(U,V) \subseteq (A,B)$. Thus f is binary r^g continuous function.

IV. BINARY ALMOST CONTRA REGULAR ^ GENERALIZED CONTINUOUS FUNCTIONS

Definition 4.1: A function f: $Z \rightarrow X \times Y$ is said to be a binary almost contra continuous (shortly μ_b almost contra continuous) function if the inverse image of every binary regular open set (U,V) of $X \times Y$ is closed set in (Z, η).

Definition 4.2: A function f: $Z \rightarrow X \times Y$ is said to be a binary almost contra regular^generalized continuous (**shortly** μ_b **almost contra r^g continuous**) function if the inverse image of every binary regular open set (U,V) of X×Y is r^g closed set in (Z, η).

Theorem 4.3: Every binary almost contra continuous function is binary almost contra r[^]g continuous function. **Proof:** Straight forward from the definition.

Remark 4.4: The converse of the above theorem need not be true as shown in the following example.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 11, November 2019

Example 4.5: Let $Z = \{a,b,c,d\}$, $X = \{x_1,x_2\}$, $Y = \{y_1,y_2\}$, $\eta = \{\phi, Z, \{a\}, \{c\}, \{a,c\}, \{c,d\}, \{a,c,d\}\}$, $\mu_b = \{(\phi,\phi), (\{x_1\},\phi), (\{x_1\}, \{y_2\}), (\{x_2\}, \{y_1\}), (X, \{y_1\}), (X, Y)\}$. Clearly η is a topology on Z and μ_b is a topology from X to Y. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\phi, \{y_1\}), (\{x_1\}, \{y_2\}) = f(b)$ $f(c) = (\{x_2\}, \phi)$ $f(d) = (\{x_1\}, \phi)$. Then f is binary almost contra r^g continuous function but it is not binary almost contra continuous function.

Theorem 4.6: Every binary contra r[^]g continuous function is binary almost contra r[^]g continuous function.

Proof: Obvious from the fact that every binary regular open set is binary open.

Remark 4.7: The converse of the above theorem need not be true as seen in the following example.

Example 4.8: Let $Z = \{a,b,c\}$ $\eta = \{Z,\phi,\{b\},\{a,b\}\}$ $X = \{a,b\}$, $Y = \{1,2\}$ $\mu_b = \{(\phi,\phi), (\phi,\{1\}), (\{a\},\{1\}), (\{b\},\{1\}), (X,\{1\}), (X,Y)\}$. Clearly μ_b is a binary topology from X to Y. Define f: $Z \to X \times Y$ as $f(a) = f(c) = (\phi,\phi)$ $f(b) = (\{a\},\{1\})$. Then f is binary almost contra r^g continuous function but it is not a binary contra r^g continuous function.

Theorem 4.9: Every binary regular set connected function is binary almost contra r[^]g continuous function. **Proof:** Straight forward.

Remark 4.10: The converse of the above theorem need not be true as seen in the following example.

Example 4.11: Let $Z = \{a,b,c\}$, $\eta = \{Z,(\phi,\{a\}, (\{b\},\{a,b\})\}$, $X = \{x_1,x_2\}$, $Y = \{y_1,y_2\}$, $\mu_b = \{(\phi,\phi), (\{x_1\},\{y_1\}), (\{x_2\},\{y_2\})(X,Y)\}$. Clearly η is a topology on Z and μ_b is a topology from X to Y. Define f: $Z \rightarrow X \times Y$ as $f(a) = (\{x_1\},\phi),(\{x_1\},Y) = f(b)$ f(c) = $(\{x_2\},\{y_2\})$. Then f is binary almost contra r^g continuous function but it is not binary regular set connected since $f^{-1}(\{x_2\},\{y_2\}) = \{c\}$ is r^g closed in (Z,η) but it is not clopen.

Theorem 4.12: Suppose r^g closed sets of Z is closed under arbitrary unions. The following statements are equivalent for a given function $f: Z \to X \times Y$.

(i) f is binary almost contra r^g continuous function.

(ii) For every binary regular closed subset (A,B) of $X \times Y$, $f^{-1}(A,B) \in \mathbb{R}^{\circ}GO(Z,\eta)$.

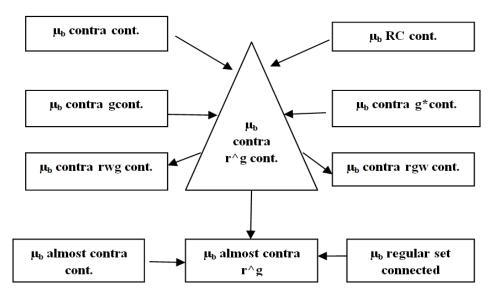
(iii) For each $x \in Z$ and each binary closed set (A,B) in X×Y containing f(x), there exists an r^g open set U in Z containing x such that $f(U) \subseteq (A,B)$.

Proof: (i) \Longrightarrow (ii): Let (A,B) be a binary regular closed set. Then (X-A,Y-B) is a binary regular open set. Since f is almost contra continuous function, the inverse image of (X-A,Y-B) $\in R^{A}GC(Z,\eta)$. Hence $f^{-1}(A,B) \in R^{A}GO(Z,\eta)$. (ii) \Longrightarrow (i) and (iii) \Longrightarrow (i) are obvious.

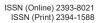
(ii) \longrightarrow (iii): Let (A,B) be a binary regular closed set in X×Y containing f(x). $f^{-1}(A,B) \in R^{A}GO(Z,\eta)$ and $x \in f^{-1}(A,B)$. Taking U = $f^{-1}(A,B)$, f(U) \subset (A,B).

(iii) \Longrightarrow (ii): Let (A,B) \in RC(X×Y) and x \in f¹(A,B). From (iii), there exists an r^g open set U in Z containing x such that U \subset f¹(A,B). We have f¹(A,B) = \cup {U: x \in f¹(A,B)}. Thus f¹(A,B) is r^g open.

The above discussions are implicated in the following diagram.



In the diagram, $A \longrightarrow B$ represents A implies B but not conversely.



IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 6, Issue 11, November 2019

V. CONCLUSION

In this paper, using binary r^g closed sets, we have defined binary r^g continuous functions and analyzed some of its properties. Furthermore binary r^g continuous functions has been compared with some of other binary continuous functions. This concept can be extended in future.

REFERENCES

- [1]. Engelking. General Topology, Polish Scientific Publishers, Warszawa (1977).
- [2]. Jamal M. Mustafa, On Binary Generalized Topological Spaces, General Letters in Mathematics Vol.2, No. 3, June 2017, pp. 111-116.
- [3]. Janaki.C, Jeyanthi.V, A new class of contra continuous functions in topological spaces, International Refereed Journal of Engineering and Science, Vol. 2, Issue 7(July 2013), pp. 45 51.
- [4]. S. Nithyanantha Jothi & P. Thangavelu, Topology between 2 sets, Journal of Mathematical Sciences & Comp Applications, 1(3)(2011), 95-107
- [5]. S. Nithyanantha Jothi, Binary Semi open sets in Binary topological Spaces, International journal of Mathematical Archieve 7(9), 2016,73-76.
- [6]. Savithiri .D and Janaki. C, On Regular ^ Generalized closed sets in topological spaces 4(4), 2013, 162-169.
- [7]. Savithiri .D and Janaki. C, Binary Regular/Generalized closed sets in Binary topological spaces, International Journal of Scientific Research in, Science, Engineering and Technology, May-June 2019, Vol6(3), 279-282.
- [8]. Savithiri .D and Janaki. C, Binary Regular/Generalized closed sets in binary topological spaces, International Journal of Mathematics Trends and Technology, Vol 65, Issue 7, No.1, 1-6.