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I.     INTRODUCTION 

 

Ever since Molodtsov [7] introduced the notion of a soft set over a universal set as a parametrized family of subsets of a 

given universal set to model some types of uncertainties, mathematicians started imposing and studying algebraic, 

topological and topologically algebraic structures on them. 

In fact, a soft (normal) subgroup over a group is a parametrized family of (normal) subgroups of the given group, a soft 

(left ideal, right ideal, ideal) subring over a ring is a parametrized family of (left ideals, right ideals, ideals) subrings of 

the given ring etc.. In general any (algebraic, topological or topologically algebraic) soft sub object over a given 

(algebraic, topological or topologically algebraic) object may be defined as a parametric family of the corresponding 

(algebraic, topological or topologically algebraic) sub objects of the given (algebraic, topological or topologically 

algebraic) object. Thus mathematically speaking, a soft subobject over a crisp object 𝑈 is a pair (𝐹, 𝐸) where 𝐸 is a 

parameter set and 𝐹: 𝐸 → 𝑃(𝑈) is such that for each 𝑒 in 𝐸, 𝐹(𝑒) is a crisp subobject of 𝑈. 

In fact, the notion of soft object over a crisp object 𝑈 is a beautiful natural generalization of the crisp sub object, as the 

collection of all non-empty soft sub objects over 𝑈 with a given parameter set over a given crisp object is in one-one 

correspondence with the collection of all crisp sub objects of the given object if the parameter set is a singleton set. Notice 

that the empty soft object is the unique one with the parameter set, the empty set as, for a soft object (𝐹, 𝐸) over an object 

𝑈, 𝐸 is empty implies 𝐹 is empty. 

 

Murthy-Gouthami[12] introduced the notions of generalized soft group, generalized soft (normal) subgroup, generalized 

soft quotient group etc., generalizing the corresponding notions of a soft group over a group and showed that several of 

the crisp group theoretic results naturally extended to these new objects too. 

 

Further, in another paper Murthy-Gouthami[13] introduced the notions of generalized soft homomorphism of generalized 

soft groups, generalized soft (inverse) image of generalized soft (normal) subgroup under generalized soft 

homomorphism, generalized soft kernel of a generalized soft homomorphism etc., generalizing the corresponding 

existing notions for a soft group over a group and showed that several of the crisp theoretic results naturally extend to 

these new objects too. 

Now our aim in this paper is to generalize the existing correspondence and isomorphism theorems in the crisp setup, to 

those of generalized soft group. 

 

II.       PRELIMINARIES 

 

(A) Groups: (a) (i) For any map 𝑓: 𝑋 → 𝑌, for all 𝑎, 𝑏 in 𝑋, 𝑎 ∼ 𝑏 iff 𝑓𝑎 = 𝑓𝑏 is an equivalence relation on 𝑋 with 

eqivalence classes (𝑓−1𝑓𝑎)𝑎∈𝑋, also called kernel classes. (ii) 𝐺 be a group. For any group homomorphism 𝜙: 𝐺 → 𝐻, 

𝐾𝑒𝑟𝜙 ⊆ 𝐶 and 𝐶 is a subgroup of 𝐺 imply 𝜙−1𝜙𝐶 = 𝐶 (iii) For any subgroup 𝐴 of 𝐺, for any normal subgroup 𝐻 of 𝐺, 

for any subgroup 𝐵 of 𝐻 such that 𝐵 is a normal subgroup of 𝐴 we have 𝜙:
𝐴

𝐵
→

𝐺

𝐻
 defined by 𝜙(𝐵𝑎) = 𝐻𝑎 for all 𝑎 ∈ 𝐵 

is a group homomorphism such that 𝜙(
𝐴

𝐵
) = 

𝐴𝐻

𝐻
. If 𝐵 = 𝐻 then 

𝐴

𝐵
 = 

𝐴

𝐻
 is a subgroup of 

𝐺

𝐻
. Further, if 𝐴 is normal in 𝐺 then 

𝐴

𝐻
 is normal in 

𝐺

𝐻
. (iv) for any pair of subgroups 𝐻, 𝐾 of 𝐺 such that 𝐻 is a normal subgroup of 𝐾 and 𝐴 is a normal 
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subgroup of 𝐺, we have 
𝐻𝐴

𝐴
 is a normal subgroup of 

𝐾𝐴

𝐴
 (v) for any subgroup 𝐾 of 𝐺 and for any pair of normal subgroups 

𝐻, 𝐴 of 𝐾, we have 𝐻𝐴 is a normal subgroup of 𝐾𝐴. (vi) for any (normal) subgroup 𝐻 of 𝐺 and for any normal subgroup 

𝐾 of 𝐺 such that 𝐾 ⊆ 𝐻, we have 
𝐻

𝐾
 is a (normal) subgroup of 

𝐺

𝐾
. 

(b) Generalized first isomorphism theorem: For any group homomorphism 𝜙: 𝐺 → 𝐻 & for any subgroup 𝐴 of 𝐺 we have 

(1) 𝜙|𝐴: 𝐴 → 𝜙𝐴 is an epimorphism (2) 𝐾𝑒𝑟(𝜙|𝐴) = 𝐾𝑒𝑟(𝜙) ∩ 𝐴 (3) 
𝐴

𝐾𝑒𝑟(𝜙|𝐴)
 which is isomorphic to (𝜙|𝐴)(𝐴)= 𝜙𝐴. 

(c) Generalized second isomorphism theorem: For any group 𝐺, and for any subgroup 𝐴 of 𝐺, for any normal subgroup 

𝐵 of 𝐺, 𝐹 = 𝐹𝐴𝐵: 
𝐴𝐵

𝐵
→

𝐴

𝐴∩𝐵
 defined by 𝑎𝑏𝐵 = 𝑎𝐵 → 𝑎(𝐴 ∩ 𝐵) = 𝐹𝐴𝐵𝑎 or 𝐹𝑎 defines an isomorphism such that for all 𝐶 

is a subgroup of 𝐴, 𝐹|
𝐶𝐵

𝐵
:

𝐶𝐵

𝐵
→

𝐶(𝐴∩𝐵)

𝐴∩𝐵
 is a monomorphism such that 𝐹(

𝐶𝐵

𝐵
) = 

𝐶(𝐴∩𝐵)

𝐴∩𝐵
 or 𝐹|

𝐶𝐵

𝐵
:

𝐶𝐵

𝐵
→

𝐶(𝐴∩𝐵)

𝐴∩𝐵
 is an 

isomorphism. 

(d) Generalized third isomorphism theorem: For any group 𝐺 and for any normal subgroups 𝐴, 𝐵 of 𝐺 such that 𝐴 is a 

subgroup 𝐵 and 𝐶 is a subgroup of 𝐺, 
𝐶𝐵

𝐵
 is isomorphic to 

𝐶𝐴

𝐴
 
𝐵

𝐴
𝐵

𝐴

. 

 

(B) Soft Sets In what follows we recall the following basic definitions from the Soft Set Theory which are used in the 

main results: (e) [7] Let 𝑈 be a universal set, 𝑃(𝑈) be the power set of 𝑈 and 𝐸 be a set of parameters. A pair (𝐹, 𝐸) is 

called a soft set over 𝑈 iff 𝐹: 𝐸 → 𝑃(𝑈) is a mapping defined by for each 𝑒 ∈ 𝐸, 𝐹(𝑒) is a subset of 𝑈. In other words, a 

soft set over 𝑈 is a parametrized family of subsets of 𝑈. 

Notice that a collective presentation of all the notions, soft sets and gs-sets raised some serious notational conflicts and 

to fix the same Murthy-Maheswari[6] deviated from the above notation for a soft set and adapted the following notation 

for convenience as follows: 

 

Let 𝑈 be a universal set. A typical  soft set over 𝑈 is an ordered pair (San Serif) 𝑆 = (𝜎𝑆, 𝑆), where 𝑆 is a set of parameters, 

called the underlying parameter set for 𝑆, 𝑃(𝑈) is the power set of 𝑈 and 𝜎𝑆: 𝑆 → 𝑃(𝑈) is a map, called the underlying 

set valued map for 𝑆. Some times 𝜎𝑆 is also called the soft structure on 𝑆. 

 

(f) [10] The empty soft set over 𝑈 is a soft set with the empty parameter set, denoted by Φ = (𝜎𝜙, 𝜙). Clearly, it is unique. 

(g) [9] A soft set 𝑆 over 𝑈 is said to be a whole soft set, denoted by 𝑈𝑆, iff 𝜎𝑆𝑠 = 𝑈 for all 𝑠 ∈ 𝑆. (h) [10] A soft set 𝑆 over 

𝑈 is said to be a null soft set, denoted by Φ𝑆, iff 𝜎𝑆𝑠 = 𝜙, the empty set, for all 𝑠 ∈ 𝑆. Notice that Φ𝜙 = Φ, the empty soft 

(sub) set. 

For any pair of soft sets 𝐴, 𝐵 over 𝑈, 

(i) [8] 𝐴 is a soft subset of 𝐵, denoted by 𝐴 ⊆ 𝐵, iff (i) 𝐴 ⊆ 𝐵 (ii) 𝜎𝐴𝑎 ⊆ 𝜎𝐵𝑎 for all 𝑎 ∈ 𝐴. The set of all soft subsets of 

𝐵 is denoted by 𝒮𝑈(𝐵) 

(j) The following are easy to see: 

(i) Always the empty soft set Φ is a soft subset of every soft set 𝐴 

(ii) 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 iff 𝐴 = 𝐵 and 𝜎𝐴𝑎 = 𝜎𝐵𝑎 for all 𝑎 ∈ 𝐴. 

(k) For any family of soft subsets (𝐴𝑖)𝑖∈𝐼  of 𝑆, 

(i) the soft union of (𝐴𝑖)𝑖∈𝐼, denoted by ∪𝑖∈𝐼 𝐴𝑖, is defined by the soft set 𝐴, where (𝑖) 𝐴 = ∪𝑖∈𝐼 𝐴𝑖 (𝑖𝑖) 𝜎𝐴𝑎 = ∪𝑖∈𝐼𝑎
𝜎𝐴𝑖

𝑎, 

where 𝐼𝑎 = {𝑖 ∈ 𝐼/𝑎 ∈ 𝐴𝑖}, for all 𝑎 ∈ 𝐴 

(ii) the soft intersection of (𝐴𝑖)𝑖∈𝐼, denoted by ∩𝑖∈𝐼 𝐴𝑖, is defined by the soft set 𝐴, where (i) 𝐴 = ∩𝑖∈𝐼 𝐴𝑖 (ii) 𝜎𝐴𝑎 = 

∩𝑖∈𝐼 𝜎𝐴𝑖
𝑎 for all 𝑎 ∈ 𝐴. 

Notice that ∩𝑖∈𝐼 𝐴𝑖 can become empty soft set. 

 

(C) Soft Groups, Soft Group homomorphisms: In this section we first recall the existing notions of a soft group, soft 

(normal) subgroup, soft group homomorphism etc.. According to Aktas-Cagman[2], (1) if (𝐹, 𝐴) is a soft set over a group 

𝐺, then (𝐹, 𝐴) is said to be a soft group over 𝐺 if and only if 𝐹(𝑥) ≤ 𝐺 for all 𝑥 ∈ 𝐴. (2) Let (𝐹, 𝐴) and (𝐻, 𝐾) be two 

soft groups over 𝐺. Then (𝐻, 𝐾) is a soft subgroup of (𝐹, 𝐴), written as (𝐻, 𝐾) ≤ (𝐹, 𝐴), if 𝐾 ⊆ 𝐴, 𝐻(𝑥) ≤ 𝐹(𝑥) for all 

𝑥 ∈ 𝐾. (3) Let (𝐹, 𝐴) be a soft group over 𝐺 and (𝐻, 𝐵) be a soft subgroup of (𝐹, 𝐴). Then we say that (𝐻, 𝐵) is a normal 

soft subgroup of (𝐹, 𝐴), written (𝐻, 𝐵) ⊴ (𝐹, 𝐴), if 𝐻(𝑥) is a normal subgroup of 𝐹(𝑥) i.e., 𝐻(𝑥) ⊴ 𝐹(𝑥), for all 𝑥 ∈ 𝐵. 

(4) According to Sezgin-Atagun[1], if 𝐺 is a group and (𝐹, 𝐴) is a non-null soft set over 𝐺, then (𝐹, 𝐴) is called a 

normalistic soft group over 𝐺 if 𝐹(𝑥) is a normal subgroup of 𝐺 for all 𝑥 ∈ 𝑆𝑢𝑝𝑝(𝐹, 𝐴). 

(5) According to [2], let (𝐹, 𝐴) and (𝐺, 𝐵) be two groups over 𝐺 and 𝐾 respectively, and let 𝑓: 𝐺 → 𝐾 and 𝑔: 𝐴 → 𝐵 be 

two functions. Then we say that (𝑓, 𝑔) is a soft homomorphism, and that (𝐹, 𝐴) is soft homomorphic to (𝐻, 𝐵). The latter 

is written as (𝐹, 𝐴) ∼ (𝐻, 𝐵), if the following are satisfied: 𝑓 is a homomorphism from 𝐺 onto 𝐾, 𝑔 is a mapping from 𝐴 

onto 𝐵, and 𝑓(𝐹(𝑥)) = 𝐻(𝑔(𝑥)) for all 𝑥 ∈ 𝐴. In this definition, if 𝑓 is an isomorphism from 𝐺 to 𝐾 and 𝑔 is a one-to-
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one mapping from 𝐴 onto 𝐵. then we say that (𝑓, 𝑔) is a soft isomorphism and that (𝐹, 𝐴) is soft isomorphic to (𝐺, 𝐵). 

The latter is denoted by (𝐹, 𝐴) ⋍ (𝐻, 𝐵). 

 

(D) Generalized soft sets 

In this section we recall the notions of generalized soft set or gs-set or s-set for short, gs-subset or s-subset, gs-union or 

s-union, gs-intersection or s-intersection etcetera from Murthy-Maheswari[5] and (increasing, decreasing, preserving) s-

map, (inverse) image of s-subset under an s-map from Murthy-Gouthami[13]. 

From now on, the script letters 𝒜, ℬ, 𝒞, 𝒟 etc. denote s-sets and/or their subsets and any such script letter 𝒬 stands for 

the triplet (𝑄, 𝑄, 𝑃(𝑈𝑄)). A power algebra is boolean algebra of the form 𝑃(𝑈𝐴) for some set 𝑈𝐴. 

(l) A generalized soft set or an s-set in short, is any triplet 𝒜, where 𝐴 is the underlying set of parameters for 𝑈𝐴 or 

parameter set in short, 𝑃(𝑈𝐴) is the complete lattice of all subsets of 𝑈𝐴 parametrized under 𝐴 with parameters from 𝐴 

and 𝐴: 𝐴 → 𝑃(𝑈𝐴) is the underlying parametrizing map for 𝑈𝐴. 

(m) The s-set 𝒜, where 𝐴 = ◻, the empty set with no elements, 

𝑃(𝑈𝐴) = {◻}, and 𝐴 = ◻, the empty map, is called the  empty s-set and is denoted by ◻. 

(n) An s-set 𝒜 is said to be a whole s-set iff the parametrizing map 𝐴: 𝐴 → 𝑃(𝑈𝐴) is defined by 𝐴𝑎 = 𝑈𝐴 for all 𝑎 ∈ 𝐴. 

(o) An s-set 𝒜 is said to be a null s-set iff the parametrizing map 𝐴: 𝐴 → 𝑃(𝑈𝐴) is defined by 𝐴𝑎 = ◻, the empty set, for 

all 𝑎 ∈ 𝐴. 

For any pair of s-sets 𝒜 and ℬ, 

𝒜 is an s-subset of ℬ, denoted by 𝒜 ⊆ ℬ, iff (i) 𝐴 ⊆ 𝐵 (ii) 𝑈𝐴 ⊆ 𝑈𝐵 or equivalently 𝑃(𝑈𝐴) is a complete ideal of 𝑃(𝑈𝐵) 

and (iii) 𝐴𝑎 ⊆ 𝐵𝑎 for all 𝑎 ∈ 𝐴. 

The set of all s-subsets of the s-set ℬ is denoted by 𝒮(ℬ). 

An s-subset 𝒮 is degenerated iff 𝑆 = ◻ and 𝑆 = ◻, the empty map. Clearly, the empty s-set is degenerated. Note that 

degenerated s-subset is not unique. 

(p) The following are easy to see: 

(i) Always the empty s-set ◻ is an s-subset of every s-set 𝒜. 

(ii) 𝒜 = ℬ iff 𝒜 ⊆ ℬ and ℬ ⊆ 𝒜 iff 𝐴 = 𝐵, 𝑈𝐴 = 𝑈𝐵 and 𝐴 = 𝐵. 

For any family of s-subsets (𝒜𝑖)𝑖∈𝐼 of ℬ, 

(q) the s-union of (𝒜𝑖)𝑖∈𝐼 , denoted by ∪𝑖∈𝐼 𝒜𝑖 , is defined by the s-set 𝒜, where 

(i) 𝐴 = ∪𝑖∈𝐼 𝐴𝑖 is the usual set union of the collection (𝐴𝑖)𝑖∈𝐼  of subsets of 𝐵. 

(ii) 𝑃(𝑈𝐴) = ∨𝑖∈𝐼 𝑃(𝑈𝐴𝑖
) = 𝑃(∪𝑖∈𝐼 𝑈𝐴𝑖

), where ∨𝑖∈𝐼 𝑃(𝑈𝐴𝑖
) is the complete ideal generated by ∪𝑖∈𝐼 𝑃(𝑈𝐴𝑖

) in 𝑃(𝑈𝐴) which 

is the same as 𝑃(∪𝑖∈𝐼 𝑈𝐴𝑖
) 

(iii) 𝐴: 𝐴 → 𝑃(𝑈𝐴) is defined by 𝐴𝑎 = ∪𝑖∈𝐼𝑎
𝐴𝑖𝑎, where 𝐼𝑎 = {𝑖 ∈ 𝐼|𝑎 ∈ 𝐴𝑖} 

(r) the s-intersection of (𝒜𝑖)𝑖∈𝐼, denoted by ∩𝑖∈𝐼 (𝒜𝑖), is defined by the s-set 𝒜, where 

(i) 𝐴=∩𝑖∈𝐼 𝐴𝑖 is the usual set intersection of the collection (𝐴𝑖)𝑖∈𝐼  of subsets of 𝐵(ii) 𝑃(𝑈𝐴) = ∩𝑖∈𝐼 𝑃(𝑈𝐴𝑖
) = 𝑃(∩𝑖∈𝐼 𝑈𝐴𝑖

) 

is the usual intersection of the complete ideals of 𝑃(𝑈𝐴𝑖
)𝑖∈𝐼 in 𝑃(𝑈𝐴) 

(iii) 𝐴: 𝐴 → 𝑃(𝑈𝐴) is defined by 𝐴𝑎 = ∩𝑖∈𝐼 𝐴𝑖𝑎. 

(s) For any pair of s-sets 𝒜 and ℬ, an s-map is any pair (𝑓, 𝐹), denoted by ℱ, where 𝑓: 𝐴 → 𝐵 and 𝐹: 𝑃(𝑈𝐴) → 𝑃(𝑈𝐵) is 

onto and extends 𝐹|𝑈𝐴 or equivalently 𝐹=𝑃(𝐹|𝑈𝐴). 

 

Note that quite often in all our examples 𝐹|𝑈𝐴 will be denoted by 𝐹0. 

 

In what follows we give an Example to show that if 𝐹 is not onto then some of the crucial properties like for subsets 𝒞, 𝒟 

of ℬ, 𝒞 ⊆ 𝒟 ⊆ ℬ implies ℱ−1𝒞 ⊆ ℱ−1𝒟; ℱ−1(𝒞 ∪ 𝒟) = ℱ−1𝒞 ∪ ℱ−1𝒟; ℱ−1(𝒞 ∩ 𝒟) = ℱ−1𝒞 ∩ ℱ−1𝒟 etc. do not hold 

and, as we know, without them nothing much can be done: 

Example 1: Let ℱ: 𝒜 → ℬ be given by 𝒜 = ({𝑝}, {(𝑝, {𝑥, 𝑦, 𝑧}), 𝑃({𝑥, 𝑦, 𝑧})}), ℬ = ({𝑞}, {(𝑞, {𝑎, 𝑏, 𝑐}), 𝑃({𝑎, 𝑏, 𝑐})}),                                                            

𝑓={(𝑝, 𝑞)} and 𝐹 = {(◻,◻), (𝑥, 𝑎), ( 𝑦, 𝑏), (𝑧, 𝑏), ({𝑥, 𝑦}, {𝑎, 𝑏}), ({𝑧, 𝑥}, {𝑎, 𝑏}), ({𝑦, 𝑧}, {𝑏}), ({𝑥, 𝑦, 𝑧}, {𝑎, 𝑏})}. Then 𝐹0= 

{(𝑥, 𝑎), (𝑦, 𝑏), (𝑧, 𝑏)}. 

(1) Let 𝒞 = ({𝑞}, {(𝑞, {𝑏}), 𝑃({𝑎, 𝑏, 𝑐})}), 𝒟 = ({𝑞}, {(𝑞, {𝑏, 𝑐}), 𝑃({𝑎, 𝑏, 𝑐})}). 

Let ℱ−1𝒞 = ℳ. Then 𝑀 = 𝑓−1𝐶 = {𝑝}, 𝑈𝑀 = 𝐹0
−1𝑈𝐶  = {𝑥, 𝑦, 𝑧} and 𝑀𝑝 = 𝐴𝑝 ∩∪ 𝐹−1𝐶𝑓𝑝 = {𝑥, 𝑦, 𝑧} ∩ {𝑦, 𝑧} = {𝑦, 𝑧}. 

Let ℱ−1𝒟 = 𝒩. Then 𝑁 = 𝑓−1𝐷 = {𝑝}, 𝑈𝑁 = 𝐹0
−1𝑈𝐷 = {𝑥, 𝑦, 𝑧} and 𝑁𝑝 = 𝐴𝑝 ∩∪ 𝐹−1𝐶𝑓𝑝 = {𝑥, 𝑦, 𝑧} ∩◻ = ◻, implying 

𝒞 ⊆ 𝒟 but ℱ−1𝒞 ⊆ ℱ−1𝒟. 

(2) Let 𝒞 = ({𝑞}, {(𝑞, {𝑏})}, 𝑃({𝑎, 𝑏, 𝑐})), 𝒟 = ({𝑞}, {(𝑞, {𝑐})}, 𝑃({𝑎, 𝑏, 𝑐})). 

Then 𝒞 ∪ 𝒟 = ({𝑞}, {(𝑞, {𝑏, 𝑐})}, 𝑃({𝑎, 𝑏, 𝑐})), ℱ−1𝒞 = ({𝑝}, {(𝑝, {𝑦, 𝑧})}, 𝑃({𝑥, 𝑦, 𝑧})), ℱ−1𝒟 =({𝑝}, {(𝑝,◻)} ,                                        

𝑃({𝑥, 𝑦, 𝑧})), ℱ−1𝒞 ∪ ℱ−1𝒟 = ({𝑝}, {(𝑝, {𝑦, 𝑧})}, 𝑃({𝑥, 𝑦, 𝑧})) and  ℱ−1(𝒞 ∪ 𝒟)=({𝑝}, {(𝑝,◻)}, 𝑃({𝑥, 𝑦, 𝑧})), implying 

ℱ−1(𝒞 ∪ 𝒟) ≠ ℱ−1𝒞 ∪ ℱ−1𝒟. 

(3) Let 𝒞 = ({𝑞}, {(𝑞, {𝑏, 𝑐})}, 𝑃({𝑎, 𝑏, 𝑐})),  𝒟 = ({𝑞}, {(𝑞, {𝑎, 𝑏})}, 𝑃({𝑎, 𝑏, 𝑐})). 
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Then 𝒞 ∩ 𝒟 = ({𝑞}, {(𝑞, {𝑎, 𝑏})}, 𝑃({𝑎, 𝑏, 𝑐})), ℱ−1𝒞 = ({𝑝}, {(𝑝,◻)}, 𝑃({𝑥, 𝑦, 𝑧})), ℱ−1𝒟 = ({𝑝}, {(𝑝, {𝑥, 𝑦, 𝑧})},                                              
𝑃({𝑥, 𝑦, 𝑧})), ℱ−1𝒞 ∩ ℱ−1𝒟 = ({𝑝}, {(𝑝,◻)}, 𝑃({𝑥, 𝑦, 𝑧})), ℱ−1(𝒞 ∩ 𝒟) = ({𝑝}, {(𝑝, {𝑦, 𝑧})}, 𝑃({𝑥, 𝑦, 𝑧})), implying 

ℱ−1(𝒞 ∩ 𝒟) ≠ ℱ−1𝒞 ∩ ℱ−1𝒟. 

 

Here onwards all our 𝑠-maps are the ones defined as above. 

 

(t) Observe that whenever, ℱ: 𝒜 → ℬ is an s-map, 𝐹 is onto and extended. Consequently, (1) for all 𝐵 ∈ 𝑃(𝑈𝐵), ∪ 𝐹−1𝐵 

= (𝐹|𝑈)−1𝐵 = 𝐹0
−1𝐵. (2) for all 𝐶 ⊆ 𝑈𝐴, the image of the element 𝐶 ∈ 𝑃(𝑈𝐴) under 𝐹 is the same as the image of the set 

𝐶 under 𝐹0 or 𝐹𝐶 = 𝐹0𝐶 (3) ℱ is increasing iff 𝐵𝑓𝑎 ⊇ 𝐹𝐴𝑎 for all 𝑎 in 𝐴 iff 𝐵𝑓𝑎 ⊇ 𝐹0𝐴𝑎 for all 𝑎 in 𝐴, ℱ is decreasing 

iff 𝐵𝑓𝑎 ⊆ 𝐹𝐴𝑎 for all 𝑎 in 𝐴 iff 𝐵𝑓𝑎 ⊆ 𝐹0𝐴𝑎 for all 𝑎 in 𝐴, ℱ is preserving iff 𝐵𝑓𝑎 = 𝐹𝐴𝑎 for all 𝑎 in 𝐴 iff 𝐵𝑓𝑎 = 𝐹0𝐴𝑎 

for all 𝑎 in 𝐴. 

(u) Hence, for any s-map ℱ: 𝒜 → ℬ, 

(i) ℱ is increasing, denoted by ℱ𝑖 iff 𝐵𝑓𝑎 ⊇ 𝐹0𝐴𝑎 for all 𝑎 in 𝐴 

(ii) ℱ is decreasing, denoted by ℱ𝑑 iff 𝐵𝑓𝑎 ⊆ 𝐹0𝐴𝑎 for all 𝑎 in 𝐴 

(iii) ℱ is preserving, denoted by ℱ𝑝 iff 𝐵𝑓𝑎 = 𝐹0𝐴𝑎 for all 𝑎 in 𝐴. 

 

For any s-map ℱ: 𝒜 → ℬ, (defined as in (t) above) 

(v) for any s-subset 𝒞 of 𝒜, the s-image of 𝒞 under ℱ, denoted by ℱ𝒞, is defined by the s-set 𝒟, where (i) 𝐷 = 𝑓𝐶 (ii) 𝑈𝐷 

= 𝐹0𝑈𝐶  or 𝑃𝑈𝐷  = (𝐹0𝑃𝑈𝐶)𝑃(𝑈𝐵) = 𝑃(𝐹0𝑈𝐶) = (𝐹0𝑈𝐶)𝑃(𝑈𝐵) (iii) 𝐷: 𝐷 → 𝑃𝑈𝐷 is given by 𝐷𝑑 = 𝐵𝑑 ∩∪ 𝐹𝐶(𝑓−1𝑑 ∩ 𝐶) for 

all 𝑑 ∈ 𝐷 

(w) for any s-subset 𝒟 of ℬ, the s-inverse image of 𝒟 under ℱ, denoted by ℱ−1𝒟, is defined by the s-set 𝒞, where (i) 𝐶 

= 𝑓−1(𝐷) (ii) 𝑈𝐶  = 𝐹0
−1(𝑈𝐷) or 𝑃(𝑈𝐶) = 𝐹0

−1(𝑃(𝑈𝐷)) = 𝑃(𝐹0
−1(𝑈𝐷)) (iii) 𝐶: 𝐶 → 𝑃(𝑈𝐶) is given by 𝐶𝑐 = 𝐴𝑐 ∩∪ 𝐹−1𝐷𝑓𝑐 

for all 𝑐 ∈ 𝐶. 

 

(E) s-Groups and s-Homomorphisms of s-Groups In this section we recall the notions of s-group, s-(normal) 

subgroups, s-product, s-quotient groups etc. from Murthy-Gouthami[12] .  

(a) An s-set 𝒢 is said to be an s-(normal) group iff (i) 𝑈𝐺 is a group (ii) �̅�𝑔 is a (normal) subgroup of 𝑈𝐺 for all 𝑔 ∈ 𝐺. 

An s-group which is also a whole s-set is a whole s-group. Clearly, whole s-group and whole s-normal group are the 

same.  

(b) For any s-group 𝒢 and for any s-subset 𝒜 of 𝒢, 

(1) 𝒜 is an s-subgroup of 𝒢 iff (i) 𝐴 ⊆ 𝐺 (ii) 𝑈𝐴 is a subgroup of 𝑈𝐺 (iii) �̅�𝑔 is a subgroup of �̅�𝑔 for all 𝑔 ∈ 𝐴. 

Notice that, a degenerated s-subset 𝒜 of an s-group 𝒢 is an s-subgroup iff 𝑈𝐴 is a subgroup of 𝑈𝐺. 

An s-subgroup 𝒜 is an identity s-subgroup of 𝒢 iff 𝑈𝐴 = (𝑒𝑈𝐺
) and �̅�𝑔 = (𝑒𝑈𝐺

) for all 𝑔 ∈ 𝐴. 

(2) 𝒜 is an s-normal subgroup of 𝒢 iff (i) 𝐴 ⊆ 𝐺 (ii) 𝑈𝐴 is a normal subgroup of 𝑈𝐺 (iii) �̅�𝑔 is a normal subgroup of �̅�𝑔 

for all 𝑔 ∈ 𝐺. 

Notice that, a degenerated s-subset 𝒜 of 𝒢 is an s-normal subgroup iff 𝑈𝐴 is a normal subgroup of 𝑈𝐺 and a degenerated 

s-subset which is also an s-(normal) subgroup is called a degenerated s-(normal) subgroup. 

(c) For any 𝑠-group 𝒢 and for any 𝑠-subsets 𝒜, ℬ of 𝒢, the s-product of 𝒜 by ℬ, denoted by 𝒜ℬ, is defined by 𝒞, where 

𝐶 = 𝐴 ∩ 𝐵, 𝑈𝐶  = 𝑈𝐴𝑈𝐵 and 𝐶̅𝑐 = �̅�𝑐�̅�𝑐 for all 𝑐 ∈ 𝐶. If 𝐶 = ◻ then 𝐶̅ = ◻ or (◻,◻, 𝑃(𝑈𝐶)) = 𝒞. 

(d) For any 𝑠-group 𝒢, and for any 𝑠-normal subgroup 𝒩 of 𝒢, the 𝑠-quotient group, denoted by 
𝒢

𝒩
 , is defined by 𝒞, 

where 𝐶 = 𝑁 ∩ 𝐺 = 𝑁, 𝑈𝐶  = 
𝑈𝐺

𝑈𝑁
 and 𝐶̅𝑐 = 

�̅�𝑐𝑈𝑁

𝑈𝑁
 for all 𝑐 ∈ 𝐶. Once again if 𝐶 = ◻ then 𝐶̅ = ◻ or (◻,◻, 𝑃(𝑈𝐶)) = 𝒞. 

(e) For any 𝑠-set 𝒜 and for all 𝐵 ⊆ 𝐴, the restriction of 𝒜 to 𝐵, denoted by 𝒜|𝐵, is defined by 𝒞 iff 𝐶 = 𝐵, 𝑈𝐶  = 𝑈𝐴, 

𝐶̅: 𝐶 → 𝑃(𝑈𝐶) is given by 𝐶̅𝑏 = �̅�𝑏 for all 𝑏 ∈ 𝐵.  

 In what follows we recall some notions like s-homomorphism, s-isomorphism, pure s-isomorphism, s-kernel etc., from 

Murthy-Gouthami[13] and some results from the above papers which will be used in the main section. 

(f) An s-map ℱ: 𝒜 → ℬ is an s-homomorphism of s-groups, again denoted by ℱ: 𝒜 → ℬ, iff (1) both 𝒜, ℬ are s-groups 

(2) 𝐹: 𝑃(𝑈𝐴) → 𝑃(𝑈𝐵) is any map such that 𝐹0 = 𝐹|𝑈𝐴: 𝑈𝐴 → 𝑈𝐵 is a group homomorphism. 

 

Note: Since any s-homomorphism ℱ: 𝒜 → ℬ is an s-map, from the definition of s-map 𝐹 = 𝑃(𝐹0), for any subset 𝐶 of 

𝑈𝐴, 𝐹(𝐶) = 𝐹0(𝐶) and so we know 𝐹 if we know 𝐹0 and vice versa. Consequently, in all our examples we specify only 

𝑓: 𝐴 → 𝐵 and 𝐹0: 𝑈𝐴 → 𝑈𝐵 from which follow the s-map ℱ = (𝑓, 𝐹). 

 

 (g) An s-homomorphism ℱ: 𝒜 → ℬ is an s-monomorphism of s-groups, again denoted by ℱ: 𝒜 → ℬ, iff both 𝑓 is one-

one and 𝐹 is one-one. 

(h) An s-homomorphism ℱ: 𝒜 → ℬ is an s-epimorphism of s-groups, again denoted by ℱ: 𝒜 → ℬ, iff both 𝑓 is onto and 

𝐹 is onto. 
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(i) An s-homomorphism ℱ: 𝒜 → ℬ is an s-isomorphism of s-groups, again denoted by ℱ: 𝒜 → ℬ, iff (1) 𝐹0: 𝑈𝐴 → 𝑈𝐵 is 

an isomorphism (2) 𝐹0|�̅�𝑎: �̅�𝑎 → �̅�𝑓𝑐 is an isomorphism for all 𝑐 ∈ 𝑓−1𝑓𝑎 and for all 𝑎 ∈ 𝐴 (3) ℱ is preserving. 

(j) An s-homomorphism ℱ: 𝒜 → ℬ is a pure s-isomorphism of s-groups, again denoted by ℱ: 𝒜 → ℬ, iff (1) 𝑓: 𝐴 → 𝐵 is 

a bijection (2) 𝐹0: 𝑈𝐴 → 𝑈𝐵 is an isomorphism (3) 𝐹0|�̅�𝑐: �̅�𝑐 → �̅�𝑓𝑐 is an isomorphism (4) ℱ is preserving. 

Clearly, (1) any pure s-isomorphism is an s-isomorphism but not conversely. (2) For any ℱ: 𝒜 → ℬ, if 𝐴 = ◻ then 𝐹0 is 

a crisp group isomorphism iff ℱ is s-isomorphism. However, (3) ℱ is pure s-isomorphism iff 𝐹0 is a crisp group 

isomorphism and 𝐵 = ◻. 

(k) For an s-homomorphism ℱ: 𝒜 → ℬ of s-groups, s-Kernel of ℱ, denoted by 𝐾𝑒𝑟(ℱ), is defined by the whole s-set 

𝐾𝑒𝑟(ℱ) = 𝒦, where 𝐾 = 𝐴, 𝑃(𝑈𝐾) = 𝑃(𝐾𝑒𝑟(𝐹0)) or 𝑈𝐾  = 𝐾𝑒𝑟(𝐹0) and 𝐾: 𝐾 → 𝑃(𝑈𝐾) is given by 𝐾𝑘 = 𝐾𝑒𝑟(𝐹0) for all 

𝑘 ∈ 𝐴. 

(l) For any s-map ℱ: 𝒜 → ℬ, an s-subset 𝒞 of 𝒜 is an ℱ-constant or constant on each kernel class iff 𝐶𝑎 = 𝐶𝑐 for all 

𝑎 ∈ 𝑓−1𝑓𝑐 for all 𝑐 ∈ 𝐶. 

(m) For any s-map ℱ: 𝒜 → ℬ and for any s-subset 𝒟 of ℬ, ℱ−1𝒟 is always an ℱ-constant subset of 𝒜, whenever 𝒜 is 

ℱ-constant. 

(n) For any pair of s-(normal) subgroups 𝒜, ℬ of 𝒢, 𝒜 is an s-(normal) subgroup of ℬ iff 𝒜 is an s-subset of ℬ. 

(o) For any 𝑠-group 𝒢, for any s-subgroup 𝒜 of 𝒢 and for any s-normal subgroup ℬ of 𝒢 we have 𝒜 ∩ ℬ is an s-normal 

subgroup of 𝒜. 

(p) For any s-group 𝒢, for any s-subset ℋ of 𝒢 and for any s-subgroup 𝒦 of 𝒢 such that ℋ ⊆ 𝒦, we have ℋ is an s-

subgroup of 𝒦 iff ℋ is an s-subgroup of 𝒢. 

(q) For any 𝑠-group 𝒢 and for any pair of s-subsets ℋ, 𝒦 of 𝒢 such that ℋ ⊆ 𝒦 and 𝒦 is an s-subgroup of 𝒢, we have 

ℋ is an s-normal subgroup of 𝒢 implies ℋ is an s-normal subgroup of 𝒦. 

(r) For any 𝑠-group 𝒢 and for any pair of 𝑠-(normal) subgroups ℋ, 𝒦 of 𝒢, ℋ𝒦 is an 𝑠-(normal) subgroup of 𝒢 iff ℋ𝒦 

= 𝒦ℋ. 

(s) For any 𝑠-group 𝒢 and for any pair of 𝑠-subgroups ℋ, 𝒦 of 𝒢 such that ℋ or 𝒦 is an s-normal subgroup of 𝒢 we have 

ℋ𝒦 is an s-subgroup of 𝒢. 

(t) For any 𝑠-normal subgroup 𝒜 of an 𝑠-group 𝒢 and for any 𝑠-(normal) subgroup ℬ of 𝒢 such that 𝒜 ⊆ ℬ, 
ℬ

𝒜
 is an s-

(normal) subgroup of 
𝒢

𝒜
. 

(u) For any 𝑠-homomorphism ℱ: 𝒜 → ℬ of 𝑠-groups and for any 𝑠-subgroup 𝒞 of 𝒜, the 𝑠-image ℱ𝒞 of 𝒞 under ℱ is an 

𝑠-subgroup of ℬ, whenever 𝒞 is constant on each kernel class. Further, whenever 𝒜 is also constant on each kernel class, 

ℱ𝒞 is an s-subgroup of ℱ𝒜. 

(v) For any 𝑠-homomorphism ℱ: 𝒜 → ℬ of 𝑠-groups and for any 𝑠-normal subgroup 𝒞 of 𝒜 the 𝑠-image ℱ𝒞 of 𝒞 under 

ℱ is an 𝑠-normal subgroup of ℱ𝒜, whenever both 𝒜 and 𝒞 are constants on each kernel class. 

(w) For any 𝑠-homomorphism ℱ: 𝒜 → ℬ of 𝑠-groups and for any 𝑠-subgroup 𝒟 of ℬ, the 𝑠-inverse image, ℱ−1𝒟 of 𝒟 

under ℱ is an 𝑠-subgroup of both 𝒜 and ℱ−1𝐵. 

(x) For any 𝑠-homomorphism ℱ: 𝒜 → ℬ of 𝑠-groups and for any 𝑠-normal subgroup 𝒟 of ℬ, the 𝑠-inverse image ℱ−1𝒟 

of 𝒟 under ℱ is an 𝑠-normal subgroup of ℱ−1ℬ. 

(y) For any 𝑠-epimorphism, ℱ𝑑: 𝒜 → ℬ of 𝑠-groups, ℱ𝑑𝒜 = ℬ. 

(z) For any 𝑠-homomorphism ℱ𝑖: 𝒜 → ℬ of 𝑠-groups, ℱ𝑖
−1ℬ = 𝒜.  

 

III.      MAIN THEOREMS 

 

As mentioned earlier in the Introduction, in Murthy-Gouthami[12] the notion of soft (normal sub, sub) group is 

generalized to that of an s-(normal sub, sub) group and several of the crisp group theoretic properties of (inverse) images 

were shown to have extended and in Murthy-Gouthami[13] the notion of homomorphism of groups in the crisp set up is 

generalized to that of an s-homomorphism of s-groups and several of the crisp group homomorphic properties were shown 

to have extended. Now in this section we generalize and extend the correspondence and the three Isomorphism theorems 

of groups in the crisp set up to those of s-groups. 

 

Correspondence Theorem for 𝒔-(normal) subgroups   

Theorem 3.1 For any 𝑠-epimorphism ℱ𝑝: 𝒜 → ℬ of 𝑠-groups there is a one-to-one correspondence between the set of 

all 𝑠-(normal) subgroups 𝒞 of 𝒜 which are constant on each kernel class and which contain 𝐾𝑒𝑟(ℱ) and the set of all 

𝑠-(normal) subgroups of ℱ𝒜 = ℬ. 

Proof: Let 𝕀 be the set of all 𝑠-(normal) subgroups 𝒞 of 𝒜 which are constant on each kernel class and which contain 

𝐾𝑒𝑟(ℱ) and let 𝕁 be the set of all 𝑠-(normal) subgroups of ℬ. 

Define 𝜙: 𝕀 → 𝕁 by 𝜙(𝒞) = ℱ𝑝(𝒞). Then since every 𝒞 in 𝕀 is constant on each kernel class, by 2(E)(u),(v) 𝜙(𝒞) = ℱ𝑝(𝒞) 

is an s-(normal) subgroup of ℬ and so 𝜙 is well-defined. 
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Define 𝜓: 𝕁 → 𝕀 by 𝜓(𝒟) = ℱ𝑝
−1(𝒟). Then by 2(E)(w),(x) and (z) 𝜓(𝒟) = ℱ𝑝

−1(𝒟) is an s-(normal) subgroup of 𝒜 and 

so 𝜓 is well-defined. 

To show 𝜙 defines a one-one correspondence between 𝕀 and 𝕁, it is enough to show 𝜓 ∘ 𝜙 = 1𝕀 and 𝜙 ∘ 𝜓 = 1𝕁 or 

equivalently ℱ𝑝
−1(ℱ𝑝(𝒞)) = 𝒞 and ℱ𝑝(ℱ𝑝

−1𝒟) = 𝒟. 

In what follows, we show that for any 𝒞 ∈ 𝕀, ℱ𝑝
−1(ℱ𝑝(𝒞)) = 𝒞. 

Let ℱ𝒞=𝒫. Then 𝑃=𝑓𝐶, 𝑈𝑃=𝐹0𝑈𝐶  and 𝑃𝑝 = 𝐵𝑝 ∩ (∪𝑐∈𝑓−1𝑝∩𝐶 𝐹0𝐶𝑐) for all 𝑝 ∈ 𝑃. 

Let ℱ−1𝒫 = 𝒬. Then 𝑄 = 𝑓−1𝑃, 𝑈𝑄 = 𝐹0
−1𝑈𝑃 and 𝑄𝑞 = 𝐴𝑞 ∩ 𝐹0

−1𝑃𝑓𝑐 for all 𝑞 ∈ 𝑄. 

𝐾𝑒𝑟(ℱ) ⊆ 𝒞 implies 𝐾 = 𝐶 = 𝐴, 𝑈𝐾  = 𝐾𝑒𝑟(𝐹0) ⊆ 𝑈𝐶 and 𝐾𝑘 = 𝐾𝑒𝑟(𝐹0) ⊆ 𝐶𝑘 for all 𝑘 ∈ 𝐴. 

We claim that 𝒬 = 𝒞 or (i) 𝑄 = 𝐶 (ii) 𝑈𝑄 = 𝑈𝐶  and (iii) 𝑄𝑞 = 𝐶𝑞 for all 𝑞 ∈ 𝑄 

(i): 𝑄 = 𝑓−1𝑃 = 𝑓−1𝑓𝐶 = 𝑓−1(𝑓𝐴) = 𝐴 = 𝐶. 

(ii): 𝑈𝑄 = 𝐹0
−1𝑈𝑃  = 𝐹0

−1(𝐹0𝑈𝐶) = 𝑈𝐶 , where the last equality is due to the fact that 𝐾𝑒𝑟(𝐹0) ⊆ 𝑈𝐶 and by 2(A)(ii). 

(iii): Let 𝑞 ∈ 𝑄 = 𝐶 be fixed. Then 𝑄𝑞 = 𝐴𝑞 ∩ 𝐹0
−1𝑃𝑓𝑞 = 𝐴𝑞 ∩ 𝐹0

−1(𝐵𝑓𝑞 ∩ (∪𝑐∈𝑓−1𝑓𝑞∩𝐶 𝐹0𝐶𝑐)) = 𝐴𝑞 ∩ 𝐹0
−1𝐵𝑓𝑞 ∩

𝐹0
−1(∪𝑐∈𝑓−1𝑓𝑞∩𝐶 𝐹0𝐶𝑐). 

Since 𝒞 is constant on each kernel class, 𝐶𝑐 = 𝐶𝑞 for all 𝑐 ∈ 𝑓−1𝑓𝑞 ∩ 𝐶 implies ∪𝑐∈𝑓−1𝑓𝑞∩𝐶 𝐹0𝐶𝑐 = 𝐹0𝐶𝑞 which implies 

𝑄𝑞 = 𝐴𝑞 ∩ 𝐹0
−1𝐵𝑓𝑞 ∩ 𝐹0

−1(𝐹0𝐶𝑞) =
(2)

 𝐴𝑞 ∩ 𝐹0
−1𝐵𝑓𝑞 ∩ 𝐶𝑞 =

(3)
 𝐹0

−1𝐵𝑓𝑞 ∩ 𝐶𝑞, where the second equality is due to the fact 

that 𝐾𝑒𝑟(𝐹0) ⊆ 𝐶𝑞 and the third equality is due to 𝒞 ⊆ 𝒜. 

Now since ℱ is preserving and 𝒞 is an s-subgroup of 𝒜, 𝐹0𝐶𝑞 ⊆ 𝐹0𝐴𝑞 = 𝐵𝑓𝑞 or 𝐹0𝐶𝑞 ⊆ 𝐵𝑓𝑞 which implies 𝐶𝑞 ⊆

𝐹0
−1𝐵𝑓𝑞 or 𝐶𝑞 ∩ 𝐹0

−1𝐵𝑓𝑞 = 𝐶𝑞. Therefore 𝑄𝑞 = 𝐶𝑞 ∩ 𝐹0
−1𝐵𝑓𝑞 = 𝐶𝑞 or 𝒞 = 𝒬. 

 

 In what follows, we show that for any 𝒟 ∈ 𝕁, ℱ𝑝(ℱ𝑝
−1(𝒟)) = 𝒟. 

Let ℱ−1𝒟 = ℛ. Then 𝑅 = 𝑓−1𝐷, 𝑈𝑅 = 𝐹0
−1𝑈𝐷 and 𝑅𝑟 = 𝐴𝑟 ∩ 𝐹0

−1𝐷𝑓𝑟 for all 𝑟 ∈ 𝑅. 

Let ℱℛ = 𝒮. Then 𝑆 = 𝑓𝑅, 𝑈𝑆 = 𝐹0𝑈𝑅 and 𝑆𝑠 = 𝐵𝑠 ∩ (∪𝑐∈𝑓−1𝑠∩𝑅 𝐹0𝑅𝑟) for all 𝑠 ∈ 𝑆. 

We show that 𝒮 = 𝒟 or (i) 𝑆 = 𝐷 (ii) 𝑈𝑆 = 𝑈𝐷 and (iii) 𝑆𝑠 = 𝐷𝑠 for all 𝑠 ∈ 𝑆. 

(i): 𝑆 = 𝑓𝑅 = 𝑓𝑓−1𝐷 = 𝐷, where the last equality is due to 𝑓 is onto. 

(ii): 𝑈𝑆 = 𝐹0𝑈𝑅 = 𝐹0(𝐹0
−1𝑈𝐷) = 𝑈𝐷, where the last equality is due to 𝐹0 is onto. 

(iii): Let 𝑠 ∈ 𝑆 = 𝐷 be fixed and 𝑟 ∈ 𝑓−1𝑠 ∩ 𝑅. Then 𝑠 = 𝑓𝑟, 𝑆𝑠 = 𝐵𝑠 ∩ (∪𝑟∈𝑓−1𝑠∩𝑅 𝐹0𝑅𝑟). Now we show that 𝐹0𝑅𝑟 = 

𝐷𝑠 for all 𝑟 ∈ 𝑓−1𝑠 ∩ 𝑅. 

(a) Since 𝑟 ∈ 𝑓−1𝑠, 𝑓𝑟 = 𝑠. Since 𝒟 ⊆ ℬ, ℱ is preserving we have 𝐷𝑠 = 𝐷𝑓𝑟 ⊆ 𝐵𝑓𝑟 = 𝐹0𝐴𝑟 which implies 𝐷𝑓𝑟 ∩ 𝐹0𝐴𝑟 

= 𝐷𝑓𝑟. 

Now 𝐹0𝑅𝑟 = 𝐹0(𝐴𝑟 ∩ 𝐹0
−1𝐷𝑓𝑟) ⊆ 𝐹0𝐴𝑟 ∩ 𝐹0𝐹0

−1𝐷𝑓𝑟 = 𝐹0𝐴𝑟 ∩ 𝐷𝑓𝑟 = 𝐷𝑓𝑟 = 𝐷𝑠 which implies 𝐹0𝑅𝑟 ⊆ 𝐷𝑠. 

(b) Since 𝒟 ⊆ ℬ, 𝐷𝑠 = 𝐷𝑓𝑟 ⊆ 𝐵𝑓𝑟 = 𝐹0𝐴𝑟 or 𝐷𝑠 = 𝐷𝑠 ∩ 𝐹0𝐴𝑟 and since 𝐹0 is onto, we have 𝐹0𝐹0
−1𝐷𝑠 = 𝐷𝑠 = 𝐷𝑠 ∩

𝐹0𝐴𝑟 which implies 𝐷𝑠 = 𝐹0𝐹0
−1𝐷𝑠 ∩ 𝐹0𝐴𝑟. Let 𝛽 ∈ 𝐷𝑠 = 𝐹0𝐹0

−1𝐷𝑠 ∩ 𝐹0𝐴𝑟 which implies 𝛽 = 𝐹0𝛼, 𝛼 ∈ 𝐹0
−1𝐷𝑠, 𝛽 = 

𝐹0𝛾, 𝛾 ∈ 𝐴𝑟 which implies 𝐹0𝛼 = 𝐹0𝛾 which implies 𝛼 − 𝛾 ∈ 𝑘𝑒𝑟(𝐹0) = 𝐹0
−1(0) ⊆ 𝐹0

−1𝐷𝑠 with 𝛼 ∈ 𝐹0
−1𝐷𝑠 which 

implies 𝛾 = 𝛾 − 𝛼 + 𝛼 ∈ 𝐹0
−1𝐷𝑠 which implies 𝛾 ∈ 𝐹0

−1𝐷𝑠 ∩ 𝐴𝑟 = 𝑅𝑟 which implies 𝛽 = 𝐹0𝛾 ∈ 𝐹0𝑅𝑟 which in turn 

implies 𝐷𝑠 ⊆ 𝐹0𝑅𝑟. 

From (a) and (b) we get 𝐹0𝑅𝑟 = 𝐷𝑠 for all 𝑟 ∈ 𝑓−1𝑠 ∩ 𝑅. 

Therefore, ∪𝑟∈𝑓−1𝑠∩𝑅 𝐹0𝑅𝑟 = ∪𝑟∈𝑓−1𝑠∩𝑅 𝐷𝑠 = 𝐷𝑠, implying 𝑆𝑠 = 𝐵𝑠 ∩ 𝐷𝑠 = 𝐷𝑠 or 𝒮 = 𝒟. 

 

The following Example shows that the above Theorem is not true if ℱ is decreasing, ℱ is onto, 𝐾𝑒𝑟(ℱ) ⊆ 𝒞 but 𝒞 is 

constant on each kernel class. 

Example 2: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by: 𝒜=({𝑎}, {(𝑎, ℤ4)}, 𝑃(ℤ4))=𝒞, ℬ=({𝑏}, {(𝑏, (0))}, 𝑃(ℤ4)),                                   

𝑓: 𝐴 → 𝐵 given by 𝑓 = {(𝑎, 𝑏)} and 𝐹0 be the identity map. 

Then 𝐵𝑓𝑎 = (0) ⊆ ℤ4 = 𝐹0𝐴𝑎, implying ℱ is decreasing, 𝐾𝑒𝑟(ℱ) = 𝒦=({𝑎}, {(𝑎, (0))}, 𝑃(0)) ⊆ 𝒞, ℱ is onto and 𝒞 is 

constant on each kernel class because 𝐶𝑎 = ℤ4. 

Let ℱ𝒞 = 𝒟. Then 𝐷 = 𝑓𝐶 = {𝑏}, 𝑈𝐷 = 𝐹0𝑈𝐶  = ℤ4 and 𝐷𝑏 = 𝐵𝑏 ∩ (∪𝑐∈𝑓−1𝑏∩𝐶 𝐹0𝐶𝑐) = (0) ∩ ℤ4 = (0). 

Let ℱ−1𝒟 = ℰ. Then 𝐸 = 𝑓−1𝐷 = {𝑎}, 𝑈𝐸 = 𝐹0
−1𝑈𝐷 = ℤ4 and 𝐸𝑎 = 𝐴𝑎 ∩ 𝐹0

−1𝐷𝑓𝑎 = ℤ4 ∩ (0) = (0) ≠ ℤ4 = 𝐶𝑎 or ℱ𝑑
−1ℱ𝑑𝒞 

≠ 𝒞. 

 

The following Example shows that the above Theorem is not true if ℱ is increasing, ℱ is onto. 

Example 3: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by: 𝒜 = ({𝑎}, {(𝑎, 𝑍2)}, 𝑃(ℤ4)), ℬ = ({𝑏}, {(𝑏, (ℤ4))}, 𝑃(ℤ4)) 

= 𝒟, 𝑓: 𝐴 → 𝐵 given by 𝑓 = {(𝑎, 𝑏)} and 𝐹0 be the identity map. 

Then 𝐵𝑓𝑎 = ℤ4 ⊇ 𝑍2 = 𝐹0𝐴𝑎, implying ℱ is increasing, 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎}, {(𝑎, (0̅))}, 𝑃(0̅)) ⊆ 𝒟, ℱ is onto. 
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Let ℱ−1𝒟 = 𝒞. Then 𝐶 = 𝑓−1𝐷 = {𝑎}, 𝑈𝐶  = 𝐹0
−1𝑈𝐷 = ℤ4 and 𝐶𝑎 = 𝐴𝑎 ∩ 𝐹0

−1𝐷𝑓𝑎 = 𝑍2 ∩ ℤ4 = 𝑍2. 𝐾𝑒𝑟(ℱ) ⊆ 𝒞. 

Let ℱ𝒞 = ℰ. Then 𝐸 = 𝑓𝐶 = {𝑏}, 𝑈𝐸 = 𝐹0𝑈𝐶  = ℤ4 and 𝐸𝑏 = 𝐵𝑏 ∩ (∪𝑐∈𝑓−1𝑏∩𝐶 𝐹0𝐶𝑐) = ℤ4 ∩ 𝑍2 = 𝑍2 ≠ ℤ4 = 𝐷𝑏 or ℱ𝑖ℱ𝑖
−1𝒟 

≠ 𝒟. 

 

The following Example shows that the above Theorem is not true if ℱ is preserving, 𝑓 is not onto, 𝐹0 is onto. 

Example 4: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by: 𝒜 = ({𝑎1, 𝑎2}, {(𝑎1, 𝑍2), (𝑎2, 𝑍2)}, 𝑃(ℤ4)), ℬ= 

({𝑏1, 𝑏2}, {(𝑏1, 𝑍2), (𝑏2, 𝑍2)}, 𝑃(ℤ4)) = 𝒟, 𝑓: 𝐴 → 𝐵 given by 𝑓 = {(𝑎1, 𝑏1), (𝑎2, 𝑏1)} and 𝐹0 be the identity map. 

Then 𝐵𝑓𝑎1 = 𝑍2 = 𝐹0𝐴𝑎1 and 𝐵𝑓𝑎2 = 𝑍2 = 𝐹0𝐴𝑎2, implying ℱ is preserving, 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎1, 𝑎2}, {(𝑎1, (0)),                                                

(𝑎2, (0))}, 𝑃(0)), 𝑓 is not onto, 𝐹0 is onto. 

Let ℱ−1𝒟 = 𝒞. Then 𝐶 = 𝑓−1𝐷 = {𝑎1, 𝑎2}, 𝑈𝐶  = 𝐹0
−1𝑈𝐷 = ℤ4 and 𝐶𝑎1 = 𝐴𝑎1 ∩ 𝐹0

−1𝐷𝑓𝑎1 = 𝑍2 ∩ 𝑍2 = 𝑍2 = 𝐶𝑎2. 𝐾𝑒𝑟(ℱ) 

⊆ 𝒞. 

Let ℱ𝒞 = ℰ. Then 𝐸 = 𝑓𝐶 = {𝑏1} ≠ {𝑏1, 𝑏2} = 𝐷, implying ℱ𝑝ℱ𝑝
−1𝒟 ≠ 𝒟. 

 

The following Example shows that the above Theorem is not true if ℱ is preserving, 𝑓 is onto, 𝐹0 is not onto. 

Example 5: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by: 𝒜 = ({𝑎}, {(𝑎, ℤ2)}, 𝑃(ℤ2)), ℬ = ({𝑏}, {(𝑏, 𝑍2)}, 𝑃(ℤ4)) = 

𝒟, 𝑓: 𝐴 → 𝐵 given by 𝑓 = {(𝑎, 𝑏)} and 𝐹0 be the inclusion map 𝐹0 = {(0̅, 0̅), (1̅, 2̅)}. 

Then 𝐵𝑓𝑎 = 𝑍2 = 𝐹0𝐴𝑎, implying ℱ is preserving, 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎}, {(𝑎, (0))}, 𝑃(0)), 𝐹0 is not onto. 

Let ℱ−1𝒟 = 𝒞. Then 𝐶 = 𝑓−1𝐷 = {𝑎}, 𝑈𝐶  = 𝐹0
−1𝑈𝐷 = ℤ2 and 𝐶𝑎 = 𝐴𝑎 ∩ 𝐹0

−1𝐷𝑓𝑎 = ℤ2 ∩ ℤ2 = ℤ2. 𝐾𝑒𝑟(ℱ) ⊆ 𝒞. 

Let ℱ𝒞 = ℰ. Then 𝐸 = 𝑓𝐶 = {𝑏}, 𝑈𝐸 = 𝐹0𝑈𝐶  = 𝑍2 ≠ ℤ4 = 𝑈𝐷, implying ℱ𝑝ℱ𝑝
−1𝒟 ≠ 𝒟. 

 

The following Example shows that the above Theorem is not true if ℱ is preserving, ℱ is onto, 𝐾𝑒𝑟(ℱ) ⊆ 𝒞 but 𝒞 is 

constant on each kernel class. 

Example 6: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by: 𝒜 = ({𝑎}, {(𝑎, ℤ4)}, 𝑃(ℤ4)) , ℬ = ({𝑏}, {(𝑏, 𝑍2)}, 𝑃(ℤ4)), 

𝒞 = ({𝑎}, {(𝑎, (0))}, 𝑃(ℤ4)), 𝑓: 𝐴 → 𝐵 given by 𝑓 = {(𝑎, 𝑏)} and 𝐹0 = {(0,0), (2,0), (1,1), (3,1)}. 

Then 𝐵𝑓𝑎=𝑍2=𝐹0𝐴𝑎, implying ℱ is preserving, 𝐾𝑒𝑟(ℱ)=𝒦=({𝑎}, {(𝑎, 𝑍2)}, 𝑃(𝑍2)) ⊆ 𝒞, ℱ is onto and 𝒞 is constant on 

each kernel class because 𝐶𝑎 = (0). 

Let ℱ𝒞 = 𝒟. Then 𝐷 = 𝑓𝐶 = {𝑏}, 𝑈𝐷 = 𝐹0𝑈𝐶  = 𝑍2 and 𝐷𝑏 = 𝐵𝑏 ∩ (∪𝑐∈𝑓−1𝑏∩𝐶 𝐹0𝐶𝑐) = 𝑍2 ∩ (0) = (0). 

Let ℱ−1𝒟 = ℰ. Then 𝐸 = 𝑓−1𝐷 = {𝑎}, 𝑈𝐸 = 𝐹0
−1𝑈𝐷 = ℤ4 and 𝐸𝑎 = 𝐴𝑎 ∩ 𝐹0

−1𝐷𝑓𝑎 = ℤ4 ∩ 𝑍2 = 𝑍2 ≠ (0) = 𝐶𝑎 or ℱ𝑝
−1ℱ𝑝𝒞 

≠ 𝒞. 

 

The following Example shows that the above Theorem is not true if ℱ is preserving, ℱ is onto, 𝐾𝑒𝑟(ℱ) ⊆ 𝒞 but 𝒞 is not 

constant on each kernel class. 

Example 7: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by: 𝒜=({𝑎1, 𝑎2}, {(𝑎1, ℤ), (𝑎2, ℤ)}, 𝑃(ℤ)), ℬ = ({𝑏}, {(𝑏, ℤ)},                          
𝑃(ℤ)), 𝒞 = ({𝑎1, 𝑎2}, {(𝑎1, 2ℤ), (𝑎2, 3ℤ)}, 𝑃(ℤ)), 𝑓: 𝐴 → 𝐵 given by 𝑓 = {(𝑎1, 𝑏), (𝑎2, 𝑏)} and 𝐹0 be the identity map. 

Then 𝐵𝑓𝑎1 = ℤ = 𝐹0𝐴𝑎1 and 𝐵𝑓𝑎2 = ℤ = 𝐹0𝐴𝑎2, implying ℱ is preserving, 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎1, 𝑎2}, {(𝑎1, (0)),                                            

(𝑎2, (0))}, 𝑃(0)) ⊆ 𝒞, ℱ is onto and 𝒞 is not constant on each kernel class because 𝐶𝑎1 = 2ℤ, 𝐶𝑎2 = 3ℤ. 

Let ℱ𝒞 = 𝒟. Then 𝐷 = 𝑓𝐶 = {𝑏}, 𝑈𝐷 = 𝐹0𝑈𝐶  = ℤ and 𝐷𝑏 = 𝐵𝑏 ∩ (∪𝑐∈𝑓−1𝑏∩𝐶 𝐹0𝐶𝑐) = ℤ ∩ (2ℤ ∪ 3ℤ) = 2ℤ ∪ 3ℤ. 

Let ℱ−1𝒟 = ℰ. Then 𝐸 = 𝑓−1𝐷 = {𝑎1, 𝑎2}, 𝑈𝐸 = 𝐹0
−1𝑈𝐷 = ℤ and 𝐸𝑎1 = 𝐴𝑎1 ∩ 𝐹0

−1𝐷𝑓𝑎1 = ℤ ∩ (2ℤ ∪ 3ℤ) = 2ℤ ∪ 3ℤ = 

𝐸𝑎2. 

Clearly, ℱ𝒞 = 𝒟 and ℱ−1𝒟 = ℰ are not even s-subgroups.   

 

First Isomorphism Theorem for 𝒔-groups   

Theorem 3.2 For any 𝑠-homomorphism ℱ𝑖: 𝒜 → ℬ of 𝑠-groups such that 𝐾𝑒𝑟(ℱ) ⊆ 𝒜, 
𝒜

𝐾𝑒𝑟(ℱ)
 is isomorphic to ℱ𝒜, 

whenever 𝒜 is constant an each kernel class. 

Proof: Let 𝒦 = 𝐾𝑒𝑟(ℱ) ⊆ 𝒜. Then 𝐾 = 𝐴, 𝑈𝐾  = 𝐾𝑒𝑟(𝐹0) ⊆ 𝑈𝐴 and 𝐾𝑘 = 𝐾𝑒𝑟(𝐹0) ⊆ 𝐴𝑘 for all 𝑘 ∈ 𝐾. 

Let 
𝒜

𝒦
=𝒞. Then 𝐶=𝐴, 𝑈𝐶=

𝑈𝐴

𝑈𝐾
=

𝑈𝐴

𝐾𝑒𝑟(𝐹0)
 and 𝐶̅𝑐=

�̅�𝑐  𝐾𝑒𝑟(𝐹0)

𝐾𝑒𝑟(𝐹0)
 = 

�̅�𝑐

𝑈𝐾
. 

Since 𝑈𝐶  is a group and 𝐶̅𝑐 = 
�̅�𝑐

𝑈𝐾
 is a subgroup of 

𝑈𝐴

𝑈𝐾
 = 𝑈𝐶  as �̅�𝑐 is a subgroup of 𝑈𝐴, by the definition of an 𝑠-group, 𝒞 

is an 𝑠-group. 

Let ℱ𝒜 = 𝒟. Then 𝐷 = 𝑓𝐴, 𝑈𝐷 = 𝐹0𝑈𝐴 and �̅�𝑑 = �̅�𝑑 ∩ (∪𝑐∈𝑓−1𝑑∩𝐴 𝐹0�̅�𝑐) for all 𝑑 ∈ 𝐷. 

Since image of a subgroup is a subgroup and intersection of subgroups is a subgroup, it follows that 𝑈𝐷 is a group and 

�̅�𝑑 is a subgroup of 𝑈𝐷. Consequently, 𝒟 is an 𝑠-group as 𝒜 is constant on each kernel class. 

We show that 𝒢 = (𝑔, 𝐺), where 𝑔: 𝐶 → 𝐷, 𝐺: 𝑃(𝑈𝐶) → 𝑃(𝑈𝐷) is an 𝑠-map such that 𝐺0: 𝑈𝐶 → 𝑈𝐷 is the usual 

isomorphism between 
𝑈𝐾

𝐾𝑒𝑟(𝐹0)
 and 𝐹0(𝑈𝐴). 
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(i) 𝑔: 𝐶 → 𝐷 be the same as f but restricted to the range 𝑓𝐴, given by 𝑔: 𝐴 =  𝐶 → 𝐷 = 𝑓𝐴 defined by 𝑔(𝑎) = 𝑓(𝑎) for 

all 𝑎 ∈ 𝐶. 

(ii) Let 𝐺0: 𝑈𝐶  = 
𝑈𝐴

𝑈𝐾
→ 𝑈𝐷 = 𝐹0𝑈𝐴 defined by 𝐺0(𝑈𝐾𝑥) = 𝐹0𝑥 for all 𝑥 ∈ 𝑈𝐴 be the isomorphism in crisp group theory. 

Then by 2(D)(t), 𝐹: 𝑃(𝑈𝐶) → 𝑃(𝑈𝐷) is defined by 𝐹(𝐴) = 𝐹0(𝐴) for all 𝐴 ∈ 𝑃(𝑈𝐶) 

(iii) Now we show that 𝒢 is an 𝑠-isomorphism. 

Clearly, 𝑔: 𝐶 → 𝐷 and 𝐺: 𝑃(𝑈𝐶) → 𝑃(𝑈𝐷) are maps such that 𝐺0: 𝑈𝐶 → 𝑈𝐷 is an isomorphism. 

It is enough to show that �̅�𝑔𝑐 = 𝐺0𝐶̅𝑐 and 𝐺0|𝐶̅𝑐: 𝐶̅𝑐 → �̅�𝑔𝑐 is an isomorphism. 

Let 𝑐 ∈ 𝐶, �̅�𝑔𝑐 = �̅�𝑔𝑐 ∩ (∪𝑎∈𝑔−1𝑔𝑐∩𝐴 𝐹0�̅�𝑎) = �̅�𝑓𝑐 ∩ (∪𝑎∈𝑓−1𝑓𝑐∩𝐴 𝐹0�̅�𝑎). Since 𝒜 is constant on each kernel class, �̅�𝑎 

= �̅�𝑐 for all 𝑎 ∈ 𝑓−1𝑓𝑐 implies ∪𝑎∈𝑓−1𝑓𝑐 𝐹0�̅�𝑎 = 𝐹0�̅�𝑐 then �̅�𝑔𝑐 = 𝐵𝑓𝑐 ∩ 𝐹0�̅�𝑐 = 𝐹0𝐴𝑐 as ℱ is increasing. 

Now we claim that 𝐹0�̅�𝑐 = 𝐺0𝐶̅𝑐. Since 𝐺0(𝑈𝐾𝑥) = 𝐹0𝑥 for all 𝑥 ∈ 𝑈𝐴 and 𝑈𝐾 ⊆ �̅�𝑐, we get 𝐺0(
�̅�𝑐

𝑈𝐾
) = 𝐹0(�̅�𝑐) (or) 𝐺0𝐶̅𝑐 

= 𝐹0�̅�𝑐, as 𝐶𝑐 = 
𝐴𝑐

𝑈𝐾
. Therefore �̅�𝑔𝑐 = 𝐺0𝐶̅𝑐. 

By 2(A)b, observe that 𝜙: 𝐺 → 𝐺′ is isomorphism of groups and 𝐻 is a subgroup of 𝐺 implies 𝜙|𝐻: 𝐻 → 𝜙𝐻 is a group 

isomorphism. 

Hence, since 𝐺0:
𝑈𝐴

𝑈𝐾
→ 𝐹0(𝑈𝐴) is group isomorphism, 𝐺0|𝐶̅𝑐 = 𝐺0|

�̅�𝑐

𝑈𝐾
:

�̅�𝑐

𝑈𝐾
→ 𝐺0(

�̅�𝑐

𝑈𝐾
) is a group isomorphism. But 

�̅�𝑐

𝑈𝐾
 = 

𝐶̅𝑐 and 𝐺0(
�̅�𝑐

𝑈𝐾
) = 𝐺0(𝐶̅𝑐) = �̅�𝑔𝑐. Consequently, 𝐺0|𝐶̅𝑐: 𝐶̅𝑐 → �̅�𝑔𝑐 is an isomorphism.   

   

Corollary 3.3 For any 𝑠-epimorphism ℱ𝑝: 𝒜 → ℬ of 𝑠-groups such that 𝐾𝑒𝑟(ℱ) ⊆ 𝒜, 
𝒜

𝐾𝑒𝑟(ℱ)
 is isomorphic to ℬ.   

Proof: It follows from 2(E)(y) and 3.2 above. 

 

The following example shows that the above Theorem is not true if ℱ is not increasing but 𝐾𝑒𝑟(ℱ) ⊆ 𝒜 and 𝒜 is 

constant on each kernel class. 

Example 8: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by 𝒜 = ({𝑎}, {(𝑎, ℤ4)}, 𝑃(ℤ4)), ℬ = ({𝑏}, {(𝑏, (0))}, 𝑃(ℤ4)), 

𝑓: 𝐴 → 𝐵 be given by 𝑓 = {(𝑎, 𝑏)} and 𝐹0 be the identity map. 

�̅�𝑓𝑎 = �̅�𝑏 = (0) ⊆ ℤ4 = 𝐹0�̅�𝑎, implying ℱ is not increasing, 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎}, {(𝑎, (0))}, (0̅)} ⊆ 𝒜, 𝒜 is constant 

on the kernel class because 𝑓−1𝑓𝑎 = 𝑓−1{𝑏} = {𝑎}, �̅�𝑎 = ℤ4. 

Let 
𝒜

𝐾𝑒𝑟(ℱ)
 = 𝒞. Then 𝐶 = 𝐴 = {𝑎}, 𝑈𝐶  = 

𝑈𝐴

𝐾𝑒𝑟(𝐹0)
 = 

ℤ4

(0)
 = ℤ4 and 𝐶̅𝑎 = 

�̅�𝑐

𝐾𝑒𝑟(𝐹0)
 = 

ℤ4

(0)
 = ℤ4. 

Let ℱ𝒜 = 𝒟.Then 𝐷 = 𝑓{𝑎} = {𝑏}, 𝑈𝐷 = 𝐹0𝑈𝐴 = ℤ4 and �̅�𝑏 = 𝐵𝑑 ∩∪𝑐∈𝑓−1𝑑∩𝐴 𝐹0𝐶𝑐 = (0) ∩ ℤ4 = (0). 

Therefore �̅�𝑓𝑎 is not isomorphic to 𝐶̅𝑎 because �̅�𝑓𝑎 = (0) is not isomorphic to ℤ4 = 𝐶̅𝑎 or 𝒞 is not isomorphic to 𝒟. 

 

The following example shows that the above Theorem is not true if ℱ is increasing, 𝐾𝑒𝑟(ℱ) ⊆ 𝒜 but 𝒜 is not constant 

on each kernel class. 

Example 9: Let ℱ: 𝒜 → ℬ be an s-homomorphism given by 𝒜 = ({𝑎1, 𝑎2}, {(𝑎1, 𝑍2), (𝑎2, ℤ4)}, 𝑃(ℤ4)), ℬ = 

({𝑏}, {(𝑏, ℤ4)}, 𝑃(ℤ4)), 𝑓: 𝐴 → 𝐵 be given by 𝑓 = {(𝑎1, 𝑏), (𝑎2, 𝑏)} and 𝐹0 be the identity map. 

Then 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎1, 𝑎2}, {(𝑎1, (0)), (𝑎2, (0)), 𝑃(0)}) ⊆ 𝒜, �̅�𝑓𝑎1=�̅�𝑏 = ℤ4 ⊇ 𝑍2 = 𝐹0�̅�𝑎1, �̅�𝑓𝑎2 = �̅�𝑏 = ℤ4 = 

𝐹0�̅�𝑎2, implying ℱ is increasing and 𝒜 is not constant on each kernel class because 𝑓−1𝑓𝑎1 = 𝑓−1𝑏 = {𝑎1, 𝑎2}, �̅�𝑎1 = 

𝑍2, �̅�𝑎2 = ℤ4. 

Let 
𝒜

𝐾𝑒𝑟(𝐹0)
 = 𝒞. Then 𝐶 = 𝐴 = {𝑎1, 𝑎2}, 𝑈𝐶  = 

𝑈𝐴

𝐾𝑒𝑟(𝐹0)
 = 

ℤ4

(0)
 = ℤ4 and 𝐶̅𝑎1 = 

�̅�𝑎1

𝐾𝑒𝑟(𝐹0)
 = 

𝑍2

(0)
 = 𝑍2, 𝐶̅𝑎2 = 

�̅�𝑎2

𝐾𝑒𝑟(𝐹0)
 = 

ℤ4

(0)
 = ℤ4. 

Let ℱ𝒜 = 𝒟. Then 𝐷 = 𝑓𝐴 = 𝑓{𝑎1, 𝑎2} = {𝑏}, 𝑈𝐷 = 𝐹0𝑈𝐴 = 𝐹0ℤ4 = ℤ4 and �̅�𝑏 = �̅�𝑏 ∩ (∪𝑐∈𝑓−1𝑏∩𝐴  𝐹0�̅�𝑐) = ℤ4  (𝐹0�̅�𝑎1 ∪

𝐹0�̅�𝑎2) = ℤ4 ∩ (𝑍2 ∪ ℤ4) = ℤ4. 

Clearly, 𝑎1, 𝑎2 ∈ 𝑓−1𝑓𝑎2 but 𝐶̅𝑎1 = 𝑍2 is not isomorphic to ℤ4 = �̅�𝑓𝑎2 or 𝒞 is not isomorphic to 𝒟. 

 

The following example shows that the above Theorem is not true if ℱ is increasing, 𝒜 is constant on each kernel class 

but 𝐾𝑒𝑟(ℱ) ⊆ 𝒜 

Example 10: Let ℱ: 𝒜 → ℬ be given by 𝒜 = ({𝑎}, {(𝑎, 𝑍2)}, 𝑃(ℤ4)), ℬ = ({𝑏}, {(𝑏, ℤ4)}, 𝑃(ℤ4)), 𝑓: 𝐴 → 𝐵 be given by 

𝑓 = {(𝑎, 𝑏)} and 𝐹0: 𝑈𝐴 → 𝑈𝐵 be given by 𝐹0 = {(ℤ4, 0)}. 

Then 𝐾𝑒𝑟(ℱ) = 𝒦 = ({𝑎}, {(𝑎, ℤ4)}, 𝑃(ℤ4)) ⊆ 𝒜 because 𝐾𝑎 = ℤ4 ⊆ 𝑍2 = �̅�𝑎, �̅�𝑓𝑎 = �̅�𝑏 = ℤ4 ⊇ (0) = 𝐹0�̅�𝑎, implying 

ℱ is increasing, 𝒜 is constant on the kernel class, 𝑓−1𝑓𝑎 = {𝑏}, �̅�𝑎 = 𝑍2. 

Let 
𝒜

𝐾𝑒𝑟(ℱ)
 = 𝒞. Then𝐶 = 𝐴 = {𝑎},𝑈𝐶= 

𝑈𝐴

𝐾𝑒𝑟(𝐹0)
= (0)and 𝐶̅𝑎 = 

�̅�𝑎

𝐾𝑒𝑟(𝐹0)
 = 

𝑍2

ℤ4
 = 𝑍2, so 

𝒜

𝐾𝑒𝑟(ℱ)
 does not exists. 

Let ℱ𝒜 = 𝒟.Then𝐷=𝑓𝐴 = {𝑏}, 𝑈𝐷 = 𝐹0𝑈𝐴 =𝐹0ℤ4 = (0) and �̅�𝑏 = �̅�𝑏 ∩  (∪𝑐∈𝑓−1𝑏∩𝐴 𝐹0�̅�𝑐) = ℤ4  ∩  (0)=(0). 

Therefore 𝐶̅𝑎 is not isomorphic to �̅�𝑓𝑎 or 𝒞 is not isomorphic to 𝒟. 
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Second Isomorphism Theorem for 𝒔-Groups   

Theorem 3.4 For any 𝑠-group 𝒢 and for any s-subgroup 𝒜 of 𝒢 and for any s-normal subgroup ℬ of 𝒢, we have 
𝒜

𝒜∩ℬ
 is 

purely 𝑠-isomorphic to 
𝒜ℬ

ℬ
. 

Proof: Let 𝒜 ∩ ℬ = 𝒞. Then 𝐶 = 𝐴 ∩ 𝐵, 𝑈𝐶  = 𝑈𝐴 ∩ 𝑈𝐵 and 𝐶̅𝑐 = �̅�𝑐 ∩ �̅�𝑐 for all 𝑐 ∈ 𝐶 

By 2(E)(o) we have 𝒞 = 𝒜 ∩ ℬ is a normal subgroup of 𝒜, 𝐶 ⊆ 𝐴, 𝑈𝐶  is a normal subgroup of 𝑈𝐴 and 𝐶̅𝑐 is a normal 

subgroup of �̅�𝑐 for all 𝑐 ∈ 𝐶. 

Let 𝒜ℬ = 𝒟. Then 𝐷 = 𝐴 ∩ 𝐵, 𝑈𝐷 = 𝑈𝐴𝑈𝐵 and �̅�𝑑 = �̅�𝑑�̅�𝑑 for all 𝑑 ∈ 𝐷. 

Let 
𝒜

𝒞
 = ℰ. Then 𝐸 = 𝐴 ∩ 𝐶 = 𝐶 = 𝐴 ∩ 𝐵, 𝑈𝐸 = 

𝑈𝐴

𝑈𝐶
 = 

𝑈𝐴

𝑈𝐴∩𝑈𝐵
 and �̅�𝑒 = 

�̅�𝑒𝑈𝐶

𝑈𝐶
 = 

𝑈𝐶�̅�𝑒

𝑈𝐶
 as 𝑈𝐶  is a normal subgroup of 𝑈𝐴 and 

�̅�𝑐 is a subgroup of 𝑈𝐴. 

Let 
𝒟

ℬ
 = ℱ. Then 𝐹 = 𝐷 ∩ 𝐵 = 𝐴 ∩ 𝐵 ∩ 𝐵 = 𝐴 ∩ 𝐵, 𝑈𝐹 = 

𝑈𝐷

𝑈𝐵
 = 

𝑈𝐴𝑈𝐵

𝑈𝐵
 and �̅�𝑓 = 

�̅�𝑓𝑈𝐵

𝑈𝐵
 = 

𝑈𝐵�̅�𝑓

𝑈𝐵
 as 𝑈𝐵 is a normal subgroup of 

𝑈𝐺 and �̅�𝑓𝑎 is a subgroup of 𝑈𝐺 . 

Now we show that there is a pure 𝑠-isomorphism 𝒢 = (𝑔, 𝐺): ℱ → ℰ, where 𝑔: 𝐹 → 𝐸 and 𝐺: 𝑃(𝑈𝐹) → 𝑃(𝑈𝐸). 

First observe that, 

𝐶 = ◻ implies𝐷 = ◻,𝐶 = ◻ = 𝐷 implies𝐸 = ◻ = 𝐹,𝐸 = ◻, 𝐹 = ◻ and 𝑈𝐸 = 
𝑈𝐴

𝑈𝐴∩𝑈𝐵
 which by second isomorphism theorem 

of crisp group theory is isomorphic to 
𝑈𝐴𝑈𝐵

𝑈𝐵
 = 𝑈𝐹 and so by 2(E)(j)(3) 𝒢 is a pure s-isomorphism of 

𝒜

𝒜∩ℬ
 onto 

𝒜ℬ

ℬ
. 

Therefore, let 𝐶 ≠◻≠ 𝐷. 

 

i) 𝐸 = 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 ∩ 𝐵 = 𝐷 ∩ 𝐵 = 𝐹 and 𝑔 be the identity map of 𝐹 onto 𝐸. Then 𝑔 is a bijection. 

ii) Since 𝑈𝐹 = 
𝑈𝐷

𝑈𝐵
 = 

𝑈𝐴𝑈𝐵

𝑈𝐵
 and 𝑈𝐸 = 

𝑈𝐴

𝑈𝐶
 = 

𝑈𝐴

𝑈𝐴∩𝑈𝐵
. Then by second isomorphism theorem in group theory, there exists an 

isomorphism 𝐺0: 𝑈𝐹 = 
𝑈𝐴𝑈𝐵

𝑈𝐵
→

𝑈𝐴

𝑈𝐴∩𝑈𝐵
 = 𝑈𝐸 because 𝑈𝐵 is a normal subgroup of 𝑈𝐺 and 𝑈𝐴 is a subgroup of 𝑈𝐺. 

Then by 2(D)(t), 𝐺: 𝑃(𝑈𝐹) → 𝑃(𝑈𝐸) be defined by 𝐺(𝐴) = 𝐺0(𝐴) for all 𝐴 ∈ 𝑃(𝑈𝐹), so 𝒢 is an 𝑠-map of ℱ to ℰ 

iii) Now we show that 𝐺0|�̅�𝑒: �̅�𝑒 → �̅�𝑒 is an isomorphism for all 𝑒 ∈ 𝐹. We have �̅�𝑒 = 
�̅�𝑒𝑈𝐵

𝑈𝐵
 = 

�̅�𝑒�̅�𝑒  𝑈𝐵

𝑈𝐵
. Since �̅�𝑒 is a 

subgroup of 𝑈𝐵, �̅�𝑒𝑈𝐵 = 𝑈𝐵 and so �̅�𝑒 = 
�̅�𝑒𝑈𝐵

𝑈𝐵
, �̅�𝑒 = 

�̅�𝑒𝑈𝐶

𝑈𝐶
 = 

�̅�𝑒  𝑈𝐴∩𝑈𝐵

𝑈𝐴∩𝑈𝐵
. 

Letting 𝐺 = 𝑈𝐺, 𝐶 = �̅�𝑒, 𝐵 = 𝑈𝐵, 𝐴 = 𝑈𝐴 and 𝐹 = 𝐺0 in 2(A)(c) we get 𝐺0|�̅�𝑒 = 𝐺0|
�̅�𝑒𝑈𝐵

𝑈𝐵
:

�̅�𝑒𝑈𝐵

𝑈𝐵
→

�̅�𝑒  𝑈𝐴∩𝑈𝐵

𝑈𝐴∩𝑈𝐵
 = �̅�𝑒 is  an 

isomorphism, since 𝑈𝐵 is a normal subgroup of 𝑈𝐺, 𝑈𝐴 is a subgroup of 𝑈𝐺 and �̅�𝑒 is a subgroup of 𝑈𝐴. 

iv) Lastly, we show that �̅�𝑔 = 𝐺0�̅�. Since 𝑔 be the identity map, it is enough to show that for all 𝑒 ∈ 𝐹, �̅�𝑒 = 𝐺0�̅�𝑒, and 

again, by 2(A)(c) we have, 𝐺0�̅�𝑒 = 𝐺0(
�̅�𝑒𝑈𝐵

𝑈𝐵
) = 

�̅�𝑒  𝑈𝐴∩𝑈𝐵

𝑈𝐴∩𝑈𝐵
 = �̅�𝑒. Therefore 𝐺0�̅�𝑒 = �̅�𝑒.   

 

Third Isomorphism Theorem for 𝒔-Groups   

Theorem 3.5 For any 𝑠-group 𝒢 and for any pair of 𝑠-normal subgroups 𝒜, ℬ of 𝒢 such that 𝒜 ⊆ ℬ, 
𝒢

ℬ
|𝐴 is purely 𝑠-

isomorphic to 

𝒢

𝒜
ℬ

𝒜

. 

Proof: Let 
𝒢

ℬ
|𝐴 = 𝒞. Then 𝐶 = 𝐵 ∩ 𝐴 = 𝐴, 𝑈𝐶  = 

𝑈𝐺

𝑈𝐵
 and 𝐶̅𝑐 = 

�̅�𝑐𝑈𝐵

𝑈𝐵
 for all 𝑐 ∈ 𝐶. 

Let 
𝒢

𝒜
 = 𝒟. Then 𝐷 = 𝐺 ∩ 𝐴 = 𝐴, 𝑈𝐷 = 

𝑈𝐺

𝑈𝐴
 and �̅�𝑑 = 

�̅�𝑑𝑈𝐴

𝑈𝐴
 for all 𝑑 ∈ 𝐷. 

Let 
ℬ

𝒜
 = ℰ.Then 𝐸 = 𝐵 ∩ 𝐴 = 𝐴, 𝑈𝐸 = 

𝑈𝐵

𝑈𝐴
 and �̅�𝑒 = 

�̅�𝑒𝑈𝐴

𝑈𝐴
 for all 𝑒 ∈ 𝐸. 

Let 
𝒟

ℰ
 = ℱ. Then 𝐹 = 𝐷 ∩ 𝐸 = 𝐴 ∩ 𝐴 = 𝐴, 𝑈𝐹 = 

𝑈𝐷

𝑈𝐸
 and �̅�𝑓 = 

�̅�𝑓𝑈𝐸

𝑈𝐸
 for all 𝑓 ∈ 𝐹. 

Now we show that there is a pure 𝑠-isomorphism ℋ = (ℎ, 𝐻): 𝒞 → ℱ, where ℎ: 𝐶 → 𝐹 and 𝐻: 𝑃(𝑈𝐶) → 𝑃(𝑈𝐹). 

First observe that, 

(i) 𝐶 = 𝐴 = 𝐹. Let ℎ be the identity map of 𝐶 onto 𝐹. Then ℎ is a bijection. 

(ii) 𝑈𝐶  = 
𝑈𝐺

𝑈𝐵
 and 𝑈𝐹 = 

𝑈𝐷

𝑈𝐸
 = 

𝑈𝐺
𝑈𝐴
𝑈𝐵
𝑈𝐴

. Then, by third isomorphism theorem in group theory, we have an isomorphism  𝐻0: 𝑈𝐶  = 

𝑈𝐺

𝑈𝐵
→

𝑈𝐺
𝑈𝐴
𝑈𝐵
𝑈𝐴

 = 𝑈𝐹 because 𝑈𝐴, 𝑈𝐵 are normal subgroups of 𝑈𝐺. 

Then by 2(D)(t), 𝐻: 𝑃(𝑈𝐶) → 𝑃(𝑈𝐹) be defined by 𝐻(𝐴) = 𝐻0(𝐴) for all 𝐴 ∈ 𝑃(𝑈𝐶), so ℋ is an 𝑠-map of 𝒞 to ℱ 
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(iii) Now we show that, 𝐻0|𝐶̅𝑎: 𝐶̅𝑎 → �̅�𝑎 is an isomorphism for all 𝑎 ∈ 𝐶. Since 𝐶̅𝑎 = 
�̅�𝑎𝑈𝐵

𝑈𝐵
 and �̅�𝑎 = 

�̅�𝑎𝑈𝐸

𝑈𝐸
 =    

�̅�𝑎𝑈𝐴
𝑈𝐴

𝑈𝐵
𝑈𝐴

𝑈𝐵
𝑈𝐴

, 

letting 𝐺 = 𝑈𝐺, 𝐵 = 𝑈𝐵, 𝐴 = 𝑈𝐴 and 𝐶 = �̅�𝑎 in 2(A)(d), 𝐻0|𝐶̅𝑎 = 𝐻0|
�̅�𝑎𝑈𝐵

𝑈𝐵
:

�̅�𝑎𝑈𝐵

𝑈𝐵
→

�̅�𝑎𝑈𝐴
𝑈𝐴

𝑈𝐵
𝑈𝐴

𝑈𝐵
𝑈𝐴

 is an isomorphism,  since 

𝑈𝐴, 𝑈𝐵 are normal subgroups of 𝑈𝐺 such that 𝑈𝐴 ⊆ 𝑈𝐵 and �̅�𝑎 is any subgroup of 𝑈𝐺. 

(iv) Lastly, we show that �̅�ℎ = 𝐻0𝐶̅. Since ℎ is the identity map, it is enough to show that for all 𝑎 ∈ 𝐶, �̅�𝑎 = 𝐻0𝐶̅𝑎.    

Again by 2(A)(d), 𝐻0𝐶̅𝑎 = 𝐻0(
�̅�𝑎𝑈𝐵

𝑈𝐵
) = 

�̅�𝑎𝑈𝐴
𝑈𝐴

𝑈𝐵
𝑈𝐴

𝑈𝐵
𝑈𝐴

 = �̅�𝑎. Therefore 𝐻0𝐶̅𝑎 = �̅�𝑎. 

  

IV.      CONCLUSION 
 

In this paper we generalized the existing correspondence and isomorphism theorems of groups in the crisp setup to those 

of generalized soft group. 
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