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I. INTRODUCTION

Ever since Molodtsov [7] introduced the notion of a soft set over a universal set as a parametrized family of subsets of a
given universal set to model some types of uncertainties, mathematicians started imposing and studying algebraic,
topological and topologically algebraic structures on them.

In fact, a soft (normal) subgroup over a group is a parametrized family of (normal) subgroups of the given group, a soft
(left ideal, right ideal, ideal) subring over a ring is a parametrized family of (left ideals, right ideals, ideals) subrings of
the given ring etc.. In general any (algebraic, topological or topologically algebraic) soft sub object over a given
(algebraic, topological or topologically algebraic) object may be defined as a parametric family of the corresponding
(algebraic, topological or topologically algebraic) sub objects of the given (algebraic, topological or topologically
algebraic) object. Thus mathematically speaking, a soft subobject over a crisp object U is a pair (F,E) where E is a
parameter set and F: E — P(U) is such that for each e in E, F(e) is a crisp subobject of U.

In fact, the notion of soft object over a crisp object U is a beautiful natural generalization of the crisp sub object, as the
collection of all non-empty soft sub objects over U with a given parameter set over a given crisp object is in one-one
correspondence with the collection of all crisp sub objects of the given object if the parameter set is a singleton set. Notice
that the empty soft object is the unique one with the parameter set, the empty set as, for a soft object (F, E') over an object
U, E is empty implies F is empty.

Murthy-Gouthami[12] introduced the notions of generalized soft group, generalized soft (normal) subgroup, generalized
soft quotient group etc., generalizing the corresponding notions of a soft group over a group and showed that several of
the crisp group theoretic results naturally extended to these new objects too.

Further, in another paper Murthy-Gouthami[13] introduced the notions of generalized soft homomorphism of generalized
soft groups, generalized soft (inverse) image of generalized soft (normal) subgroup under generalized soft
homomorphism, generalized soft kernel of a generalized soft homomorphism etc., generalizing the corresponding
existing notions for a soft group over a group and showed that several of the crisp theoretic results naturally extend to
these new objects too.

Now our aim in this paper is to generalize the existing correspondence and isomorphism theorems in the crisp setup, to
those of generalized soft group.

Il.  PRELIMINARIES

(A) Groups: (a) (i) For any map f: X - Y, forall a,b in X, a ~ b iff fa = fb is an equivalence relation on X with
eqgivalence classes (f ~1fa),cyx, also called kernel classes. (ii) G be a group. For any group homomorphism ¢: G — H,
Kerg € C and C is a subgroup of G imply ¢ ~1¢C = C (iii) For any subgroup A of G, for any normal subgroup H of G,

for any subgroup B of H such that B is a normal subgroup of A we have ¢:§ - % defined by ¢ (Ba) = Ha forall a € B
is a group homomorphism such that ¢(§) = %. If B =H then g = % is a subgroup of % Further, if A is normal in G then

% is normal in % (iv) for any pair of subgroups H, K of G such that H is a normal subgroup of K and A is a normal
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subgroup of G, we have % is a normal subgroup of KTA (v) for any subgroup K of G and for any pair of normal subgroups
H, A of K, we have HA is a normal subgroup of KA. (vi) for any (normal) subgroup H of G and for any normal subgroup
K of G such that K < H, we have % is a (normal) subgroup of %

(b) Generalized first isomorphism theorem: For any group homomorphism ¢: G — H & for any subgroup A of G we have
(1) p|A: A = @A is an epimorphism (2) Ker(¢|A) = Ker(¢p) N A (3) Kerépm) which is isomorphic to (¢|A4)(A)= pA.
(c) Generalized second isomorphism theorem: For any group G, and for any subgroup A of G, for any normal subgroup

B of G, F = Fp: % - ﬁ defined by abB = aB — a(A N B) = F,za or Fa defines an isomorphism such that for all ¢

is a subgroup of 4, F|Z:2 5 £4%) j5 5 monomorphism such that F(2) = S48 o g, C8 _, CAMB) 4e an
A A B B ANB B ANB B B ANB
isomorphism.
(d) Generalized third isomorphism theorem: For any group G and for any normal subgroups A, B of G such that A is a
CAB
CB

subgroup B and C is a subgroup of G, — is isomorphic to %

A

B

(B) Soft Sets In what follows we recall the following basic definitions from the Soft Set Theory which are used in the
main results: (e) [7] Let U be a universal set, P(U) be the power set of U and E be a set of parameters. A pair (F,E) is
called a soft set over U iff F: E - P(U) is a mapping defined by for each e € E, F(e) is a subset of U. In other words, a
soft set over U is a parametrized family of subsets of U.

Notice that a collective presentation of all the notions, soft sets and gs-sets raised some serious notational conflicts and
to fix the same Murthy-Maheswari[6] deviated from the above notation for a soft set and adapted the following notation
for convenience as follows:

Let U be a universal set. A typical soft set over U is an ordered pair (San Serif) S = (a5, S), where S is a set of parameters,
called the underlying parameter set for S, P(U) is the power set of U and o5: S — P(U) is a map, called the underlying
set valued map for S. Some times ag is also called the soft structure on S.

(f) [10] The empty soft set over U is a soft set with the empty parameter set, denoted by @ = (o, ¢). Clearly, it is unique.
(9) [9] A soft set S over U is said to be a whole soft set, denoted by Us, iff ogs = U for all s € S. (h) [10] A soft set S over
U is said to be a null soft set, denoted by &g, iff ags = ¢, the empty set, for all s € S. Notice that @, = @, the empty soft
(sub) set.

For any pair of soft sets A, B over U,

(i) [8] A is a soft subset of B, denoted by A < B, iff (i) A € B (ii) 0,a S oga for all a € A. The set of all soft subsets of
B is denoted by Sy (B)

(i) The following are easy to see:

(i) Always the empty soft set @ is a soft subset of every soft set A

(iA=BiffAcBandB < AiffA=B and g,a = ggza forall a € A.

(k) For any family of soft subsets (4;);¢; Of S,

(i) the soft union of (4;);¢;, denoted by U¢,; 4;, is defined by the soft set A, where (i) A = Ui 4; (it) o4a = Usey, 04,0,
where [, ={i €eI/a € A;},foralla e A

(ii) the soft intersection of (4;);¢;, denoted by n;¢; 4;, is defined by the soft set A, where (i) A = N 4; (ii) a4a =
Nies au,a forall a € A.

Notice that n;¢; A; can become empty soft set.

(C) Soft Groups, Soft Group homomorphisms: In this section we first recall the existing notions of a soft group, soft
(normal) subgroup, soft group homomorphism etc.. According to Aktas-Cagman[2], (1) if (F, A) is a soft set over a group
G, then (F, A) is said to be a soft group over G if and only if F(x) < G for all x € A. (2) Let (F,A) and (H, K) be two
soft groups over G. Then (H, K) is a soft subgroup of (F, A), written as (H,K) < (F,A),if K € A, H(x) < F(x) for all
x € K. (3) Let (F, A) be a soft group over G and (H, B) be a soft subgroup of (F, A). Then we say that (H, B) is a normal
soft subgroup of (F, A), written (H, B) 2 (F, A), if H(x) is a normal subgroup of F(x) i.e., H(x) 2 F(x), forall x € B.
(4) According to Sezgin-Atagun[1], if G is a group and (F, A) is a non-null soft set over G, then (F,A) is called a
normalistic soft group over G if F(x) is a normal subgroup of G for all x € Supp(F, A).

(5) According to [2], let (F, A) and (G, B) be two groups over G and K respectively, and let f: G - K and g: A - B be
two functions. Then we say that (f, g) is a soft homomorphism, and that (F, A) is soft homomorphic to (H, B). The latter
is written as (F, A) ~ (H, B), if the following are satisfied: f is a homomorphism from G onto K, g is a mapping from A
onto B, and f(F(x)) = H(g(x)) for all x € A. In this definition, if f is an isomorphism from G to K and g is a one-to-
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one mapping from A onto B. then we say that (f, g) is a soft isomorphism and that (F, A) is soft isomorphic to (G, B).
The latter is denoted by (F,A) = (H, B).

(D) Generalized soft sets

In this section we recall the notions of generalized soft set or gs-set or s-set for short, gs-subset or s-subset, gs-union or
s-union, gs-intersection or s-intersection etcetera from Murthy-Maheswari[5] and (increasing, decreasing, preserving) s-
map, (inverse) image of s-subset under an s-map from Murthy-Gouthami[13].

From now on, the script letters A, B, C, D etc. denote s-sets and/or their subsets and any such script letter Q stands for
the triplet (Q, Q, P(Uyp)). A power algebra is boolean algebra of the form P(U,) for some set U,.

(I) A generalized soft set or an s-set in short, is any triplet A, where A is the underlying set of parameters for U, or
parameter set in short, P(U,) is the complete lattice of all subsets of U, parametrized under A with parameters from A
and A: A — P(U,) is the underlying parametrizing map for U,,.

(m) The s-set A, where A = B, the empty set with no elements,

P(U,) = {@}, and A = @, the empty map, is called the empty s-set and is denoted by .

(n) An s-set A is said to be a whole s-set iff the parametrizing map A: A — P(U,) is defined by Aa = U, for all a € A.
(0) An s-set A is said to be a null s-set iff the parametrizing map A: A — P(U,) is defined by Aa = B, the empty set, for
all a € A.

For any pair of s-sets A and B,

A is an s-subset of B, denoted by A < B, iff (i) A € B (ii) Uy S Uy or equivalently P(U,) is a complete ideal of P(Ug)
and (iii) Aa € Ba forall a € A.

The set of all s-subsets of the s-set B is denoted by S (B).

An s-subset S is degenerated iff S = @ and S = @, the empty map. Clearly, the empty s-set is degenerated. Note that
degenerated s-subset is not unique.

(p) The following are easy to see:

(i) Always the empty s-set 1 is an s-subset of every s-set A.

(i) A=Biff ACBandBC AiffA=B,U,=Ugand A=B.

For any family of s-subsets (A;);¢; 0of B,

(q) the s-union of (A;);¢;, denoted by U;¢; A;, is defined by the s-set A, where

(i) A = Ui 4; is the usual set union of the collection (4;);¢; of subsets of B.

(i) P(Uy) = Vies P(Ua,) = P(Use; Uy,), Where Vie; P(Uy,) is the complete ideal generated by U;e; P(U,,) in P(U,) which
is the same as P (U;e; Uy,)

(iii) A: 4 > P(U,) is defined by Aa = U, A;a, where I, = {i € I|a € A;}

(r) the s-intersection of (A;);¢;, denoted by N;¢; (A;), is defined by the s-set A, where

(1) A=N;¢; A; is the usual set intersection of the collection (A;);¢; of subsets of B(ii) P(Uy) = Nie; P(Uy,) = P(Nie; Uy,)
is the usual intersection of the complete ideals of P(Uy,);e; in P(Uys)

(iii) A: A - P(U,) is defined by Aa = n;¢; A;a.

(s) For any pair of s-sets A and B, an s-map is any pair (f, F), denoted by F, where f: A - B and F: P(U,) - P(Ug) is
onto and extends F|U, or equivalently F=P(F|U,).

Note that quite often in all our examples F|U, will be denoted by F,,.

In what follows we give an Example to show that if F is not onto then some of the crucial properties like for subsets ¢, D
ofB,ccDcBimpliesFlccF 1D, F I (CuD)=F cuF 1D, F (¢ nD)=F ¢ nF1Detc. donot hold
and, as we know, without them nothing much can be done:

Example 1: Let F:A — B be given by A = ({p}, {(p, {x.y,2}), P({x,y,zH}), B= ({q}.{(q.{a, b, c}), P({a, b,cH}),
f={(p,@)}and F = {(B,8), (x,a), (y,b), (z,b), ({x,y}, {a, b}), ({z, x}, {a, b}), ({y, 2}, {b}), ({x, ¥, z}, {a, b})}. Then F,=
{(x,a), (¥, b), (z,b)}.

(1) Let € = ({q}, {(q, {b}), P({a, b, cH}. D = ({q}, {(q, {b, c}), P({a, b, cH}). B

Let FlC=M.ThenM = f71C = {p}, Uy = F3'Uc ={x,y,z}and Mp = Ap NUF ' Cfp ={x,y,2} n {y, z} = {y, z}.
Let F-1'D = N. Then N = f~1D = {p}, Uy = F3*Up = {x,v,z} and Np = Ap nU F~1Cfp = {x,y,z} n@ = @, implying
CCSDhbutF-lc g F1D.

(2) Let € = ({q},{(q, {b})}, P({a, b, c})), D = ({q}, {(q,{c}}, P({a, b, c})).

Then €UD = ({g},{(q.{b.cP}P({ab,c}), F€ = (p}{( 2D} PUxy.2D). F'D =({p} (.0},
P({x,y,2}), F'CUF D = ({p} {(p,{y, 2D}, P({x,y,2})) and F~'(C U D)=({p}, {(n,B)}, P({x,y,2})), implying
Fl(cuD)#FlcuFrip.

(3) Let € = ({q}, {(q,{b, cP}, P({a, b,c}), D = ({q},{(q,{a, b}, P({a b, c})).
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Then ¢nD = ({q},{(q,{a, b))}, P({a,b,c})), F'C = ({p}{(®.B)},P({x,y,2})), F'D = {p} {0, {x,y, 2D}
P({x,y,2})), F'¢nF'D = ({p},{(».B)},P({x,y,2})), F~H(€ ND) = ({p}{(v, {y,ZD} P({x,¥,2})), implying
FYenD)#FlenF1D.

Here onwards all our s-maps are the ones defined as above.

(t) Observe that whenever, F: A — B is an s-map, F is onto and extended. Consequently, (1) for all B € P(Ug), U F~'B
= (F|U)™'B =F;'B. (2) forall ¢ < U,, the image of the element C € P(U,) under F is the same as the image of the set
C under F, or FC = F,C (3) F is increasing iff Bfa 2 FAa for all a in A iff Bfa 2 FyAa for all a in A, F is decreasing
iff Bfa € FAa forall ain A iff Bfa € FyAa forall ain A, F is preserving iff Bfa = FAa for all a in A iff Bfa = F,Aa
forall ain A.

(u) Hence, for any s-map F: A — B,

(i) F is increasing, denoted by F; iff Bfa 2 FyAa forall a in A

(i) F is decreasing, denoted by F, iff Bfa € F,Aa forall a in A

(iii) F is preserving, denoted by F, iff Bfa = FyAa forall a in A.

For any s-map F: A — B, (defined as in (t) above)

(v) for any s-subset C of A, the s-image of C under F, denoted by FC, is defined by the s-set D, where (i) D = fC (ii) Up
= FyUc or PUp = (FoPU¢) pwyy = P(FoUc) = (FoUc) pqup (i) D: D > PUy is given by Dd = Bd nU FC(f ~'d n C) for
alld e D

(w) for any s-subset D of B, the s-inverse image of D under F, denoted by F~1D, is defined by the s-set ¢, where (i) C
= f~1(D) (ii) U, = Fy Y (Up) or P(U) = Fy L(P(Up)) = P(Fy 1(Up)) (iii) C: € —» P(U,) isgivenby Cc =Ac NnU F~'Dfc
forall c € C.

(E) s-Groups and s-Homomorphisms of s-Groups In this section we recall the notions of s-group, s-(normal)
subgroups, s-product, s-quotient groups etc. from Murthy-Gouthami[12] .

(a) An s-set G is said to be an s-(normal) group iff (i) U; is a group (ii) Gg is a (normal) subgroup of U forall g € G.
An s-group which is also a whole s-set is a whole s-group. Clearly, whole s-group and whole s-normal group are the
same.

(b) For any s-group G and for any s-subset A of G,

(1) A is an s-subgroup of G iff (i) A € G (ii) U, is a subgroup of Uj; (iii) Ag is a subgroup of Gg for all g € A.

Notice that, a degenerated s-subset A of an s-group §G is an s-subgroup iff Uy is a subgroup of Ug.

An s-subgroup <A is an identity s-subgroup of G iff U, = (ey,,) and Ag = (ey,,) forall g € A.

(2) A is an s-normal subgroup of G iff (i) A € G (ii) U, is a normal subgroup of Uj; (iii) Ag is a normal subgroup of Gg
forall g € G.

Notice that, a degenerated s-subset A of G is an s-normal subgroup iff U, is a normal subgroup of U, and a degenerated
s-subset which is also an s-(normal) subgroup is called a degenerated s-(normal) subgroup.

(c) For any s-group G and for any s-subsets A, B of G, the s-product of A by B, denoted by AB, is defined by C, where
C=ANnB,U;=U,Uzand Cc=AcBcforallc € C.If C =@ then C =@ or (8,8, P(U.)) =C.

(d) For any s-group G, and for any s-normal subgroup N of G, the s-quotient group, denoted by % is defined by C,
where C=NNG=N, U, = Z—Gand Cc= G;ﬂfor all c € €. Once again if C = @ then € = @ or (8,8, P(U.)) = C.
N N

(e) For any s-set A and for all B € A, the restriction of A to B, denoted by A|B, is defined by C iff C = B, U, = Uy,
C:C > P(U,) isgiven by Cb = Ab forall b € B.

In what follows we recall some notions like s-homomorphism, s-isomorphism, pure s-isomorphism, s-kernel etc., from
Murthy-Gouthami[13] and some results from the above papers which will be used in the main section.

(f) An s-map F: A — B is an s-homomorphism of s-groups, again denoted by F: A — B, iff (1) both A, B are s-groups
(2) F: P(Uy) — P(Upg) isany map such that F, = F|U,: Uy — Uy is a group homomorphism.

Note: Since any s-homomorphism F: A — B is an s-map, from the definition of s-map F = P(F,), for any subset C of
Uy, F(C) = Fy(C) and so we know F if we know F,, and vice versa. Consequently, in all our examples we specify only
f:A - Band Fy: Uy = Ug from which follow the s-map F = (f, F).

(9) An s-homomorphism F: A — B is an s-monomorphism of s-groups, again denoted by F: A — B, iff both f is one-
one and F is one-one.

(h) An s-homomorphism F: A — B is an s-epimorphism of s-groups, again denoted by F: A — B, iff both f is onto and
F is onto.
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(i) An s-homomorphism F: A — B is an s-isomorphism of s-groups, again denoted by F: A — B, iff (1) F,: U, » Up is
an isomorphism (2) Fy|Aa: Aa — Bfc is an isomorphism for all ¢ € f~'fa and for all a € A (3) F is preserving.

(1) An s-homomorphism F: A — B is a pure s-isomorphism of s-groups, again denoted by F: A — B, iff (1) f: A - B is
a bijection (2) F,: U, - Uy is an isomorphism (3) Fy|Ac: Ac — Bfc is an isomorphism (4) F is preserving.

Clearly, (1) any pure s-isomorphism is an s-isomorphism but not conversely. (2) For any F: A — B, if A = B then F, is
a crisp group isomorphism iff F is s-isomorphism. However, (3) F is pure s-isomorphism iff F, is a crisp group
isomorphism and B = @.

(k) For an s-homomorphism F: A — B of s-groups, s-Kernel of F, denoted by Ker(F), is defined by the whole s-set
Ker(F) =%, where K = A, P(Uy) = P(Ker(F,)) or Uy = Ker(F,) and K: K — P(Uy) is given by Kk = Ker(F,) for all
k € A

(I) For any s-map F: A — B, an s-subset € of A is an F-constant or constant on each kernel class iff Ca = Cc¢ for all
a€ flfcforallcecC.

(m) For any s-map F: A — B and for any s-subset D of B, F~1D is always an F-constant subset of A, whenever A is
F-constant.

(n) For any pair of s-(normal) subgroups A, B of G, A is an s-(hormal) subgroup of B iff A is an s-subset of B.

(o) For any s-group G, for any s-subgroup A of G and for any s-normal subgroup B of G we have A N B is an s-normal
subgroup of A.

(p) For any s-group G, for any s-subset H of G and for any s-subgroup K of G such that H < ¥, we have H is an s-
subgroup of K iff H is an s-subgroup of G.

() For any s-group G and for any pair of s-subsets H, X of G such that 7 < K and X is an s-subgroup of G, we have
H is an s-normal subgroup of G implies H is an s-normal subgroup of XK.

(r) For any s-group G and for any pair of s-(normal) subgroups 7, X of G, HX is an s-(normal) subgroup of G iff HK
=KH.

(s) For any s-group G and for any pair of s-subgroups ', X of G such that # or X is an s-normal subgroup of G we have
K is an s-subgroup of G.

(t) For any s-normal subgroup A of an s-group G and for any s-(normal) subgroup B of G such that A < B, % isan s-
(normal) subgroup of %.

(u) For any s-homomorphism F: A — B of s-groups and for any s-subgroup C of A, the s-image FC of C under F is an
s-subgroup of B, whenever C is constant on each kernel class. Further, whenever A is also constant on each kernel class,
FC is an s-subgroup of FA.

(v) For any s-homomorphism F: A — B of s-groups and for any s-normal subgroup C of A the s-image FC of C under
F is an s-normal subgroup of FA, whenever both A and C are constants on each kernel class.

(w) For any s-homomorphism F: A — B of s-groups and for any s-subgroup D of B, the s-inverse image, F 1D of D
under F is an s-subgroup of both A and F~1B.

(X) For any s-homomorphism F: A — B of s-groups and for any s-normal subgroup D of B, the s-inverse image F~1D
of D under F is an s-normal subgroup of F~1B.

(y) For any s-epimorphism, F;: A — B of s-groups, F A = B.

(2) For any s-homomorphism F;: A — B of s-groups, ;B = A.

I.  MAIN THEOREMS

As mentioned earlier in the Introduction, in Murthy-Gouthami[12] the notion of soft (normal sub, sub) group is
generalized to that of an s-(hormal sub, sub) group and several of the crisp group theoretic properties of (inverse) images
were shown to have extended and in Murthy-Gouthami[13] the notion of homomorphism of groups in the crisp set up is
generalized to that of an s-homomorphism of s-groups and several of the crisp group homomorphic properties were shown
to have extended. Now in this section we generalize and extend the correspondence and the three Isomorphism theorems
of groups in the crisp set up to those of s-groups.

Correspondence Theorem for s-(normal) subgroups

Theorem 3.1 For any s-epimorphism F,: A — B of s-groups there is a one-to-one correspondence between the set of
all s-(normal) subgroups C of A which are constant on each kernel class and which contain Ker(F) and the set of all
s-(normal) subgroups of FA = B.

Proof: Let I be the set of all s-(normal) subgroups C of A which are constant on each kernel class and which contain
Ker(F) and let J be the set of all s-(normal) subgroups of B.

Define ¢:1 - J by ¢(C) = F,(C). Then since every C in I is constant on each kernel class, by 2(E)(u),(v) ¢(C) = F,(C)
is an s-(normal) subgroup of B and so ¢ is well-defined.
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Define y: ] — 1 by (D) = F, *(D). Then by 2(E)(w),(x) and (z) (D) = F, *(D) is an s-(normal) subgroup of A and
so ¥ is well-defined.

To show ¢ defines a one-one correspondence between I and J, it is enough to show o ¢ = 1; and ¢p o = 1; or
equivalently %, (F,(€)) = C and F,(F, 'D) = D.

In what follows, we show that for any C € I, %, *(F,(C)) = C.

Let FC=P. Then P=fC, Up=FoU; and Pp = Bp N (Uoef-1pn¢ FoCc) forall p € P.

Let F~1P = Q. Then Q = f~*P, U, = F3 Up and Qq = Aq N Fy 'Pfc forall q € Q.

Ker(F) c CimpliesK = C = A, Uy = Ker(F,) € U. and Kk = Ker(F,) € Ck forall k € A.

We claim that Q = € or (i) Q = C (ii) U, = U, and (iii) Qq = Cq for all g € Q
():Q=f"P=ffC=f1(fA)=4=C.

(ii): Uy = Fg'Up = F3 *(FoU¢) = Ue, where the last equality is due to the fact that Ker (F,) S U, and by 2(A)(ii).

(iii): Let g € Q = C be fixed. Then Qq = Aq N F3'Pfq = Aq N Fy*(Bfq N (Uee~174nc FoCC)) = Aq N F'Bfq n
Fo_l(ucef‘lfqnc FyCo).

Since C is constant on each kernel class, Cc = Cq forall ¢ € £ fq N C implies U ¢ -1, FoCc = FoCq which implies

Qq=AqNFy'BfqnFy (FyCq) @ AqNF;'Bfgn Cq @ Fy'Bfq n Cq, where the second equality is due to the fact
that Ker (F,) S Cq and the third equality is due to C € A.

Now since F is preserving and C is an s-subgroup of A, F,Cq S FyAq = Bfq or F,Cq S Bfq which implies Cq €
Fy'Bfqor Cqn Fy'Bfq = Cq. Therefore Qq = Cq N Fy'Bfq = Cqor C = Q.

In what follows, we show that for any D € J, ,(F, *(D)) = D.

Let F~'D=R.ThenR = f~'D, U, = F;'U, and Rr = Ar n F; 'Dfr forall r € R.

Let FR=S.Then S = fR, Us = FoUg and Ss = Bs N (U ¢s-15ng FoRT) forall s € S.

We show that S =D or (i) S = D (ii) U = Up, and (iii) Ss = Ds for all s € S.

(i): S = fR = ff~1D = D, where the last equality is due to f is onto.

(ii): Us = FyUyg = Fo(F51Up) = Up, where the last equality is due to Fj is onto.

(iii): Let s € S = D be fixed and v € f~*s N R. Then s = f7, S5 = Bs N (U,¢-150z FoRT). Now we show that FyRr =
Dsforallr € f~'s N R.

(a) Since r € f~1s, fr =s. Since D € B, F is preserving we have Ds = Dfr € Bfr = F,Ar which implies Dfr n FyAr
=Dfr.

Now F,Rr = Fy(Ar N Fy'Dfr) € FyAr 0 FoFy 'Dfr = FyAr n Dfr = Dfr = Ds which implies F,Rr € Ds.

(b) Since D € B, Ds = Dfr € Bfr = FyAr or Ds = Ds N FyAr and since F, is onto, we have FyFy'Ds = Ds = Ds N
FyAr which implies Ds = FyF;'Ds N FyAr. Let B € Ds = FyFy 'Ds N FyAr which implies g = Fya, @ € Fy'Ds, B =
Fyy, y € Ar which implies Fya = Fyy which implies @ — y € ker(F,) = F;'(0) € F;'Ds with a € Fy'Ds which
implies y =y — @ + a € Fy'Ds which implies y € Fy1Ds n Ar = Rr which implies g = Fyy € F,Rr which in turn
implies Ds € FyRr.

From (a) and (b) we get FoRr = Ds forall r € f~'s N R.

Therefore, U,.cf-150r FyRr = Uref-1snr Ds =Ds, implying Ss =Bs N Ds=DsorS =D.

The following Example shows that the above Theorem is not true if F is decreasing, F is onto, Ker(F) < C but C is
constant on each kernel class.

Example 2: Let F: A — B be an s-homomorphism given by: A=({a}, {(a,Z,)}, P(Z4))=C, B=({b}, {(b, (0))}, P(Z,)),
f:A— Bgivenby f ={(a, b)} and F, be the identity map.

Then Bfa = (0) € Z, = FyAa, implying F is decreasing, Ker (F) = K=({a}, {(a, (0))}, P(0)) € C, F is onto and C is
constant on each kernel class because Ca = Z,.

Let FC =D.Then D = fC = {b}, Up = FyU, = Z, and Db = Bb N (Yeer-1pne FyCc) = (0) N Z, = (0).

Let F-1D=€.ThenE = f~1D ={a}, Uy = F; U, =Z,and Ea = Aa N F;'Dfa =17, n (0) = (0) # Z, = Ca or F;'F,C
#* C.

The following Example shows that the above Theorem is not true if F is increasing, F is onto.

Example 3: Let F: A — B be an s-homomorphism given by: A = ({a}, {(a, Z,)}, P(Z,)), B = ({b}, {(b, (Z,))}, P(Z,))
=D, f:A— Bagivenby f ={(a, b)} and F, be the identity map.

Then Bfa = Z, 2 Z, = FyAa, implying F is increasing, Ker(F) = K = ({a},{(a, (0))}, P(0)) € D, F is onto.
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Let F-'D=C.ThenC=f"'D={a}, U, = Fy'Up=Z,and Ca=AanF;'Dfa=2,NZ,=Z, Ker(F) CC.
LetFC=&.ThenE = fC = {b}, Ug = FyUs = Zyand Eb = Bb N (Uoef-1pnc FoCC) =Zy N Z, = Z, # Ly = Db O F;F*D
#D.

The following Example shows that the above Theorem is not true if F is preserving, f is not onto, F; is onto.

Example 4: Let F:A — B be an s-homomorphism given by: A= ({ay,a,},{(a1,2,),(a,, Z,)}, P(Z,)), B=
({by, b3}, {(b1,Z,), (b5, Z,)}, P(Zy)) =D, f: A - B given by f ={(a,, b;), (a,, b;)} and F, be the identity map.

Then Bfa, =Z, = FyAa, and Bfa, = Z, = FyAa,, implying F is preserving, Ker(F) = X = ({ay, a,}, {(as, (0)),
(az, (0))3}, P(0)), f is not onto, F, is onto.

Let F'D=C.ThenC=f"'D ={ay,a,}, U, = F; U, =Z, and Ca, = Aa, N F;'Dfa, =Z, N Z, = Z, = Ca,. Ker(F)
cC.

Let FC = . Then E = fC = {b,} # {b;, b,} = D, implying F, %, 'D # D.

The following Example shows that the above Theorem is not true if F is preserving, f is onto, F, is not onto.

Example 5: Let F: A — B be an s-homomorphism given by: A = ({a}, {(a, Z,)}, P(Z,)), B = ({b}, {(b, Z,)}, P(Z,)) =
D, f:A - B given by f ={(a, b)} and F, be the inclusion map F, = {(0,0), (1,2)}.

Then Bfa = Z, = F,Aa, implying F is preserving, Ker(F) = X = ({a}, {(a, (0))}, P(0)), F, is not onto.

Let F-'D=C.ThenC = f~'D ={a}, U, = Fy'Up =Z, and Ca = Aa N F;'Dfa =7, N Z, = Z,. Ker (F) S C.

Let FC=E.ThenE = fC = {b}, Ug = FoU; = Z, # L, = Up, implying F,F,'D # D.

The following Example shows that the above Theorem is not true if F is preserving, F is onto, Ker(F) £ C but C is
constant on each kernel class.

Example 6: Let F: A — B be an s-homomorphism given by: A = ({a}, {(a,Z,)}, P(Z,)) , B = ({b},{(b, Z,)}, P(Z,)),
C = ({a}, {(a, (0))}, P(Z4)), f: A - B given by f = {(a, b)} and F, = {(0,0), (2,0), (1,1), (3,1)}.

Then Bfa=Z,=F,Aa, implying F is preserving, Ker(F)=X=({a},{(a, Z,)}, P(Z,)) € C, F isonto and C is constant on
each kernel class because Ca = (0).

Let F€ =D. Then D = fC = {b}, Up = FoU; = Z, and Db = Bb N (U e-1pn¢ FoCc) = Z, N (0) = (0).
LetF'D=E.ThenE=f"'D={a},Us =F;'Up=Z,and Ea=Aa N Fy'Dfa =7, N Z, = Z, # (0) = Ca or F; 1F,C
# C.

The following Example shows that the above Theorem is not true if F is preserving, F is onto, Ker(F) < C but C is not
constant on each kernel class.

Example 7: Let F: A — B be an s-homomorphism given by: A=({ay, a,},{(ay,Z), (a,,Z)}, P(Z)), B = ({b}, {(b,Z)},
P(Z)), C = ({a,a,},{(ay,2Z), (a,,3Z)}, P(Z)), f: A = B given by f = {(ay,b), (a,, b)} and F, be the identity map.
Then Bfa, = Z = FyAa, and Bfa, = Z = FyAa,, implying F is preserving, Ker(F) = X = ({ay, a,},{(as, (0)),
(az, (0))}, P(0)) € C, F is onto and € is not constant on each kernel class because Ca, = 2Z, Ca, = 37Z.

Let FC =D.Then D = fC = {b}, Up = FoUc = Zand Db = Bb N (Uyef-1pn¢ FoCc) = Z N (2Z U 3Z) = 2Z U 3Z.

Let F-'D=E. ThenE = f'D = {ay,a,}, U = F;'Up = Z and Ea, = Aa; N Fy'Dfa, =Z N (2ZU 3Z) = 2Z U 3Z =
Ea,.

Clearly, FC =D and F~1D = £ are not even s-subgroups.

First Isomorphism Theorem for s-groups

Theorem 3.2 For any s-homomorphism F;: A — B of s-groups such that Ker(F) € A, A

Ker(F)

is isomorphic to FA,

whenever A is constant an each kernel class.
Proof: Let X = Ker(F) S A. Then K = A, Uy = Ker(F,) € U, and Kk = Ker(F,) € Ak forall k € K.

Let £=¢. Then C=A, Uy=24=—Y4_gng ¢o=AKrTo) _ Ac
X Uk Kfr(Fo) Ker(Fp) Uk

Since U, is a group and Cc = S—C is a subgroup of Z—A = U, as Ac is a subgroup of Uy, by the definition of an s-group, C
K K

is an s-group.

Let FA =D. Then D = fA, Up = FyUy and Dd = Bd N (Uef-14n4 FoAc) forall d € D.

Since image of a subgroup is a subgroup and intersection of subgroups is a subgroup, it follows that Uj, is a group and

Dd is a subgroup of Up. Consequently, D is an s-group as <A is constant on each kernel class.
We show that G = (g,G), where g:C - D, G:P(U;) - P(Up) is an s-map such that G,: U, = Up is the usual

. . Uk
isomorphism between Ker(Fe) and Fy(Uy).
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(i) g: C = D be the same as f but restricted to the range fA, givenby g:A = C - D = fA defined by g(a) = f(a) for
alla € C.
(ii) Let Go: U, = Z—A - Up = FyU, defined by G, (Uxx) = Fyx for all x € U, be the isomorphism in crisp group theory.
K
Then by 2(D)(t), F: P(U;) = P(Up) is defined by F(A) = F,(A) forall A € P(U)
(iif) Now we show that G is an s-isomorphism.
Clearly, g: € - D and G: P(U;) — P(Up) are maps such that G,: U, — Up is an isomorphism.
It is enough to show that Dgc = G,Cc and G,|Cc: Cc — Dgc is an isomorphism.
Letc € C, Dgc =Bgc N (Ugeg-1gcna FoAa) = Bfc N (Ugep-17cna FoAa). Since A is constant on each kernel class, Aa
= Acforall a € £~ fc implies Uye 17, FoAa = FyAc then Dgc = Bfc N FyAc = FyAc as F is increasing.

Now we claim that FyAc = G,Cc. Since Go(Uxx) = Fox for all x € U, and Uy S Ac, we get Go(?) = Fy(Ac) (or) G,Cc
K

= FyAc,as Cc = g—c. Therefore Dgc = G,Cc.

K
By 2(A)b, observe that ¢p: G — G’ is isomorphism of groups and H is a subgroup of G implies ¢p|H: H — ¢H is a group
isomorphism.

Hence, since GO:LL;—A - Fy(U,) is group isomorphism, Go|Cc = G| S—C# - Go(f) is a group isomorphism. But S—C =
K K K K K

Ccand Go(j—c) =Gy(Cc) = Dgc. Consequently, Go|Cc: Cc —» Dgc is an isomorphism.
K

A
Ker(F)

Corollary 3.3 For any s-epimorphism F,: A — B of s-groups such that Ker (F) € A,
Proof: It follows from 2(E)(y) and 3.2 above.

is isomorphic to B.

The following example shows that the above Theorem is not true if F is not increasing but Ker(F) € A and A is

constant on each kernel class.

Example 8: Let F: A — B be an s-homomorphism given by A = ({a}, {(a,Z,)}, P(Z,)), B = ({b},{(b, (0))}, P(Z,)),

f:A — Bbegivenby f ={(a, b)} and F, be the identity map.

Bfa = Bb = (0) € Z, = FyAa, implying F is not increasing, Ker(F) = K = ({a},{(a, (0))},(0)} € A, A is constant

on the kernel class because f~*fa = f~1{b} = {a}, Aa = Z,.
A U Z = Ac VA

LmK”@)=CfﬂmnC=A={aLUC=Kwaw=E£=Z4MMCa=KWGM=E§=

Let FA =D.Then D = f{a} = {b}, Up = FyU, = Z, and Db = Bd NU ¢ ;-1 FoCc = (0) N Z, = (0).

Therefore D fa is not isomorphic to Ca because D fa = (0) is not isomorphic to Z, = Ca or C is not isomorphic to D.

4+

The following example shows that the above Theorem is not true if F is increasing, Ker(F) < A but A is not constant
on each kernel class.

Example 9: Let F::A — B be an s-homomorphism given by A = ({ay,a,},{(a1,2,),(a,,Z,)}, P(Z,)), B
(b}, {(b,Z,)}, P(Zy)), f: A = B begiven by f = {(ay, b), (a,, b)} and F, be the identity map.

Then Ker(F) = X = ({ay, a3}, {(ay, (0)), (ap, (0)),P(0)}) € A, Bfa,=Bb = Z, 2 Z, = FyAa,, Bfa, = Bb = Z,
FoAa,, implying F is increasing and A is not constant on each kernel class because f~*fa, = f~'b = {a;,a,}, Aa; =
Z,, Aa, = 7,.

A _ . __Ua _ T4 _ =  _ Aa _Z _ Ao Aa, —Za _
er ) C.ThenC=A={a,,a,}, U; = Rer ()~ 0" Z,and Ca, = er )~ © Z,, Ca, o) - ©

Let FA =D.Then D = fA= f{ay,a,} = {b}, Up = FyUy = FyZy =Zyand Db =Bb N0 (Ugep-1pna FoAc) =17, (FyAa, U
Clearly, a,,a, € f~fa, but Ca, = Z, is not isomorphic to Z, = Df a, or C is not isomorphic to D.

4

The following example shows that the above Theorem is not true if F is increasing, A is constant on each kernel class
but Ker(F) g A

Example 10: Let F: A — B be given by A = ({a}, {(a, Z;)}, P(Z,)), B = ({b}, {(b,Z,)}, P(Z,)), f: A = B be given by
f={(a,b)}and F,: Uy = Ug be given by F, = {(Z,, 0)}.

Then Ker(F) =K = ({a},{(a,Z,)}, P(Z,)) Z A because Ka =7, £ Z, = Aa, Bfa=Bb =7, 2 (0) = FyAa, implying
F is increasing, A is constant on the kernel class, f~'fa = {b}, Aa = Z,.

A _ o _ Ua _  __Aa_ _Zp_ A
Let Rer ) C.ThenC = A ={a},U.= RerFe) (0)and Ca = or ()~ 1 Z,, S0 Rer ()

Let FA = D.ThenD=fA = {b}, Up = FoU, =FyZ, = (0) and Db = Bb N (Ues-1pna FoAc) = Zy N (0)=(0).
Therefore Ca is not isomorphic to Dfa or € is not isomorphic to D.

does not exists.
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Second Isomorphism Theorem for s-Groups

Theorem 3.4 For any s-group G and for any s-subgroup A of G and for any s-normal subgroup B of G, we have % is
purely s-isomorphic to %.

Proof: Let ANB=C.ThenC=ANB,U.=U,NUgand Cc=Acn Bcforallc € C )

By 2(E)(0) we have C = A N B is a normal subgroup of A, C € A, U, is a normal subgroup of U, and Cc is a normal

subgroup of Ac forall c € C.
Let AB=D.ThenD=ANB, U, =U,Ugz and Dd = deEd foralld € D.

Let?:S.ThenE:AﬂC:C:AnB,UE:E: and Fe _ AeUc _ UcAe

Uc UAﬂUB Uc

as U, is a normal subgroup of U, and

Ac is a subgroup of U,.

Let%z}". ThenF=DNB=ANBNB=ANB, Uy :—D—UguB an de—DfUB UBDfas Uy is a normal subgroup of
Up

U; and D fa is a subgroup of U.
Now we show that there is a pure s-isomorphism G = (g,G): F - &, where g: F — E and G: P(Ug) — P(Ug).
First observe that,

C=0impliesD =B,C=B=D |mpI|esE B=FE=08F=0andU; = —WhICh by second |somorph|sm theorem
of crisp group theory is isomorphic to Zals Uy = Ur and so by 2(E)(j)(3) g is a pure s-isomorphism of — onto —
Therefore, let C #B+ D.

E=Z=ANB=ANBNB=DNB= F and g be the identity map of F onto E. Then g is a bijection.
UD UAUB

ii) Since Uy = and Ug = —= m Then by second isomorphism theorem in group theory, there exists an
Uc
isomorphism G,: Uy = % - = liw = Uy because Ug is a normal subgroup of U, and U, is a subgroup of Ug.
B A

Then by 2(D)(t), G: P(Up) = P(Ug) be defined by G(A) = G,(A) forall A € P(Ug), so G is an s-map of F to €

- o . = _ DeUp _AeBe Up wo: & -
iii) Now we show that G,|Fe: Fe — Ee is an isomorphism for all e € F. We have Fe = ==& = % Since Be is a
B B
5 = AeUp &= AeU Ae UpnU
subgroup of Ug, BelUy = Uy and so Fe = 2228 Fe = 22%c - 2¢ UaNUs
Up Uc UapnUp

AeUp AeUp 5 Ae UynUp

Letting G = U;, C = Ae, B=Ug, A=U, and F = G, in 2(A)(c) we get Gy|Fe = G| = Tonn

Up B A B
isomorphism, since Uy is a normal subgroup of Uy, U, is a subgroup of U, and Ae is a subgroup of U,.
iv) Lastly, we show that Eg = G,F. Since g be the identity map, it is enough to show that for all e € F, Ee = G,Fe, and

again, by 2(A)(c) we have, GyFe = GO(AeUB) % = Ee. Therefore G,Fe = Ee.
A B

=FEeis an

Third Isomorphism Theorem for s-Groups
Theorem 3.5 For any s-group G and for any pair of s-normal subgroups A, B of G such that A < B, %|A is purely s-

s
isomorphic to £
A i
Proof: Let%|A=C.ThenC=BnA:A,Ucz%and C_ch;UBforallceC.
B B
LetizD.ThenDanAzA UD=Eand5d=GdU*‘foralldeD

Let—-gThenE BNnA= AUE-—andEe eAforaIIeeE

LetE-T.ThenF-DnE-A NA=A4, UF=U—ande=%forallfeF.
E E

Now we show that there is a pure s-isomorphism # = (h,H):C — F, where h:C —» F and H: P(U;) - P(Ug).
First observe that,
(i) C = A =F. Let h be the identity map of C onto F. Then h is a bijection.

Ug
i) Up =25 and Up = Ip - Ua Then, by third isomorphism theorem in group theory, we have an isomorphism H,: U, =
c<y TRT y p group y p 0-Uc
B E -
U
vg A
Z—g - Z:; = U because Uy, Uy are normal subgroups of Ug.
Ua

Then by 2(D)(t), H: P(U;) = P(Ug) be defined by H(A) = Hy(A) forall A € P(U,), so H isan s-map of C to F
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EaUAUB
(iii) Now we show that, Hy|Ca: Ca — Fa is an isomorphism for all a € C. Since Ca = = Davs _ —ata
. Up
U
GaUAUB 4
letting G = Uz, B = Ug, A= U, and C = Ga in 2(A)(d), Hy|Ca = H,| GaUB.G;ZB "ﬁ_BUA is an isomorphism, since
Ua

Uy, Ug are normal subgroups of U such that U, € Uy and Ga is any subgroup of U.
(iv) Lastly, we show that Fh = H,C. Since h is the identity map, it is enough to show that for all a € C, Fa = H,Ca.

GalUjUp

Uy U = ~ Il
) {‘,B 4 = Fa. Therefore HyCa = Fa.

GaUp

Again by 2(A)(d), HyCa = HO(

Ua
V. CONCLUSION

In this paper we generalized the existing correspondence and isomorphism theorems of groups in the crisp setup to those
of generalized soft group.
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