
IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 115

A Survey on Job Schedulers of MapReduce

Vijayalakshmi P1, Vinutha D C2, G T Raju3

Student,Department of Information Science & Engineering,Vidyavardhaka college of Engineering,Visvesvaraya

Technological University, Karnataka1

Associate Professor, Department of CSE, Vidyavardhaka College of Engineering, Mysuru,

Visvesvaraya Technological University, Karnataka2

Professor, Department of CSE, RNS Institute of Technology,Bengaluru

Visvesvaraya Technological University, Karnataka3

Abstract: One of the fastest growing applications is big data. Analysis of big data is must to gain higher productivity

and efficient data utilization. Map Reduce is emerging as an important programming model for large-scale data-parallel

applications such as web indexing, data mining, and scientific simulation. Hadoop is an open source implementation of

the Map Reduce framework. It is a highly robust system model in the form of scalable and fault tolerant distributed

system and it is important for data storage and its processing. Goal of Hadoop is to offer efficient and high performance

processing of big data application. Hadoop clusters composed of hundreds of nodes to process terabytes of user data.

This paper gives a survey of different job schedulers of Map Reduce.

Keywords: Cloud Computing, HDFS, Map Reduce, Hadoop.

1. INTRODUCTION

Cloud computing is a technology where the data resources are shared rather than owing the personal server applications

or devices. Cloud computing is in general stated as an internet based computing/service where all the comprising

functions such as data storage, servers and applications are facilitated to certain organizations using Internet

connectivity. Cloud has become an inevitable need for majority of IT organizations. Cloud applications such as data

storage, data retrieval and data portability have become significant requirements for IT and ITeS organizations dealing

with cloud computing and Big Data. With the high paced increase in population using smart applications, the emerging

vast amount of data causes the applications to become data-insensitive in behavior. The predominant techniques for

data insensitive applications are various search engines, online retail operations, social media, web mails etc. All these

data-insensitive applications are based on data mining and related indexing approach that require the spread out of data

sizing from few gigabyte to multiple Petabytes. Thus, considering such huge data collection and its efficient retrieval, a

concept called Big Data came into existence.

Figure 1. The workflow of Map Reduce framework

IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 116

Apache Hadoop [2] is a framework for distributed applications. Doug Cutting is inspired by Google Map Reduce and

he introduced Hadoop Map Reduce for distributed applications. Apache Hadoop mainly deals with Big Data processing

on distributed environment. Hadoop distributed file system (HDFS) is the storage area in this framework. Map Reduce

is the technique for Big Data processing and analyzing in parallel

2. BACKGROUND: HADOOP AND MAP REDUCE

2.1. Map Reduce overview

Map Reduce [1] is a framework pioneered by Google for processing large amounts of data in a distributed

environment. Map Reduce adopts a divide-and-conquer approach for data-intensive applications [14]. In Map Reduce

model, the execution of an application can be divided in two phases: map and reduce, as illustrated in Figure 1. In the

map phase, amounts of map tasks process data blocks independently. After all map tasks are finished, the reduce phase

begins. The intermediate results of map tasks are shuffled, sorted and then processed in parallel by one or more reduce

tasks.

2.2 Hadoop

Hadoop [2, 21] is the open source implementation of the Map Reduce framework. Due to the simplicity of its

programming model and the run-time tolerance for node failures, Map Reduce is widely used by companies such as

Facebook, the New York Times, etc. Furthermore, scientists also employ Hadoop to acquire scalable and reliable

analysis and storage services. A Hadoop cluster is composed of two parts: Hadoop Distributed File System and Map

Reduce.

Figure 2: Hadoop Architecture

Fig 2 shows the Hadoop Architecture [3, 21]. A Hadoop cluster uses Hadoop Distributed File System (HDFS) to

manage its data. HDFS provides storage for the Map Reduce job’s input and output data. It is designed as a highly

fault-tolerant, high throughput, and high capacity distributed file system. It is suitable for storing terabytes or petabytes

of data on clusters and has flexible hardware requirements, which are typically comprised of commodity hardware like

personal computers. The significant differences between HDFS and other distributed file systems are: HDFS’s write

once-read-many and streaming access models that make HDFS efficient in distributing and processing data, reliably

storing large amounts of data, and robustly incorporating heterogeneous hardware and operating system environments.

It divides each file into small fixed-size blocks (e.g., 64 MB) and stores multiple (default is three) copies of each block

on cluster node disks. The distribution of data blocks increases throughput and fault tolerance. Fig 3 shows the Hadoop

Distributed File System Architecture which follows the master/slave architecture. The master node is called the Name

node which manages the file system namespace and regulates client accesses to the data. There are a number of worker

nodes, called Data nodes, which store actual data in units of blocks. The Name node maintains a mapping table which

maps data blocks to Data nodes in order to process write and read requests from HDFS clients. It is also in charge of

file system namespace operations such as closing, renaming, and opening files and Directories. Hadoop Distributed File

System [3] allows a secondary Name node to periodically save a copy of the metadata stored on the Name node in case

of Name node failure. The Data node stores the data blocks in its local disk and executes instructions like data

replacement, creation, deletion, and replication from the Name node. A Data node periodically reports its status through

a heartbeat message and asks the Name node for instructions. Every Data node listens to the network so that other Data

nodes and users can request read and write operations. The heartbeat can also help the Name node to detect

connectivity with its Data node. If the Name node does not receive a heartbeat from a Data node in the configured

period of time, it marks the node down. Data blocks stored on this node will be considered lost and the Name node will

automatically replicate those blocks of this lost node onto some other Data nodes. A Hadoop cluster uses slave

(worker) nodes to execute map and reduce tasks.

IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 117

Figure 3: HDFS Architecture

3. SCHEDULERS OF MAP REDUCE

3.1. LATE: Longest Approximate Time to End.

M. Zaharia et al. [4] designed a new scheduling algorithm for speculative execution, the goal of speculative

execution is to minimize a job’s response time. Response time is most important for short jobs where a user wants an

answer quickly, such as queries on log data for debugging, monitoring and business intelligence. It is highly robust to

heterogeneity and it is based on three principles: i) prioritizing tasks to speculate, ii) selecting fast nodes to run on iii)

capping speculative tasks to prevent thrashing. When a node has an empty task slot, Hadoop chooses a task for it from

one of three categories. First, any failed tasks are given the highest priority. Second, non-running tasks are considered,

specially the map tasks that have local data on this node. Third, the tasks which need to execute speculatively. LATE

reduces Hadoop’s response time by a factor of 2. LATE [13] scheduling algorithm takes the heterogeneity [19]

assumptions into consideration, but has poor performance due to the static manner in computing the progress of the

tasks and is not suitable for environments with dynamic loading. Neither Hadoop nor LATE schedulers are desirable in

heterogeneous [20] environment. Zhao Li et al [15] proposed open flow Scheduler for heterogeneous clusters to reduce

network traffic during execution of Map reduce jobs.

 To improve the performance of Map Reduce in heterogeneous environments, Tao Gu et al [18] proposed a

data prefetching mechanism which can fetch the data to corresponding compute nodes in advance. This mechanism has

improved the performance of the job execution up to 15%.

3.2. SAMR [5, 13]: A Self-Adaptive Map Reduce Scheduling Algorithm

This approach Computes progress score of tasks more accurately than LATE, thus this scheduler launches

backup tasks for really slow tasks that prolong job Execution time. Self-Adaptive Map Reduce scheduling algorithm

(SAMR) uses historical Information to adjust stage weights of map and reduce tasks when estimating task execution

times. However, SAMR does not consider the fact that for different types of jobs their map and reduce stage weights

may be different. Even for the same type of jobs, different data sets may lead to different weights. M. Berekmeri et al

[16] developed a dynamic model of a Map Reduce called a PI controller by adding a feed-forward controller to improve

response time but the other metrics such as throughput and availability is not taken in to account. Jongse Park et al [20]

proposed a dynamic VM reconfiguration technique for data-intensive computing on clouds, called Dynamic Resource

Reconfiguration (DRR). Dynamic Resource Reconfiguration can adjust the computing capability of individual VMs to

maximize the utilization of resources and Focuses on data locality. Dynamic Resource Reconfiguration can improve the

throughput of Hadoop jobs by 15% on average with a constrained Network connection.

3.3. ESAMR (Enhanced self-adaptive Map Reduce scheduling):

Xiaoyn Sun (2012) proposed the ESAMR [6,13] algorithm to overcome LATE, SAMR problems. ESAMR

classifies the historical information stored on every node into k clusters using a machine learning technique. If a

running job has completed some map tasks on a node, ESAMR records the job’s temporary map phase weight on the

node according to the job’s map tasks completed on the Node. The temporary M1 weight is used to find the cluster

whose M1 weight is the closest. ESAMR then uses the cluster’s stage weights to estimate the job’s map tasks’

TimeToEnd on the node and Identify slow tasks that need to be re-executed. If a running job has not completed any

map task on a node, the average of all k clusters’ stage weights are used for the job. In the reduce stage, ESAMR

IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 118

Carries out a similar procedure. After a job has finished, ESAMR calculates the job’s stage weights on every node and

saves these new weighs as a part of the historical information. Finally, ESAMR Applies k-means, a machine learning

algorithm, to re-classify the historical information stored on every worker node into k clusters and saves the updated

average stage weights for each of the k

Clusters. By utilizing more accurate stage weights to estimate the Time to End of running tasks, ESAMR can identify

slow tasks more accurately than SAMR, LATE, algorithms. Reduces the runtime execution and achieves scalability but

ignores data locality for launching backup tasks.

3.4. HAT (History-based auto-tuning Map Reduce Scheduling): Quan Chen (2011) et al. [7, 13] suggested HAT

scheduler for heterogeneous environments to execute straggler jobs. This scheduler calculates the progress of tasks

more accurate than previous methods and adapts with different environments automatically. HAT uses historical

information which is stored on each node to set the parameters and identifies slow tasks dynamically. Quan Chen et al.

proposed several equations to calculate the weight of new phases, the progress score of map and reduce tasks, to detect

slow tasks and slow nodes. Based on the accurate calculated progress of tasks, HAT estimates the remaining time of

tasks accurately and further launches backup tasks for the tasks that have the longest remaining time. HAT estimates

progress of a task accurately since it tunes the weight of each phase of a map task and a reduce task automatically

according to the historical values of the weights. HAT, further classifies slow nodes into map slow nodes and reduce

slow nodes. In this way, HAT can launch backup tasks for reduce straggler tasks on Map slow nodes and vice versa. It

Increases system performance and achieves scalability [17]. But Ignores different weights for different job types and

different dataset sizes and ignores data locality for launching backup tasks.

3.5. PURLIEUS:

B. Palanisamy (2011) et al. [8] developed a system called purlieus. It emphasized on locality in the shuffling

phase and focused on pairing between the localization of tasks with VM and the data or resources. In this data is placed

independent of the type of job processing it or the loads on the Servers, during data placement the following attributes

are considered

i. Job Specific Locality-awareness: In this three distinct classes of jobs are used – (1) Map-input

Heavy (2) Map-and-Reduce-input heavy (3) Reduce-input-heavy

ii. Load Awareness: Placing data in a Map Reduce cloud should also account for computational load (CPU, memory)

on the physical machines. A good technique should place data only on machines that are likely to have available

capacity to execute that job; else remote-reads will be required to pull data from busy machines to be processed at less-

utilized machines.

iii. Job-specific Data Replication Depending upon the type and frequency of jobs, it places each replica of the entire

dataset based on a particular strategy. Improved data locality in this manner is beneficial in Two ways – (1) it reduces

job execution times as network transfer times are big components of total execution time and (2) it reduces cumulative

data center network traffic. But this system couldn’t facilitate an end-to-end system optimization for data flow in

MapReduce framework.

3.6. ADAPT (Availability –aware Map Reduce Data Placement for Non Dedicated Distributed Computing-2012):

 Existing Map Reduce framework randomly distributes data blocks onto each node. This mechanism works

well for typical cluster environment that assumes homogenous hosts. However, nodes in non-dedicated distributed

computing environment are usually heterogeneous in both computing power and availability, which makes the existing

random data placement strategy inappropriate. While the heterogeneity [19] in computing power has limited impact on

data-intensive Map Reduce applications, hosts in non-dedicated computing environment may present considerable

heterogeneous features in availability and hurt application performance. Hui Jin et al. [9, 13] proposed ADAPT, an

Availability-aware Data Placement strategy for Map Reduce to mitigate the impact of volatility and heterogeneity.

ADAPT dynamically dispatches data blocks onto participating hosts based on their availabilities. ADAPT helps to

mitigate the impact of vulnerability without increasing the replication degree, improve the data locality of Map Reduce

applications, and inherently reduce the network traffic. ADAPT significantly increases the data locality and reduces the

data migration cost. Although the advantage of ADAPT in improving Map Reduce application performance is less

significant for environment with higher network connectivity.

3.7. Maestro:

 Shadi Ibrahim (2012) et al. [10] proposed a Scheduling algorithm for Map tasks to be selected based on the

number of hosted Map-tasks and on the replication scheme for their input splits.

3.8. CoGRS:(Center-of-Gravity Reduce Task Scheduling):

In this the author has considered data locality, the partitioning kew problems and the network load is a special concern

with Map Reduce as a large amount of traffic can be generated during the shuffle phase.it causes the performance

degradation. Mohammed hammoud et al [11] proposed CoGRS.it is a locality-aware skew-aware reduce task scheduler

IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 119

for Map Reduce. CoGRS attempts to schedule every reduce task, R, at its center-of-gravity node determined by the

network locations of R’s feeding nodes and the skew in the sizes of R’s partitions. The network is typically a bottleneck

in Map Reduce-based systems [19]. By scheduling reducers at their center-of-gravity nodes, for reduced network traffic

which can possibly allow more Map Reduce jobs to co-exist on the same system. CoGRS controllably avoids

scheduling skew, a situation where some nodes receive more reduce tasks than others, and promotes pseudo-

asynchronous map and reduce phases.

3.9. Tarazu: optimizing Map Reduce on heterogeneous clusters”.

Faraz ahmad et al. [12] proposed “Tarazu: optimizing Map Reduce on heterogeneous clusters”. In this the author

has addressed the MapReduce's poor performance on heterogeneous clusters. The poor performance is due to two key

factors: (1) the non-intuitive effect that Map Reduce built-in load balancing results in excessive and bursty network

communication during the Map phase. (2) the intuitive effect that the heterogeneity amplifies load imbalance in the

Reduce computation. Tarazu, a suite of optimizations to improve Map Reduce performance on heterogeneous clusters.

Tarazu consists of (1) Communication-Aware Load Balancing of Map computation (CALB) across the nodes, (2)

Communication-Aware Scheduling of Map computation (CAS) to avoid bursty network traffic and (3) Predictive Load

Balancing of Reduce computation (PLB) across the nodes. Tarazu increases performance only for heterogeneous

clusters not for homogeneous clusters. Jobby P Jacob[17] et al analyzed that using K-Means Clustering Algorithm

when running on Hadoop Map Reduce on Eucalyptus [18] platform improves the network, memory bandwidth, data

throughput and average I/O.

4. COMPARISON OF DIFFERENT SCHEDULERS:

An extensive literature survey has been made by going through the recent and relevant publications from the

various Researchers in this field. The following are the major contributions already made by the researchers. Various

features of schedulers are considered for comparison of Map Reduce Schedulers and also the Advantages and

disadvantages various job scheduling methods are expressed in Table1.the following table demonstrates some

enhancements can be made to improve the overall performance of Map Reduce.

Table 1. Comparison of Map Reduce Schedulers

Authors/

Year

Metho

d/

Appro

ach

Parameters

Limitatio

ns
Runtime

reductio

n

Netwo

rk

reducti

on

Resour

ce

utilizat

ion

increm

ent

Suitable

for

heterogen

eous

environm

ent

Scalabi

lity

Data

local

ity

Satisfacti

on of

user’s

high

level

performa

nce goals

Matei

Zaharia

(2008)

LATE ✓15%
✓ ✓

Ignores

data

locality

for

launching

backup

tasks

Quan chen

et

al(2010)

SAMR ✓24%
✓ ✓ ✓

Ignore

different

weights

for

different

job types

and

different

dataset

sizes

Ignore

data

IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 120

locality

for

launching

backup

tasks

Quan chen

et

al(2011)

HAT
✓

37%

✓ ✓

Ignore

different

weights

for

different

job types

and

different

dataset

sizes.

Ignore

data

locality

for

launching

backup

tasks

Xiaoyn

Sun et

al(2012)

ESAM

R
✓

✓ ✓

 Ignore

data

locality

for

launching

backup

tasks

Palanisam

y et

al(2011)

Purlie

us

✓

50%

✓

70%

✓

Couldn’t

provide

end-to-

end

utilization

Hui Jin et al

(2012)

ADAP

T

✓
✓

✓

30%

Performance

is less

significant

for high

network

connectivity

Palson et

al
MART

✓ ✓ -

Shadi

Ibrahim(2

012)

Maestr

o
✓34% ✓

✓ -

Hammoud

et al

COGR

S

✓3.2to6.

3%
✓

Static

sweet

spot

determina

tion

IARJSET
 ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 3, March 2020

Copyright to IARJSET DOI 10.17148/IARJSET.2020.7318 121

Faraz

ahmad et

al

Tarazu
✓

✓

Network

contentio

n occurs

among

remote

tasks on

different

nodes

5. CONCLUSION

Map Reduce has brought new excitement in the parallel data processing landscape. This is due to its salient features

that include scalability, fault-tolerance, simplicity, and flexibility. Still, several of its shortcomings hint that Map

Reduce is not perfect for every large-scale analytical task; it includes data locality, network reduction, scalability and

response time. In this paper, some of approaches are presented along with their relative strengths and weaknesses. Also,

some enhancements that can be developed by considering some of the parameters like data locality, scalability, network

traffic, response time to improve the overall performance of the Map Reduce.

REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation -Volume 6, pages 10–10, Berkeley, CA, USA, USENIX Association, 2004.

[2] Hadoop, http://lucene.apache.org/hadoop, June 30, 2012.

[3] Hadoop Distributed File System, http://hadoop.apache.org/hdfs
[4] M. Zaharia, A. Konwinski, A. Joseph, Y. zatz, and I. Stoica. “Improving map reduce performance in heterogeneous environments”. In

OSDI’08: 8th USENIX Symposium on Operating Systems Design and Implementation, October 2008.

[5] Q. Chen, D. Zhang, M. Guo, Q. Deng and S. Guo. SAMR: A Self-adaptive Map Reduce Scheduling Algorithm in Heterogeneous Environment.
In Proceedings of IEEE 10th International Conference on Computer and Information Technology, 2010.

[6] X. Sun, “An Enhanced Self-adaptive Map Reduce Scheduling algorithm”, Master Thesis, University of Nebraska, Lincoln, 2012.

[7] Q. Chen, M. Guo et al.,”HAT: history-based auto-tuning Map Reduce in heterogeneous environments”, the journal of Supercomputing, pp.1-
17, 2011.

[8] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: locality-aware resource allocation for Map Reduce in a cloud,” in Proceedings of ACM
SC, pp. 58:1–58:11, 2011.

[9] H. Jin, Xi Yang et al , ”ADAPT : Availability –aware Map Reduce Data Placement for Non-Dedicated Distributed Computing ” , International

conference in Distributed Computing Systems (ICDCS),2012.
[10] S. Ibrahim, H. Jin et al., “Maestro: Replica-Aware Map Scheduling for Map Reduce”, Cluster, cloud and grid computing (CCGRID), 2012 12th

IEEE/ACM International Symposium, pp.435-442, 2012.

[11] M. Hammoud , M. S .Rehman et al., “Center-of-Gravity Reduce Task Scheduling to Lower MapReduce Network Traffic”,, Cloud
Computing(CLOUD).2012 IEEE 5th International Conference,pp.49-58,2012.

[12] F. Ahmad, S. Chakradhar , A. Raghunathan , and T. N. Vijaykumar , “ Tarazu : Optimizing MapReduce on heterogeneous clusters,” in

Proceedings of ASPLOS, pp. 61–74, 2012.
[13] Maedeh Mozakka, Faramarz Safi Esfahani, Mohammad H NadimiI, “Survey on Adaptive Job Schedulers in MapReduce” Journal of

Theoretical and Applied Information Technology , Vol. 66 No.3,Aug 2014.

[14] A. Hemanth, Dr. R.V. Krishnaiah,”The Hadoop Distributed File System: Balancing Portability” International Journal of Computer
Engineering & Applications,Vol. III, Issue III, July 2013 .

[15] Zhao Li · Yao Shen · Bin Yao · Minyi Guo,” OFScheduler: A Dynamic Network Optimizer for MapReduce in Heterogeneous Cluster” springer

October 2013.
[16] M. Berekmeri, D. Serrano et al “A Control Approach for Performance of Big Data Systems” 19 IFAC World Congress 2014.

[17] Jobby P Jacob, Anirban Basu et al “Performance Analysis of Hadoop Map Reduce on Eucalyptus Private Cloud” International Journal of

Computer Applications, Volume 79 – No 17, October 2013.
[18] Tao Gu, Chuang Zuo,et al “ Improving MapReduce Performance by Data Prefetching in Heterogeneous or Shared Environments” International

Journal of Grid and Distributed Computing Vol.6, No.5, 2013, pp.71-82.

[19] Salma Khalil, Sameh A.Salem,et al “Mapreduce Performance in Heterogeneous Environments: A Review ” International Journal of Scientific

& Engineering Research, Volume 4, Issue 4, April -2013.

[20] Jongse Park, Daewoo Lee et al “Locality-Aware Dynamic VM Reconfiguration on MapReduce Clouds” 21st International ACM Symposium

on High-Performance Parallel and Distributed Computing (HPDC’12), June 18–22, 2012.

[21] Christos Doulkeridis · Kjetil Norvag,et al “A survey of large-scale analytical query processing in MapReduce “ Published online:June
2013,Springer-Verlag Berlin Heidelberg 2013

