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Abstract: One of the fastest growing applications is big data. Analysis of big data is must to gain higher productivity 

and efficient data utilization. Map Reduce is emerging as an important programming model for large-scale data-parallel 

applications such as web indexing, data mining, and scientific simulation. Hadoop is an open source implementation of 

the Map Reduce framework. It is a highly robust system model in the form of scalable and fault tolerant distributed 

system and it is important for data storage and its processing. Goal of Hadoop is to offer efficient and high performance 

processing of big data application. Hadoop clusters composed of hundreds of nodes to process terabytes of user data. 

This paper gives a survey of different job schedulers of Map Reduce. 
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1. INTRODUCTION 

Cloud computing is a technology where the data resources are shared rather than owing the personal server applications 

or devices. Cloud computing is in general stated as an internet based computing/service where all the comprising 

functions such as data storage, servers and applications are facilitated to certain organizations using Internet 

connectivity. Cloud has become an inevitable need for majority of IT organizations. Cloud applications such as data 

storage, data retrieval and data portability have become significant requirements for IT and ITeS organizations dealing 

with cloud computing and Big Data. With the high paced increase in population using smart applications, the emerging 

vast amount of data causes the applications to become data-insensitive in behavior. The predominant techniques for 

data insensitive applications are various search engines, online retail operations, social media, web mails etc. All these  

data-insensitive applications are based on data mining and related indexing approach that require the spread out of data 

sizing from few gigabyte to multiple Petabytes. Thus, considering such huge data collection and its efficient retrieval, a 

concept called Big Data came into existence.  

 
Figure 1. The workflow of Map Reduce framework 
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Apache Hadoop [2] is a framework for distributed applications. Doug Cutting is inspired by Google Map Reduce and 

he introduced Hadoop Map Reduce for distributed applications. Apache Hadoop mainly deals with Big Data processing 

on distributed environment. Hadoop distributed file system (HDFS) is the storage area in this framework. Map Reduce 

is the technique for Big Data processing and analyzing in parallel 

 

2. BACKGROUND: HADOOP AND MAP REDUCE 

 

2.1. Map Reduce overview  

Map Reduce [1] is a framework pioneered by Google for processing large amounts of data in a distributed 

environment. Map Reduce adopts a divide-and-conquer approach for data-intensive applications [14]. In Map Reduce 

model, the execution of an application can be divided in two phases: map and reduce, as illustrated in Figure 1. In the 

map phase, amounts of map tasks process data blocks independently. After all map tasks are finished, the reduce phase 

begins. The intermediate results of map tasks are shuffled, sorted and then processed in parallel by one or more reduce 

tasks.  

 

2.2 Hadoop 

Hadoop [2, 21] is the open source implementation of the Map Reduce framework. Due to the simplicity of its 

programming model and the run-time tolerance for node failures, Map Reduce is widely used by companies such as 

Facebook, the New York Times, etc. Furthermore, scientists also employ Hadoop to acquire scalable and reliable 

analysis and storage services.  A Hadoop cluster is composed of two parts: Hadoop Distributed File System and Map 

Reduce. 

 
Figure 2: Hadoop Architecture 

 

Fig 2 shows the Hadoop Architecture [3, 21]. A Hadoop cluster uses Hadoop Distributed File System (HDFS) to 

manage its data. HDFS provides storage for the Map Reduce job’s input and output data. It is designed as a highly 

fault-tolerant, high throughput, and high capacity distributed file system. It is suitable for storing terabytes or petabytes 

of data on clusters and has flexible hardware requirements, which are typically comprised of commodity hardware like 

personal computers. The significant differences between HDFS and other distributed file systems are: HDFS’s write 

once-read-many and streaming access models that make HDFS efficient in distributing and processing data, reliably 

storing large amounts of data, and robustly incorporating heterogeneous hardware and operating system environments. 

It divides each file into small fixed-size blocks (e.g., 64 MB) and stores multiple (default is three) copies of each block 

on cluster node disks. The distribution of data blocks increases throughput and fault tolerance. Fig 3 shows the Hadoop 

Distributed File System Architecture which follows the master/slave architecture. The master node is called the Name 

node which manages the file system namespace and regulates client accesses to the data. There are a number of worker 

nodes, called Data nodes, which store actual data in units of blocks. The Name node maintains a mapping table which 

maps data blocks to Data nodes in order to process write and read requests from HDFS clients. It is also in charge of 

file system namespace operations such as closing, renaming, and opening files and Directories. Hadoop Distributed File 

System [3] allows a secondary Name node to periodically save a copy of the metadata stored on the Name node in case 

of Name node failure. The Data node stores the data blocks in its local disk and executes instructions like data 

replacement, creation, deletion, and replication from the Name node. A Data node periodically reports its status through 

a heartbeat message and asks the Name node for instructions. Every Data node listens to the network so that other Data 

nodes and users can request read and write operations. The heartbeat can also help the Name node to detect 

connectivity with its Data node. If the Name node does not receive a heartbeat from a Data node in the configured 

period of time, it marks the node down. Data blocks stored on this node will be considered lost and the Name node will 

automatically replicate those blocks of this lost node onto some other Data nodes. A Hadoop cluster uses slave 

(worker) nodes to execute map and reduce tasks.  
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Figure 3: HDFS Architecture 

 

3. SCHEDULERS OF MAP REDUCE 

 

3.1. LATE: Longest Approximate Time to End. 

M. Zaharia et al. [4] designed a new scheduling algorithm for speculative execution, the goal of speculative 

execution is to minimize a job’s response time. Response time is most important for short jobs where a user wants an 

answer quickly, such as queries on log data for debugging, monitoring and business intelligence. It is highly robust to 

heterogeneity and it is based on three principles: i) prioritizing tasks to speculate, ii) selecting fast nodes to run on iii) 

capping speculative tasks to prevent thrashing. When a node has an empty task slot, Hadoop chooses a task for it from 

one of three categories. First, any failed tasks are given the highest priority. Second, non-running tasks are considered, 

specially the map tasks that have local data on this node. Third, the tasks which need to execute speculatively. LATE 

reduces Hadoop’s response time by a factor of 2. LATE [13] scheduling algorithm takes the heterogeneity [19] 

assumptions into consideration, but has poor performance due to the static manner in computing the progress of the 

tasks and is not suitable for environments with dynamic loading. Neither Hadoop nor LATE schedulers are desirable in 

heterogeneous [20] environment. Zhao Li et al [15] proposed open flow Scheduler for heterogeneous clusters to reduce 

network traffic during execution of Map reduce jobs.  

  To improve the performance of Map Reduce in heterogeneous environments, Tao Gu et al [18] proposed a 

data prefetching mechanism which can fetch the data to corresponding compute nodes in advance. This mechanism has 

improved the performance of the job execution up to 15%. 

 

3.2. SAMR [5, 13]: A Self-Adaptive Map Reduce Scheduling Algorithm  

This approach Computes progress score of tasks more accurately than LATE, thus this scheduler launches 

backup tasks for really slow tasks that prolong job Execution time. Self-Adaptive Map Reduce scheduling algorithm 

(SAMR) uses historical Information to adjust stage weights of map and reduce tasks when estimating task execution 

times. However, SAMR does not consider the fact that for different types of jobs their map and reduce stage weights 

may be different. Even for the same type of jobs, different data sets may lead to different weights. M. Berekmeri et al 

[16] developed a dynamic model of a Map Reduce called a PI controller by adding a feed-forward controller to improve 

response time but the other metrics such as throughput and availability is not taken in to account. Jongse Park et al [20] 

proposed a dynamic VM reconfiguration technique for data-intensive computing on clouds, called Dynamic Resource 

Reconfiguration (DRR). Dynamic Resource Reconfiguration can adjust the computing capability of individual VMs to 

maximize the utilization of resources and Focuses on data locality. Dynamic Resource Reconfiguration can improve the 

throughput of Hadoop jobs by 15% on average with a constrained Network connection. 

 

3.3. ESAMR (Enhanced self-adaptive Map Reduce scheduling):  

Xiaoyn Sun (2012) proposed the ESAMR [6,13] algorithm to overcome LATE, SAMR problems. ESAMR 

classifies the historical information stored on every node into k clusters using a machine learning technique. If a 

running job has completed some map tasks on a node, ESAMR records the job’s temporary map phase weight on the 

node according to the job’s map tasks completed on the Node. The temporary M1 weight is used to find the cluster 

whose M1 weight is the closest. ESAMR then uses the cluster’s stage weights to estimate the job’s map tasks’ 

TimeToEnd on the node and Identify slow tasks that need to be re-executed. If a running job has not completed any 

map task on a node, the average of all k clusters’ stage weights are used for the job. In the reduce stage, ESAMR 
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Carries out a similar procedure. After a job has finished, ESAMR calculates the job’s stage weights on every node and 

saves these new weighs as a part of the historical information. Finally, ESAMR Applies k-means, a machine learning 

algorithm, to re-classify the historical information stored on every worker node into k clusters and saves the updated 

average stage weights for each of the k 

Clusters. By utilizing more accurate stage weights to estimate the Time to End of running tasks, ESAMR can identify 

slow tasks more accurately than SAMR, LATE, algorithms. Reduces the runtime execution and achieves scalability but 

ignores data locality for launching backup tasks. 

 

3.4. HAT (History-based auto-tuning Map Reduce Scheduling):   Quan Chen (2011) et al. [7, 13] suggested HAT 

scheduler for heterogeneous environments to execute straggler jobs. This scheduler calculates the progress of tasks 

more accurate than previous methods and adapts with different environments automatically. HAT uses historical 

information which is stored on each node to set the parameters and identifies slow tasks dynamically. Quan Chen et al. 

proposed several equations to calculate the weight of new phases, the progress score of map and reduce tasks, to detect 

slow tasks and slow nodes. Based on the accurate calculated progress of tasks, HAT estimates the remaining time of 

tasks accurately and further launches backup tasks for the tasks that have the longest remaining time. HAT estimates 

progress of a task accurately since it tunes the weight of each phase of a map task and a reduce task automatically 

according to the historical values of the weights. HAT, further classifies slow nodes into map slow nodes and reduce 

slow nodes. In this way, HAT can launch backup tasks for reduce straggler tasks on Map slow nodes and vice versa. It 

Increases system performance and achieves scalability [17]. But Ignores different weights for different job types and 

different dataset sizes and ignores data locality for launching backup tasks. 

 

3.5. PURLIEUS: 

B. Palanisamy (2011) et al. [8] developed a system called purlieus. It emphasized on locality in the shuffling 

phase and focused on pairing between the localization of tasks with VM and the data or resources. In this data is placed 

independent of the type of job processing it or the loads on the Servers, during data placement the following attributes 

are considered 

i. Job Specific Locality-awareness: In this three distinct classes of jobs are used – (1) Map-input 

Heavy (2) Map-and-Reduce-input heavy (3) Reduce-input-heavy 

ii. Load Awareness: Placing data in a Map Reduce cloud should also account for computational load (CPU, memory) 

on the physical machines. A good technique should place data only on machines that are likely to have available 

capacity to execute that job; else remote-reads will be required to pull data from busy machines to be processed at less-

utilized machines. 

iii. Job-specific Data Replication Depending upon the type and frequency of jobs, it places each replica of the entire 

dataset based on a particular strategy. Improved data locality in this manner is beneficial in Two ways – (1) it reduces 

job execution times as network transfer times are big components of total execution time and (2) it reduces cumulative 

data center network traffic. But this system couldn’t facilitate an end-to-end system optimization for data flow in 

MapReduce framework. 

 

3.6. ADAPT (Availability –aware Map Reduce Data Placement for Non Dedicated Distributed Computing-2012): 

 Existing Map Reduce framework randomly distributes data blocks onto each node. This mechanism   works 

well for typical cluster environment that assumes homogenous hosts. However, nodes in non-dedicated distributed 

computing environment are usually heterogeneous in both computing power and availability, which makes the existing 

random data placement strategy inappropriate. While the heterogeneity [19] in computing power has limited impact on 

data-intensive Map Reduce applications, hosts in non-dedicated computing environment may present considerable 

heterogeneous features in availability and hurt application performance. Hui Jin et al. [9, 13] proposed ADAPT, an 

Availability-aware Data Placement strategy for Map Reduce to mitigate the impact of volatility and heterogeneity. 

ADAPT dynamically dispatches data blocks onto participating hosts based on their availabilities. ADAPT helps to 

mitigate the impact of vulnerability without increasing the replication degree, improve the data locality of Map Reduce 

applications, and inherently reduce the network traffic. ADAPT significantly increases the data locality and reduces the 

data migration cost. Although the advantage of ADAPT in improving Map Reduce application performance is less 

significant for environment with higher network connectivity. 

 

3.7. Maestro: 

 Shadi Ibrahim (2012) et al. [10] proposed a Scheduling algorithm for Map tasks to be selected based on the 

number of hosted Map-tasks and on the replication scheme for their input splits. 

3.8. CoGRS:(Center-of-Gravity Reduce Task Scheduling): 

In this the author has considered data locality, the partitioning kew problems and the network load is a special concern 

with Map Reduce as a large amount of traffic can be generated during the shuffle phase.it causes the performance 

degradation. Mohammed hammoud et al [11] proposed CoGRS.it is a locality-aware skew-aware reduce task scheduler 
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for Map Reduce. CoGRS attempts to schedule every reduce task, R, at its center-of-gravity node determined by the 

network locations of R’s feeding nodes and the skew in the sizes of R’s partitions. The network is typically a bottleneck 

in Map Reduce-based systems [19]. By scheduling reducers at their center-of-gravity nodes, for reduced network traffic 

which can possibly allow more Map Reduce jobs to co-exist on the same system. CoGRS controllably avoids 

scheduling skew, a situation where some nodes receive more reduce tasks than others, and promotes pseudo-

asynchronous map and reduce phases. 

 

3.9. Tarazu: optimizing Map Reduce on heterogeneous clusters”. 

Faraz ahmad et al. [12] proposed “Tarazu: optimizing Map Reduce on heterogeneous clusters”. In this the author 

has addressed the MapReduce's poor performance on heterogeneous clusters. The poor performance is due to two key 

factors: (1) the non-intuitive effect that Map Reduce built-in load balancing results in excessive and bursty network 

communication during the Map phase. (2) the intuitive effect that the heterogeneity amplifies load imbalance in the 

Reduce computation. Tarazu, a suite of optimizations to improve Map Reduce performance on heterogeneous clusters. 

Tarazu consists of (1) Communication-Aware Load Balancing of Map computation (CALB) across the nodes, (2) 

Communication-Aware Scheduling of Map computation (CAS) to avoid bursty network traffic and (3) Predictive Load 

Balancing of Reduce computation (PLB) across the nodes. Tarazu increases performance only for heterogeneous 

clusters not for homogeneous clusters. Jobby P Jacob[17] et al analyzed that using K-Means Clustering Algorithm 

when running on Hadoop Map Reduce on Eucalyptus [18] platform improves the network, memory bandwidth, data 

throughput and average I/O. 

 

4. COMPARISON OF DIFFERENT SCHEDULERS: 
 
An extensive literature survey has been made by going through the recent and relevant publications from the 

various Researchers in this field. The following are the major contributions already made by the researchers. Various 

features of schedulers are considered for comparison of Map Reduce Schedulers and also the Advantages and 

disadvantages various job scheduling methods are expressed in Table1.the following table demonstrates some 

enhancements can be made to improve the overall performance of Map Reduce.  

 

Table 1.  Comparison of Map Reduce Schedulers 

Authors/

Year 

Metho

d/ 

Appro

ach 

Parameters 

Limitatio

ns 
Runtime 

reductio

n 

Netwo

rk 

reducti

on 

Resour

ce 

utilizat

ion 

increm

ent 

Suitable 

for 

heterogen

eous 

environm

ent 

Scalabi

lity 

Data 

local

ity 

Satisfacti

on of 

user’s 

high 

level 

performa

nce goals 

Matei 

Zaharia 

(2008) 

LATE ✓15%  
✓ ✓    

Ignores 

data 

locality 

for 

launching 

backup 

tasks 

Quan chen 

et 

al(2010) 

SAMR ✓24%  
✓ ✓ ✓   

Ignore 

different 

weights 

for 

different 

job types 

and 

different 

dataset 

sizes 

Ignore 

data 
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locality 

for 

launching 

backup 

tasks 

Quan chen 

et 

al(2011) 

HAT 
✓ 

37% 
  

✓ ✓   

Ignore 

different 

weights 

for 

different 

job types 

and 

different 

dataset 

sizes.  

Ignore 

data 

locality 

for 

launching 

backup 

tasks 

Xiaoyn 

Sun et 

al(2012) 

ESAM

R 
✓  

✓ ✓    

 Ignore 

data 

locality 

for 

launching 

backup 

tasks 

Palanisam

y et 

al(2011) 

Purlie

us 

✓ 

50% 

✓ 

70% 
   

✓  

Couldn’t 

provide 

end-to-

end 

utilization 

Hui Jin et al 

(2012) 

ADAP

T 
 

✓    
✓ 

✓ 

30% 

    

Performance 

is less 

significant 

for high 

network 

    

connectivity 

Palson et 

al  
MART   

✓ ✓    - 

Shadi 

Ibrahim(2

012) 

Maestr

o 
✓34% ✓  

✓    - 

Hammoud 

et al 

COGR

S 

✓3.2to6.

3% 
✓      

Static 

sweet 

spot 

determina

tion 
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Faraz 

ahmad et 

al 

Tarazu    
✓   

✓ 

Network 

contentio

n  occurs 

among 

remote 

tasks on 

different 

nodes 

 

 

5. CONCLUSION 

 

Map Reduce has brought new excitement in the parallel data processing landscape. This is due to its salient features 

that include scalability, fault-tolerance, simplicity, and flexibility. Still, several of its shortcomings hint that Map 

Reduce is not perfect for every large-scale analytical task; it includes data locality, network reduction, scalability and 

response time. In this paper, some of approaches are presented along with their relative strengths and weaknesses. Also, 

some enhancements that can be developed by considering some of the parameters like data locality, scalability, network 

traffic, response time to improve the overall performance of the Map Reduce.    
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