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Abstract:  Increasing demand to provision real-time smart application services has led many organization to collect 

data continuously. As a result has led to huge amount of size. MapReduce is the preferred framework to process 

massive data. Hadoop is a widely used MapReduce framework across community due to its open source nature. Cloud 

service provider such as Microsoft azure HDInsight offers resources to its customer and only pays for their use. 

Minimizing execution time on such platform is most desired. This work present a novel makespan model for Hadoop 

MapReduce framework namely OHMR (Optimized Hadoop MapReduce) to process data in real-time and utilize 

system resource efficiently.  The OHMR present accurate model to compute job makespan time and also present a 

model to provision the amount of cloud resource required to meet task deadline. Experiment are conducted on 

Microsoft Azure HDInsight cloud platform considering bioinformatics application to evaluate performance of OHMR 

of over existing model shows significant performance improvement in terms of computation time. Experiment are 

conducted on Microsoft Azure HDInsight cloud. Overall good correlation is reported between practical makespan 

values and theoretical makespan values. 
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I.  INTRODUCTION 

Many organizations are continuously collecting massive amounts of datasets from various sources such as the World 

Wide Web, sensor networks and social networks. The ability to perform scalable and timely analytics on these 

unstructured datasets is a high priority task for many enterprises. It has become difficult for traditional network storage 

and database systems to process these continuously growing datasets. MapReduce [1], originally developed by Google, 

has become a major computing model in support of data intensive applications. It is a highly scalable, fault-tolerant and 

data parallel model that automatically distributes the data and parallelizes the computation across a cluster of computers 

[2]. Among its implementations such as Mars [3], Phoenix [4], Dryad [5] and Hadoop [6], Hadoop has received a wide 

uptake by the community due to its open source nature [7]. 

One feature of Hadoop MapReduce is its support of public cloud computing that enables the organizations to utilize 

cloud services in a pay-as-you-go manner. This facility is beneficial to small and medium size organizations where the 

setup of a large scale and complex private cloud is not feasible due to financial constraints. Hence, executing Hadoop 

MapReduce applications in a cloud environment for big data analytics has become a realistic option for both the 

industrial practitioners and academic researchers. For example, Amazon has designed Elastic MapReduce (EMR) that 

enables users to run Hadoop applications across its Elastic Cloud Computing (EC2) nodes. 

 

The Hadoop MapReduce model predominantly consist of following phases, Setup, Map, Shuffle, Sort and Reduce which 

is shown in figure 1. The Hadoop frameworks consists of a master node and a cluster of computing nodes. Jobs 

submitted to Hadoop are further distributed into Map and Reduce tasks. In setup phase, input data of a job to be 

processed (residing generally on the Hadoop Distributed File Systems (HDFS)) is logically partitioned into homogenous 

volumes called chunks for the Map worker nodes. Hadoop divides each MapReduce job in to set of tasks were each 

chunk is processed by Map worker.  Map phase takes input as key/value pair as (𝑘1, 𝑣1) and generate list of (𝑘2, 𝑣2) 

intermediate key/value pair as output. Shuffle phase begins with completion of Map phase that collects the intermediate 

key/value pair from all the Map task. A sort operation is performed on the intermediate key/value pair of map phase. For 

simplicity sort and shuffle phases are cumulatively considered in the shuffle phase.  Reduce phase processes sorted 

intermediate data based on user defined function. Output of reduce phase is stored/written to HDFS.  

The HDInsight Cloud makes it easier for users to set up and run Hadoop applications on a large-scale virtual cluster. To 

use the HDInsight Cloud, users have to configure the required amount of resources (virtual nodes) for their applications. 
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However, the HDInsight Cloud in its current form does not support Hadoop jobs with deadline requirements. It is purely 

the user's responsibility to estimate the amount of resources to complete their jobs which is a highly challenging task. 

Hence,    Hadoop performance modeling has become a necessity in estimating the right amount of resources for user jobs 

with deadline requirements. It should be pointed out that modeling Hadoop performance is challenging because Hadoop 

jobs normally involve multiple processing phases including three core phases (i.e. map phase, shuffle phase and reduce 

phase). Moreover, the first wave of the shuffle phase is normally processed in parallel with the map phase (i.e. 

overlapping stage) and the other waves of the shuffle phase are processed after the map phase is completed (i.e. non-

overlapping stage). 

 

 
Fig. 1. Architecture of Hadoop MapReduce Framework 

 

To effectively manage cloud resources, several Hadoop performance models have been proposed [8], and [9]. However, 

these models do not consider the overlapping and non-overlapping stages of the shuffle phase which leads to an 

inaccurate estimation of job execution. 

Recently, a number of sophisticated Hadoop performance models are proposed [10], [11], [12], [13], [14], and [15]. 

Starfish [10] collects a running Hadoop job profile at a fine granularity with detailed information for job estimation and 

optimization. On the top of Starfish, Elasticiser [11] is proposed for resource provisioning in terms of virtual machines. 

However, collecting the detailed execution profile of a Hadoop job incurs a high overhead which leads to an 

overestimated job execution time. In [12], [13], and [14] considers both the overlapping and non-overlapping stages and 

uses simple linear regression for job estimation. This model also estimates the amount of resources for jobs with deadline 

requirements. CRESP [15] estimates job execution and supports resource provisioning in terms of map and reduce slots. 

However, both the HP model and CRESP ignore the impact of the number of reduce tasks on job performance. The HP 

model is restricted to a constant number of reduce tasks, whereas CRESP only considers a single wave of the reduce 

phase. In CRESP, the number of reduce tasks has to be equal to number of reduce slots. It is unrealistic to configure 

either the same number of reduce tasks or the single wave of the reduce phase for all the jobs. It can be argued that in 

practice, the number of reduce tasks varies depending on the size of the input dataset, the type of a Hadoop application 

(e.g. CPU intensive, or disk I/O intensive) and user requirements. Furthermore, for the reduce phase, using multiple 

waves generates better performance than using a single wave especially when Hadoop processes a large dataset on a 

small amount of resources. While a single wave reduces the task setup overhead, multiple waves improve the utilization 

of the disk I/O. 

  To address the research challenges this work present an accurate and efficient makespan model for Hadoop MapReduce 

framework namely OHMR (Optimized Hadoop MapReduce) to process data in real-time and utilize system resource 

efficiently. The OHMR present accurate model to compute job makespan time and also present a model to provision the 

amount of cloud resource required to meet task deadline. The OHMR first build a profile for each job and computes 

makespan time of job using greedy approach. Furthermore, to provision amount of resource required to meet task 

deadline Lagrange Multipliers technique is applied.   
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a) Research Contribution are as follows: 

• This work presents an accurate makespan model for HMR aiding performance improvement. 

• Experiments considering diverse cloud configurations and varied application configuration. 

• Correlation between theoretical makespan model and experimental values 

The rest of the paper is organized as follows. In section II the proposed makespan model is presented. In penultimate 

section experimental study is carried out. The conclusion and future work is described in last section. 

 

II. MAKESPAN MODELLING FOR PROPOSED OPTIMIZED SCHEDULAR FOR HADOOP MAPREDUCE FRAMWORK   

This work presents an optimized scheduler for scheduling job to meet task deadline to meet QoS requirement of 

application on Hadoop MapReduce (HMR) framework. Firstly, this work presents a mathematical model to compute 

completion time of MapReduce job. Secondly, the amount of resource required to meet task deadline of application is 

presented. 

a) Makespan modelling/proposition: 

Firstly, we evaluate the performance limits for a given makespan of a specified set of 𝓆 tasks that is processed by 𝒿 

slots/servers. Let 𝒲1, 𝒲2, 𝒲3, … , 𝒲𝓆 be the time period of 𝓆 tasks of a particular jobs. This work considers slot 

allocation to a task based on slot with Minimum Execution Time (𝑀𝐸𝑇) by adopting Greedy algorithm. 

Let 𝜑 be the maximum time period of 𝓆 task which is represented as 

𝜑 = max
𝓃

{𝒲𝓃} (1) 

and 𝛽 be the average time period of 𝓆 task which is represented as  

𝛽 =
(∑ 𝒲𝓃

𝓆
𝓃=1 )

𝓆⁄ . 
(2) 

The makespan of a task to meet 𝑀𝐸𝑇 is at least 𝓆 ∙
 𝛽

𝒿
 and at most (𝓆 − 1) ∙

 𝛽

𝒿+𝜑
. We consider the worst case scenario for 

upper limit, that is, the longest task 𝕎 ∈ {𝒲1, 𝒲2, 𝒲3 , … , 𝒲𝓆  } with time period 𝜑 is the last processed task. 

Considering this scenario, the time taken before commencement of last task 𝕎 is scheduled is at least 
(∑ 𝒲𝓃

𝓆−1
𝓃=1 )

𝒿
⁄ ≤

(𝓆 − 1) ∙
𝛽

𝒿⁄ .  Therefore, total execution time of all assignment is at least (𝓆 − 1) ∙
𝛽

𝒿 + 𝜑⁄ . The lower limit is smaller, 

since the best case is when 𝓆 task distributed equally among the 𝒿 available slots. Therefore, the total execution time of 

is at least 𝓆 ∙
𝛽

𝒿⁄ . The total job completion time for scheduling lies between the lower and upper limit. These limit are 

mostly beneficial in case when the time period of longest task is small as compared to total execution time, i.e. when 

𝜑 ≪
𝓆 ∙ 𝛽

𝒿⁄ . 

b)  Computing job completion time: 

Let consider job 𝒦 with known execution time that is obtained from previous execution. Let 𝒦 be executed with new set 

of data that is segmented into 𝒬ℋ
𝒦  map tasks and 𝒬ℬ

𝒦  reduce tasks. Let 𝒜ℋ
𝒦  be the number of map slots assigned to job 𝒦 

and 𝒜ℬ
𝒦  be the number of reduce slots assigned to job 𝒦. Let ℋ→ be the mean time period of map task of a particular job 

 𝒦 and ℋ↑ be the maximum time period of map tasks of a particular job 𝒦. Then, using makespan modelling 

(proposition) in section a, the lower limits 𝒲ℋ
↓  and upper limits 𝒲ℋ

↑  on time period of all map phase are computed as 

follows 

𝒲ℋ
↓ =

𝒬ℋ
𝒦 ∙ ℋ→

𝒜ℋ
𝒦

 
(3) 

 

𝒲ℋ
↑ =

(𝒬ℬ
𝒦 − 1) ∙ ℋ→

𝒜ℋ
𝒦 + ℋ↑ 

 
(4) 

The reduce phase is composed of shuffle, sort and reduce stage. Similar to map phase, the makespan modelling 

(proposition) can be applied to estimate the lower limit (𝒲ℬ
↓)and upper limits (𝒲ℬ

↑) of reduce stage completion time. 

Since, we possess measurement of mean and maximum tasks time periods in reduce stage, allocated reduce slots 𝒜ℬ
𝒦and 

the number of reduce task 𝒬ℬ
𝒦 .  

The refinement lies in computing the time period of the shuffle stage. For easiness, the sort stage is merged with shuffle 

stage. Therefore, the shuffle stage in the remaining reduce phase is estimated as follows 

𝒲𝒮
↓ = (

𝒬ℬ
𝒦

𝒜ℋ
𝒦  

− 1) ∙ 𝒮→
𝓉  

(5) 

 

𝒲𝒮
↑ = (

𝒬ℬ
𝒦

𝒜ℋ
𝒦  

− 1) ∙ 𝒮→
𝓉 + 𝒮↑

𝓉 
(6) 
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Finally, taking Eq. (5) and (6) together, we can formulate the lower and upper limit of the overall job completion time of 

𝒦, which is shown as follows 

𝒲𝒦
↓ = 𝒲ℋ

↓ + 𝒮→
1 + 𝒲𝒮

↓ + 𝒬ℬ
↓  (7) 

 

𝒲𝒦
↑ = 𝒲ℋ

↑ + 𝒮↑
1 + 𝒲𝒮

↓ + 𝒬ℬ
↑  (8) 

where 𝒲𝒮
↓ depicts the optimistic prediction of job 𝒦 completion time and 𝒲𝒮

↑ depicts the pessimistic prediction of job 𝒦 

completion time. In section c, we compare whether the prediction that is based on mean value between lower limit and 

upper limits tends to be closer to measured time period. Therefore, we state: 

𝒲𝒦
↑ =

(𝒲ℋ
↑ + 𝒲𝒦

↓ )

2
 

(9) 

The Eq. (7) can be re-written for 𝒲ℋ
↓ by replacing parts with Eq. (3) and (5), and similar equation for sort and reduce 

stages as follows 

𝒲𝒦
↓ =

𝒬ℋ
𝒦 ∙ ℋ→

𝒮ℋ
𝒦

+
𝒬ℬ

𝒦 ∙ (𝒮→
𝓉 + ℬ→)

𝒮ℬ
𝒦

+ 𝒮→
1 − 𝒮→

𝓉  
(10) 

The Eq. (8) can be simplified to compute the makespan time is as follows 

𝒲𝒦
↓ = 𝒳𝒦

↓ ∙
𝒬ℋ

𝒦

𝒮ℋ
𝒦

+ 𝒴𝒦
↓ ∙

𝒬ℬ
𝒦

𝒮ℬ
𝒦

+ 𝒵𝒦
↓ , 

(11) 

 

where 𝒳𝒦
↓ = ℋ→, 𝒴𝒦

↓ = (𝒮→
𝓉 + ℬ→), and 𝒵𝒦

↓ = 𝒮→
1 − 𝒮→

𝓉 . The Eq. (11), represent a makespan time of job as a 

function/operation of map and reduce slots assigned to job 𝒦 for performing its map and reduce tasks, that is, as a 

function of (𝒬ℋ
𝒦 , 𝒬ℬ

𝒦). In similar way𝒲𝒦
↑  and 𝒲𝒦

→ can be written.  

 

c) Resource requirement estimation to meet task deadline: 

Here we evaluate the minimum number of map and reduce slots required to meet task deadline. To assure guaranties of 

task deadline of a Job 𝒦 in time 𝒲 we need to compute what is the minimum number of MapReduce slots needed to be 

allocated to meet task deadline 𝒲 with input data size ℐ. For achieving it, this work considers 𝒲 as a mean between 

lower and upper limits on the job makespan time. This strategy may aid in providing balanced resource 

allocation/utilization that is closer to job makespan time 𝒲. 

The assignment of map and reduce slots to job 𝒦 for meeting task deadline 𝒲 considering known job profile are 

evaluated using variation in Eq. (11), where 𝒳𝒦
↓ , 𝒴𝒦

↓ , and 𝒵𝒦
↓  are defined.  

 

𝒳𝒦
↓ .

𝒬ℋ
𝒦

𝒮ℋ
𝒦

+
𝒬ℋ

𝒦

𝒮ℋ
𝒦

+ 𝒴𝒦
↓ = 𝒲 − 𝒵𝒦

↓  
(12) 

The Eq. (12) can be simplified as follows 
𝓍

𝒽
∙

𝓎

𝒷
= ℐ 

(13) 

where 𝒽 and 𝒷depicts the number of map and reduce slots allocated to job 𝒦 respectively, and 𝓍, 𝓎 and ℐ depicts the 

corresponding expression from Eq. (12).    

 

The objective of our model is to minimize the number of map and reduce slot for job 𝒦. i.e., we minimize ℱ(𝒽, 𝒷) =

𝒽 + 𝒷 over 
𝓍

𝒽
∙

𝓎

𝒷
= ℐ. We consider Lagrange multiplier and set ℒ = 𝒽 + 𝒷 + 𝜑

𝓍

ℎ
+ 𝜑

𝓎

𝒷
− ℐ. By differentiating ℒ with 

respect to 𝒽, 𝒷 and 𝜑 and equating to zero, we obtain 
𝜕ℒ

𝜕𝒽
= 1 − 𝜑

𝓍

ℎ2
= 0 

(14) 

 
𝜕ℒ

𝜕𝒷
= 1 − 𝜑

𝓍

𝒷2
= 0 

(15) 

 
𝜕ℒ

𝜕𝜑
=

𝓍

𝒽
+

𝓎

𝒷
− ℐ = 0 

(16) 

Solving Eq. (14), (15) and (16) simultaneously, we obtain 

𝒽 =
√𝓍(√𝓍 + √𝓎)

ℐ
,   𝒷 =

√𝓍(√𝓍 + √𝓎)

ℐ
 

(17) 

Using these equation the optimal value of map and reduce slot are obtained such that the number of slots is minimized 

while meeting task deadline constraint. Here we round up the values obtained from these equation for approximation. 

Since these values have to be integral. 
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In next section the performance evaluation of proposed scheduler over state of art technique is shown.  
 

III. SIMULATION  RESULT AND ANALYSIS 

This section presents performance evaluation of proposed OHMR over state-of-art Hadoop MapReduce Framework [16]. 

Hadoop is the most widely used/adopted MapReduce platform for computing on cloud environments [17], hence it is 

considered for comparisons. Hadoop 2.0 i.e. version 2.7 is used and is deployed on azure cloud using HDInsight. The 

Hadoop cluster is composed of one master worker node and four worker/slave nodes. Each worker node is deployed on 

A3 virtual machine instances which composed of 4 virtual computing cores, 7 GB RAM and 120 GB of storage space. 

Uniform configuration is considered for both OHMR and HMR. For experiment analysis Bioinformatics application are 

considered such as Gene sequencing (BLAST) [18] and CAP3 sequence assembly [19]. The dataset for experiment 

analysis is obtained from NCBI [20] 
 

a) Gene Sequencing performance : 

Gene sequence alignment is a fundamental operation adopted to identify similarities that exist between a query protein 

sequence, DNA or RNA and a database of sequences maintained. Sequence alignment is computationally heavy and its 

computation complexity is relative to product of two sequences being currently analyzed. Massive volumes of sequences 

maintained in the database to be searched induces additional computation burden. BLAST is a widely adopted 

bioinformatics tool for sequence alignment which perform faster alignments, at expense of accuracy (possibly missing 

some potential hits) [18]. Drawbacks of BLAST and its improvements is discussed in [21]. For evaluation here the 

improved BLAST algorithm of [21] is adopted. To improve computation time a heuristic strategy is used compromising 

accuracy minimally. In the heuristic strategy initial match is found and is later extended to obtain the complete matching 

sequence. 

Experiments are conducted to evaluate OHMR and HMR performance for performing gene sequence alignment. For 

performing alignment Drosophila database as a reference database and Query sequence of varied sizes of from Homo 

sapiens chromosomal sequences and genomic scaffolds is considered similar to [21] which are tabulated in Table I. All 

six experiments are conducted using BLAST algorithm on HMR and OHMR frameworks. The total makespan time of 

both HMR and OHMR for all six experiments is noted and graph is plotted as shown in Fig. 2. It must be noted that the 

initialization time of the VM cluster is not considered is computing makespan as it is uniform in both OHMR and HMR 

owing to similar cluster configurations. 

The total makespan of OHMR and HMR is dependent on task execution time of virtual computing/worker nodes during 

Map and Reduce phase. The total makespan observed in BLAST sequence alignment experiments executed on HMR and 

OHMR frameworks is shown in Fig. 2. The outcomes shows significant performance in terms of reduces makespan 

times of OHMR over HMR. A makespan reduction of 43.44%, 44.85%, 56.9%, 57.17%, 62.83% and 65.01% is obtained 

for six experiment by OHMR over HMR. An average makespan reduction of 55.03% is achieved by OHMR over HMR 

across all experiments.    
 

Theoretical makespan of OHMR i.e., 𝒲 given by Equation (11) is computed and compared against the practical values 

observed in all the experiments. Results obtained are shown in Fig. 3. Minor variations are observed between practical 

and theoretical makespan computations. Overall good correlation is reported between practical makespan values and 

theoretical makespan values. Based on the results presented it is evident that execution of BLAST sequence alignment 

algorithm on proposed OHMR yields superior results when compared to similar experiments conducted on existing 

HMR framework. Accuracy and correctness of theoretical makespan model of OHMR presented is proved through 

correlation measures. 
 

TABLE I.  INFORMATION OF THE GENOME SEQUENCES USED AS QUERIES CONSIDERING EQUAL SECTION LENGTHS 

FROM THE HOMO SAPIENS CHROMOSOME 15 AS REFERENCE 

Experi

ment Id 

Query 

genome 

Query 

genome size  

Experiment Id Reference 

genome 

1 NT_007914 14866257 Drosophila 

database 

122,653,977 

2 AC_000156 19317006 Drosophila 

database 

122,653,977 

3 NT_011512 33734175 Drosophila 

database 

122,653,977 

4 NT_033899 47073726 Drosophila 

database 

122,653,977 

5 NT_008413 43212167 Drosophila 

database 

122,653,977 

6 NT_022517 90712458 Drosophila 

database 

122,653,977 
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Fig. 2. BLAST sequence alignment total makespan time observed for experiments conducted on OHMR and HMR 

frameworks 

 

 
Fig. 3. Correlation between theoretical and practical makespan times for BLAST sequence alignment execution on 

OHMR framework 

 

b) CAP3 assembly performance : 

DNA sequence assembly tools are used in bioinformatics for gene discovery and understanding genomes of existing/new 

organisms. CAP3 is one such tool popular used to assemble DNA sequences. DNA assembly is achieved by performing 

merging and aligning operations on smaller sequence fragments to build complete genome sequences. CAP3 eliminates 

poor sections observed within DNA fragments, computes overlaps amongst DNA fragments, is capable of identifying 

false overlaps, eliminating false overlaps identified, accumulates fragments of multiple or one overlapping DNA 

segments to produce contigs and performs multiple sequence alignments to produce consensus sequences. CAP3 reads 

multiple gene sequences from an input FASTA file and generates output consensus sequences written to multiple files 

and also to standard outputs. Detailed explanation of the CAP3 gene sequence assembly is provided in [19]. 

 

The experiments conducted in CAP3 gene sequence assembly is directly adopted in Map phase of  OHMR and Hadoop. 

In the reduce phase result aggregation is considered. To evaluate the performance of CAP3 execution on OHMR and 

Hadoop frameworks Homo sapiens chromosome 15 is considered as a reference. Genome sequences of various sizes are 

considered as queries and submitted to Azure cloud platform in the experiments. Query sequences for experiments are 

considered in accordance to [19]. CAP3 experiments conducted with query genomic sequences (BAC datasets) are 

summarized in Table II. All four experiments are conducted using CAP3 algorithm on Hadoop and OHMR frameworks. 

The total makespan time of both HMR and OHMR for all 4 experiments is noted and graph is plotted as shown in Fig. 4. 
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It must be noted that the initialization time of the VM cluster is not considered in computing makespan as it is uniform in 

both OHMR and HMR owing to similar cluster configurations. 

 

The total makespan of OHMR and HMR is dependent on task execution time of virtual computing/worker nodes during 

Map and Reduce phase. The total makespan observed in CAP3 sequence assembly experiments executed on HMR and 

OHMR frameworks is shown in Fig. 4. The outcomes shows significant performance in terms of reduces makespan 

times of OHMR over HMR. A makespan reduction of 30.4%, 24.12%, 16.69%, and 26.70% is obtained for six 

experiments by OHMR over HMR. An average makespan reduction of 24.47% is achieved by OHMR over HMR across 

all experiments.    

 

Theoretical makespan of OHMR i.e., 𝒲 given by Equation (11) is computed and compared against the practical values 

observed in all the experiments. Results obtained are shown in Fig. 5. Minor variations are observed between practical 

and theoretical makespan computations. Overall good correlation is reported between practical makespan values and 

theoretical makespan values. Based on the results presented it is evident that execution of CAP3 sequence assembly 

algorithm on proposed OHMR yields superior results when compared to similar experiments conducted on existing 

HMR framework. Accuracy and correctness of theoretical makespan model of OHMR presented is proved through 

correlation measures. 

 

TABLE II.  INFORMATION OF THE GENOME SEQUENCES USED IN CAP3 EXPERIMENTS 

Experi

ment 

Numbe

r 

Data set GeneBank 

accession 

number 

Number 

of reads 

(bp) 

Average 

Length of 

reads (bp) 

Length of 

provided 

sequences 

(bp) 

 

1 203 AC004669 1812 598 89779 

2 216 AC004638 2353 614 124645 

3 322F16 AF111103 4297 1011 159179 

4 526N18 AF123462 3221 965 180182 

 

 

 

 
Fig. 4. CAP3 sequence assembly alignment total makespan time observed for experiments conducted on OHMR and 

HMR frameworks 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4

E
x
ec

u
ti

o
n
 T

im
e 

(s
)

Experiment Number

Makespan Time

HMR

OHMR



IARJSET 
 ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 

 

        International Advanced Research Journal in Science, Engineering and Technology 
 

Vol. 7, Issue 6, June 2020 
 

Copyright to IARJSET                                              DOI  10.17148/IARJSET.2020.7630                                                             226 

 

 
Fig. 5. Correlation between theoretical and practical makespan times for CAP3 sequence assembly execution on 

OHMR framework 

 

IV. CONCLUSION 

The significance of cloud computing platforms is discussed. Commonly adopted Hadoop map reduce framework 

working with its drawbacks is presented. To lower makespan times and enable effective utilization of cloud resources 

this paper proposes an OHMR framework. The main contribution of this work is presenting an accurate and efficient 

makespan model for Hadoop MapReduce framework. The amount resource required to meet task deadline is done based 

makespan model presented here. To evaluate the performance of proposed OHMR framework computationally heavy 

bioinformatics application is considered such as BLAST and CAP3. Performance of OHMR framework is compared 

with HMR framework in terms of makespan time. Average overall makespan times reduction of 54.03%, and 24.47% is 

achieved using OHMR framework when compared to HMR framework for BLAST and CAP3 applications. Experiments 

presented prove robustness of OHMR framework, its capability to handle diverse applications on public and private 

cloud platforms. Results presented through experiments conducted prove superior performance of OHMR against 

Hadoop framework. Good matching is reported between the theoretical makespan of OHMR presented and experimental 

values observed.  

The future work would consider performance evaluation considering different application and also would further 

consider optimization of MapReduce scheduler for further reduction of computation time.  
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