# AR.JSFT



International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

DOI 10.17148/IARJSET.2020.71020

# **Diameter of Circulant Graph** $C_{n,r}$

### Laxman Saha

Assistant Professor, Department of Mathematics, Balurghat College, Balurghat-733101, India

Abstract: Communication is a critical issue in the design of a parallel and distributed system. The speed of communication of an interconnection network is related to its diameter. The diameter is a measure of efficiency for studying the effects of link failures of a network with maximum time-delay or signal degradation. In this article, we determine the diameter of circulant graphs  $C_{nr}$ .

Keywords: Diameter; Circulant Graph; Network Reliability; Signal Degradation.

### I. INTRODUCTION

An interconnection network connects the processors of a parallel and distributed system. The topological structure of a network can be modelled by a connected graph whose vertices and edges represent the sites and communication links of a network, respectively. Many graph theoretic techniques can be used to study the efficiency and reliability of anetwork, as discussed in [1]-[6]. The diameter is a measure of efficiency for studying the effects of link failures of networks with maximum time-delay or signal degradation. The circulant graphs has many applications in wireless networks. In this article, we determine the diameter of circulant graphs  $C_{n,r}$ .

**Definition 1.1** Let  $C_n$  be a cycle of *n*vertices. A *circulant graph*, denoted by  $C_{n,r}$ , is the graph with vertex set is same as of  $V(C_n)$  and two vertices u, vare adjacent  $C_{n,r}$  if  $u \sim v$  in  $C_n$  or they are of distance r in  $C_n$ .

**Proposition 1.1** In an n length cycle  $C_n$  following are true

- (a)  $d_{C_n}(x_i, x_j) = \min\{|i j|, n |i j|\}$ (b)  $diam(C_n) = \left|\frac{n}{2}\right|.$

The following lemma can be proved easily from the definition of  $C_{n,r}$ .

**Lemma 1.1** The *circulant graph* 
$$C_{n,r}$$
 is regular and  $d_{C_n}(x_i, x_j) = \left\lfloor \frac{d_{C_n}(x_i, x_j)}{r} \right\rfloor + \min\{m, r+1-m\}$  where  
 $m = d_{C_n}(x_i, x_j) - r \left\lfloor \frac{d_{C_n}(x_i, x_j)}{r} \right\rfloor.$ 

### II. DIAMETER OF $C_{n,r}$

In literature, there exists no theoretical results of diameter of  $C_{n,r}$ . In the theorem below we give a formula for diameter of  $C_{n,r}$  explicitly.

**Theorem 1** Let  $diam(C_{n,r})$  be the diameter of circulant graph  $C_{n,r}$ . Then we have the following.

(a) For odd integer n

$$diam(C_{n,r}) = \begin{cases} \left\lfloor \frac{n}{2r} \right\rfloor - 1 + \left\lfloor \frac{n+1}{2} \right\rfloor, & \text{if } m = 0; \\ \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r-2m}{2} \right\rfloor, & \text{if } 0 < m \le \left\lfloor \frac{r-1}{4} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2r-2m+1}{2} \right\rfloor, & \text{if } \left\lfloor \frac{r}{2} \right\rfloor < m \le \left\lfloor \frac{3r-1}{4} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + 1 + \left\lfloor \frac{2m-r}{2} \right\rfloor, & \text{if } \left\lfloor \frac{3r-1}{4} \right\rfloor < m \le r-1. \end{cases}$$

### Copyright to IARJSET



### International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

#### DOI 10.17148/IARJSET.2020.71020

(b) For even integer n

$$diam(C_{n,r}) = \begin{cases} \left\lfloor \frac{n}{2r} \right\rfloor - 1 + \left\lfloor \frac{n+1}{2} \right\rfloor, & \text{if } m = 0; \\ \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r-2m+1}{2} \right\rfloor, & \text{if } 0 < m \le \left\lfloor \frac{r-1}{4} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + r - m + 1, & \text{if } \left\lfloor \frac{r}{2} \right\rfloor < m \le \left\lfloor \frac{3r+1}{2} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + 1 + \left\lfloor \frac{2m-r+1}{2} \right\rfloor, & \text{if } \left\lfloor \frac{3r+1}{4} \right\rfloor < m \le r-1 \end{cases}$$

where,  $m = \left\lfloor \frac{n}{2} \right\rfloor - r \left\lfloor \frac{n}{2r} \right\rfloor$ .

**Proof:** We have found maximum eccentricity of the circulant graph. From the symmetricity the maximum eccentricity is attained by every vertex of  $C_{n,r}$ . So, without loss of generality, we find the eccentricity of  $x_0$  i.e., we find a farthest distanced vertex of  $x_0$ . Let ube any vertex in  $C_{n,r}$ . Then  $d_{C_{n,r}}(x_0, u) \le d_{C_n}(x_0, u)$  and it is true for every vertex uin  $C_{n,r}$ . Therefore,  $\max_{u \in V(C_{n,r})} d_{C_{n,r}}(x_0, u) \le \max_{u \in V(C_n)} d_{C_n}(x_0, u)$  as  $V(C_{n,r}) = V(C_n)$ . Thus, we have  $diam(C_{n,r}) \le diam(C_n)$  and hence  $diam(C_{n,r}) \le \left\lfloor \frac{r}{2} \right\rfloor$ . Also  $2 \le r \le \left\lfloor \frac{r}{2} \right\rfloor$ . So, by division algorithm, we get  $m = \left\lfloor \frac{r}{2} \right\rfloor - r \left\lfloor \frac{n}{2r} \right\rfloor$  and  $0 \le m \le r - 1$ . Let  $S_i$  be a sub-graph formed by r + 1 vertices  $x_{(i-1)r}, x_{(i-1)r+1}, \dots, x_{ir}$ . As in  $C_{n,r}$ , every rdistanced vertex are adjacent, so  $S_i$  is actually a cycle of r+1 vertices. As  $\left\lfloor \frac{r}{2} \right\rfloor = r \left\lfloor \frac{n}{2r} \right\rfloor + m$ ,  $0 \le m \le r - 1$ . So, the path  $P_{\lfloor \frac{n}{2} \rfloor}$  from  $x_0$  to  $x_{\lfloor \frac{n}{2r} \rfloor}$  in  $C_{n,r}$  is  $S_1 \cup S_2 \cup \ldots \cup S_{\lfloor \frac{n}{2r} \rfloor} \cup P_m$ , where  $P_m$  is a path from  $x_r \lfloor \frac{n}{2r} \rfloor$  to  $x_{\lfloor \frac{n}{2} \rfloor}$ . Clearly, here the maximum distanced vertex from  $x_0$  will be in the sub-graph  $S_{\lfloor \frac{n}{2r} \rfloor} \cup P_m$ . We take following two cases according as n is odd or even.

### Case 1: nis odd.

Sub-case (1a) :m = 0.In this case maximum distance from  $x_0$  to  $S_{\lfloor \frac{n}{2r} \rfloor}$  is  $\lfloor \frac{n}{2r} \rfloor - 1 + \lfloor \frac{r+1}{2} \rfloor$  and  $P_m$  does not exist. So  $diam(C_{n,r}) = \lfloor \frac{n}{2r} \rfloor - 1 + \lfloor \frac{r+1}{2} \rfloor$ .

Sub-case (1b):  $0 < m \le \left|\frac{r}{2}\right|$ . Since  $r \ge 2m$ , the r -th distanced vertex from e is band it is in between of a and c. Now  $d_{c_n}(c,e) = 2m + 1$  and  $d_{c_n}(b,e) = r$ . So  $d_{c_n}(b,c) = d_{c_n}(b,e) - d_{c_n}(c,e) = r - 2m - 1$  and  $d_{c_n}(a,b) = d_{c_n}(a,c) - d_{c_n}(b,c) = 2m + 1$ . Hence maximum distance from  $x_0$  to vertices of path from ato b is given by

$$d_{\mathcal{C}_n}(x_0,a) + \left\lfloor \frac{d_{\mathcal{C}_n}(a,b) + 2}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2m+1}{2} \right\rfloor$$

Again, maximum distance from  $x_0$  to vertices of *b* to *c* path is given by

$$d_{C_n}(x_0,c) + \left\lfloor \frac{d_{C_n}(b,c) + 1}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r - 2m}{2} \right\rfloor$$

Hence

$$diam(C_{n,r}) = \left\lfloor \frac{n}{2r} \right\rfloor + max\left\{ \left\lfloor \frac{2m+1}{2} \right\rfloor, \left\lfloor \frac{r-2m}{2} \right\rfloor \right\}$$

Thus, we have

$$diam(C_{n,r}) = \begin{cases} \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r-2m}{2} \right\rfloor, & if \ 0 < m \le \left\lfloor \frac{r-1}{4} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2m+1}{2} \right\rfloor, & if \ \left\lfloor \frac{r-1}{4} \right\rfloor < m \le \left\lfloor \frac{r}{2} \right\rfloor. \end{cases}$$

**Copyright to IARJSET** 



### International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

### DOI 10.17148/IARJSET.2020.71020

Sub-case (1c):  $\left|\frac{r}{2}\right| < m \le (r-1)$ . In this case r-th distanced vertex b from ewill be in between of cand d. Also, r-th distanced vertex f from b will be in between of a and c. Here

$$d_{C_{n,r}}(c,b) = d_{C_n}(c,e) - d_{C_n}(b,e) = 2m + 1 - r$$
  

$$d_{C_{n,r}}(f,c) = d_{C_n}(f,b) - d_{C_n}(c,b) = 2r - 2m - 1$$
  

$$d_{C_{n,r}}(a,f) = d_{C_n}(a,c) - d_{C_n}(f,c) = 2m + 1 - r$$
  

$$d_{C_{n,r}}(b,d) = m_1 - d_{C_n}(c,b) = r - m - 1.$$

So maximum distanced vertex from  $x_0$  will lies in path f - c or in path c - b. Now maximum distance from  $x_0$  to vertices of path f - c is  $d_{C_{n,r}}(x_0, c) + \left\lfloor \frac{d_{C_n}(f,c)+2}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2r-2m+1}{2} \right\rfloor$  and maximum distance from  $x_0$  to vertices of path c - b is  $d_{C_{n,r}}(x_0, c) + \left\lfloor \frac{d_{C_n}(c,b)+1}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2m+2-r}{2} \right\rfloor$ . Hence

$$diam(C_{n,r}) = \left\lfloor \frac{n}{2r} \right\rfloor + max\left\{ \left\lfloor \frac{2r-2m+1}{2} \right\rfloor, \left\lfloor \frac{2m+2-r}{2} \right\rfloor \right\}$$

Thus



**Fig 1:** The graph  $C_{n,r}$  with odd n and  $\left\lfloor \frac{n}{2r} \right\rfloor < m \le r - 1$ 



**Fig 2:** The graph  $C_{n,r}$  with odd *n* and  $0 < m \le \left\lfloor \frac{n}{2r} \right\rfloor$ 

**Copyright to IARJSET** 



International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

### DOI 10.17148/IARJSET.2020.71020

$$diam(C_{n,r}) = \begin{cases} \left|\frac{n}{2r}\right| + \left|\frac{2r - 2m + 1}{2}\right|, & \text{if } \left|\frac{r}{2}\right| < m \le \left|\frac{3r - 1}{4}\right|;\\ \left|\frac{n}{2r}\right| + 1 + \left|\frac{2m - r}{2}\right|, \text{if } \left|\frac{3r - 1}{4}\right| < m \le r - 1.\end{cases}$$

Case-II: nis even.

**Sub-case** (2a) :m=0.In this case maximum distance from  $x_0$  to  $S_{\lfloor \frac{n}{2r} \rfloor}$  is  $\lfloor \frac{n}{2r} \rfloor - 1 + \lfloor \frac{r+1}{2} \rfloor$  and  $P_m$  does not exist. So, in this case  $diam(C_{n,r}) = \lfloor \frac{n}{2r} \rfloor - 1 + \lfloor \frac{r+1}{2} \rfloor$ . **Sub-case** (2b):  $0 < m \le \lfloor \frac{r}{2} \rfloor$ . As,  $r \ge m$ so the r-th distanced vertex from eisband it is inbetween a dc. Now  $d_{C_n}(c,e) = 2m$  and  $d_{C_n}(b,e) = r$ . So  $d_{C_n}(b,c) = d_{C_n}(b,e) - d_{C_n}(c,e) = r - 2m$  and  $d_{C_n}(a,b) = d_{C_n}(a,c) - d_{C_n}(b,c) = 2m$ . Hence maximum distance from  $x_0$  to vertices of path from ato bis

$$d_{C_{n,r}}(x_0,a) + \left\lfloor \frac{d_{C_n}(a,b)+2}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r-2m+1}{2} \right\rfloor.$$

Again, maximum distance from  $x_0$  to vertices of *b*to*c*path is

Hence

$$d_{\mathcal{C}_{n,r}}(x_0,c) + \left\lfloor \frac{d_{\mathcal{C}_n}(b,c)+1}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r-2m+1}{2} \right\rfloor$$
$$diam(\mathcal{C}_{n,r}) = \left\lfloor \frac{n}{2r} \right\rfloor + max\left\{ m, \left\lfloor \frac{r-2m+1}{2} \right\rfloor \right\}.$$

Thus



**Fig 3:** The graph  $C_{n,r}$  with even *n* and  $0 < m \le \left|\frac{r}{2}\right|$ 

$$diam(\mathcal{C}_{n,r}) = \begin{cases} \left\lfloor \frac{n}{2r} \right\rfloor + r - m + 1, & \text{if } \left\lfloor \frac{r}{2} \right\rfloor < m \le \left\lfloor \frac{3r+1}{4} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2m+1}{2} \right\rfloor, & \text{if } \left\lfloor \frac{3r+1}{4} \right\rfloor < m \le r-1. \end{cases}$$

Sub-case (2c):  $\left|\frac{r}{2}\right| < m \le (r-1)$ . In this case *r*-th distanced vertex *b* from *e* will be in between of *c* and *d*. Also *r*-th distanced vertex *f* from *b* will be in between of *a* and *c*. Here

$$d_{C_{n,r}}(c,b) = d_{C_n}(c,e) - d_{C_n}(b,e) = 2m - r$$

**Copyright to IARJSET** 

#### **IARJSET**

164



International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

### DOI 10.17148/IARJSET.2020.71020

$$d_{C_{n,r}}(f,c) = d_{C_n}(f,b) - d_{C_n}(c,b) = 2r - 2m$$
$$d_{C_{n,r}}(a,f) = d_{C_n}(a,c) - d_{C_n}(f,c) = 2m - r$$
$$d_{C_{n,r}}(b,d) = m - d_{C_n}(c,b) = r - m.$$

So maximum distanced vertex from  $x_0$  will lie in path f - c or in path c - b. Now maximum distance from  $x_0$  to vertices of path f - c is  $d_{C_{n,r}}(x_0, c) + \left\lfloor \frac{d_{C_n}(f,c)+2}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + r - m + 1$  and maximum distance from  $x_0$  to vertices of path c - b is

$$d_{C_{n,r}}(x_0,c) + \left\lfloor \frac{d_{C_n}(c,b)+1}{2} \right\rfloor = \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{r-2m+1}{2} \right\rfloor$$

Hence.

$$diam(C_{n,r}) = \left\lfloor \frac{n}{2r} \right\rfloor + max\left\{r - m + 1, \left\lfloor \frac{2m - r + 1}{2} \right\rfloor\right\}.$$

Thus

$$diam(C_{n,r}) = \begin{cases} \left\lfloor \frac{n}{2r} \right\rfloor + r - m + 1, & \text{if } \left\lfloor \frac{r}{2} \right\rfloor < m \le \left\lfloor \frac{3r+1}{4} \right\rfloor; \\ \left\lfloor \frac{n}{2r} \right\rfloor + \left\lfloor \frac{2m-r+1}{2} \right\rfloor, & \text{if } \left\lfloor \frac{3r+1}{4} \right\rfloor < m \le r-1. \end{cases}$$

On account of all cases describes in above we get the results.



**Fig 4:** The graph  $C_{n,r}$  with even *n* and  $\frac{r}{2} < m \le r - 1$ 

#### REFERENCES

- [1]. O. Ore, Theory of Graphs, Colloquium Publ. 38, American Mathematical Society, Providence, R. 1., 1962.
- [2]. J. Gross and J. Yellen, Graph Theory and Applications, CRC Press, 2004.
- [3]. L. H. Hsu and C. K. Lin, Graph theory and interconnection networks, CRC Press, 2009.

- J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer AcademicPublishers, Dordrecht, 2001.
   N. Graham and F. Harary, "Changing and unchanging the diameter of a hypercube," DiscreteAppl. Math., 1992, 37/38, p. 265 274.
   J. J. Wang, T. Y. Ho, D. Ferrero and T. Y. Sung, "Diameter variability of cycles and tori,Inform.," Sci., 2008, 178, p. 2960-2967. F.R.K. Chung and M.R. Garey, "Diameter bounds for altered graphs," J. Graph Theory, 1984, 8 (4), p. 511-534.