# Diameter of Circulant Graph $\boldsymbol{C}_{\boldsymbol{n}, \boldsymbol{r}}$ 

Laxman Saha<br>Assistant Professor, Department of Mathematics, Balurghat College, Balurghat-733101, India


#### Abstract

Communication is a critical issue in the design of a parallel and distributed system. The speed of communication of an interconnection network is related to its diameter. The diameter is a measure of efficiency for studying the effects of link failures of a network with maximum time-delay or signal degradation. In this article, we determine the diameter of circulant graphs $C_{n, r}$.


Keywords: Diameter; Circulant Graph; Network Reliability; Signal Degradation.

## I. INTRODUCTION

An interconnection network connects the processors of a parallel and distributed system. The topological structure of a network can be modelled by a connected graph whose vertices and edges represent the sites and communication links of a network, respectively. Many graph theoretic techniques can be used to study the efficiency and reliability of anetwork, as discussed in [1]-[6]. The diameter is a measure of efficiency for studying the effects of link failures of networks with maximum time-delay or signal degradation. The circulant graphs has many applications in wireless networks. In this article, we determine the diameter of circulant graphs $C_{n, r}$.

Definition 1.1 Let $C_{n}$ be a cycle of $n$ vertices. A circulant graph, denoted by $C_{n, r}$, is the graph with vertex set is same as of $V\left(C_{n}\right)$ and two vertices $u$, vare adjacent $C_{n, r}$ if $u \sim v$ in $C_{n}$ or they are of distance $r$ in $C_{n}$.

Proposition 1.1 In an n length cycle $C_{n}$ following are true
(a) $d_{C_{n}}\left(x_{i}, x_{j}\right)=\min \{|i-j|, n-|i-j|\}$
(b) $\operatorname{diam}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

The following lemma can be proved easily from the definition of $C_{n, r}$.
Lemma 1.1 The circulant graph $C_{n, r}$ is regular and $d_{C_{n}}\left(x_{i}, x_{j}\right)=\left\lfloor\frac{d_{C_{n}}\left(x_{i}, x_{j}\right)}{r}\right\rfloor+\min \{m, r+1-m\}$ where

$$
m=d_{C_{n}}\left(x_{i}, x_{j}\right)-r\left[\frac{d_{C_{n}}\left(x_{i}, x_{j}\right)}{r}\right] .
$$

## II. DIAMETER OF $\boldsymbol{C}_{\boldsymbol{n}, \boldsymbol{r}}$

In literature, there exists no theoretical results of diameter of $C_{n, r}$. In the theorem below we give a formula for diameter of $C_{n, r}$ explicitly.

Theorem 1 Let diam $\left(C_{n, r}\right)$ be the diameter of circulant graph $C_{n, r}$. Then we have the following.
(a) For odd integer n

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\{\begin{aligned}
\left\lfloor\frac{n}{2 r}\right\rfloor-1+\left\lfloor\frac{n+1}{2}\right\rfloor, & \text { if } m=0 \\
\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m}{2}\right\rfloor, & \text { if } 0<m \leq\left\lfloor\frac{r-1}{4}\right\rfloor \\
\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 r-2 m+1}{2}\right\rfloor, & \text { if }\left\lfloor\frac{r}{2}\right\rfloor<m \leq\left\lfloor\frac{3 r-1}{4}\right\rfloor \\
\left\lfloor\frac{n}{2 r}\right\rfloor+1+\left\lfloor\frac{2 m-r}{2}\right\rfloor, & \text { if }\left\lfloor\frac{3 r-1}{4}\right\rfloor<m \leq r-1
\end{aligned}\right.
$$

## International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

## DOI 10.17148/IARJSET.2020.71020

(b) For even integer $n$

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\{\begin{array}{rc}
\left\lfloor\frac{n}{2 r}\right\rfloor-1+\left\lfloor\frac{n+1}{2}\right\rfloor, & \text { if } m=0 \\
\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m+1}{2}\right\rfloor, & \text { if } 0<m \leq\left\lfloor\frac{r-1}{4}\right\rfloor \\
\left\lfloor\frac{n}{2 r}\right\rfloor+r-m+1, & \text { if }\left\lfloor\frac{r}{2}\right\rfloor<m \leq\left\lfloor\frac{3 r+1}{2}\right\rfloor \\
\left\lfloor\frac{n}{2 r}\right\rfloor+1+\left\lfloor\frac{2 m-r+1}{2}\right\rfloor, & \text { if }\left\lfloor\frac{3 r+1}{4}\right\rfloor<m \leq r-1
\end{array}\right.
$$

where, $m=\left\lfloor\frac{n}{2}\right\rfloor-r\left\lfloor\frac{n}{2 r}\right\rfloor$.
Proof: We have found maximum eccentricity of the circulant graph. From the symmetricity the maximum eccentricity is attained by every vertex of $C_{n, r}$. So, without loss of generality, we find the eccentricity of $x_{0}$ i.e., we find a farthest distanced vertex of $x_{0}$. Let $u$ be any vertex in $C_{n, r}$. Then $d_{c_{n, r}}\left(x_{0}, u\right) \leq d_{C_{n}}\left(x_{0}, u\right)$ and it is true for every vertex $u$ in $C_{n, r}$. Therefore, $\max _{u \in V\left(C_{n, r}\right)} d_{C_{n, r}}\left(x_{0}, u\right) \leq \max _{u \in V\left(C_{n}\right)} d_{C_{n}}\left(x_{0}, u\right)$ as $V\left(C_{n, r}\right)=V\left(C_{n}\right)$. Thus, we have $\operatorname{diam}\left(C_{n, r}\right) \leq$ $\operatorname{diam}\left(C_{n}\right)$ and hence $\operatorname{diam}\left(C_{n, r}\right) \leq\left\lfloor\frac{r}{2}\right\rfloor$. Also $2 \leq r \leq\left\lfloor\frac{r}{2}\right\rfloor$. So, by division algorithm, we get $m=\left\lfloor\frac{r}{2}\right\rfloor-r\left\lfloor\frac{n}{2 r}\right\rfloor$ and $0 \leq$ $m \leq r-1$. Let $S_{i}$ be a sub-graph formed by $r+1$ vertices $x_{(i-1) r}, x_{(i-1) r+1}, \ldots, x_{i r}$. As in $C_{n, r}$, every $r$ distanced vertex are adjacent, so $S_{i}$ is actually a cycle of $r+1$ vertices. As $\left\lfloor\frac{r}{2}\right\rfloor=r\left\lfloor\frac{n}{2 r}\right\rfloor+m, 0 \leq m \leq r-1$. So, the path $P_{\left\lfloor\frac{n}{2}\right.}$ from $x_{0}$ to $x_{\left\lfloor\frac{n}{2 r}\right\rfloor}$ in $C_{n, r}$ is $S_{1} \cup S_{2} \cup \ldots \cup S_{\left\lfloor\frac{n}{2 r}\right\rfloor} \cup P_{m}$, where $P_{m}$ is a path from $x_{r\left\lfloor\frac{n}{2 r}\right\rfloor}$ to $x_{\left\lfloor\frac{n}{2}\right.}$. Clearly, here the maximum distanced vertex from $x_{0}$ will be in the sub-graph $S_{\left\lfloor\frac{n}{2 r}\right\rfloor} \cup P_{m}$. We take followingtwo cases according as $n$ is odd or even.

## Case 1: nis odd.

Sub-case (1a) :m=0.In this case maximum distance from $x_{0}$ to $S_{\left\lfloor\frac{n}{2 r}\right\rfloor}$ is $\left\lfloor\frac{n}{2 r}\right\rfloor-1+\left\lfloor\frac{r+1}{2}\right\rfloor$ and $P_{m}$ does not exist. So $\operatorname{diam}\left(C_{n, r}\right)=\left\lfloor\frac{n}{2 r}\right\rfloor-1+\left\lfloor\frac{r+1}{2}\right\rfloor$.

Sub-case (1b) : $0<m \leq\left\lfloor\frac{r}{2}\right\rfloor$. Since $r \geq 2 m$, the $r$-th distanced vertex from $e$ is $b$ and it is in between of $a$ and $c$. Now $d_{C_{n}}(c, e)=2 m+1 \quad$ and $\quad d_{C_{n}}(b, e)=r$. So $d_{C_{n}}(b, c)=d_{C_{n}}(b, e)-d_{C_{n}}(c, e)=r-2 m-1 \quad$ and $d_{C_{n}}(a, b)=$ $d_{C_{n}}(a, c)-d_{C_{n}}(b, c)=2 m+1$. Hence maximum distance from $x_{0}$ to vertices of path from $a$ to $b$ is given by

$$
d_{C_{n}}\left(x_{0}, a\right)+\left\lfloor\frac{d_{C_{n}}(a, b)+2}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 m+1}{2}\right\rfloor
$$

Again, maximum distance from $x_{0}$ to vertices of $b$ to $c$ path is given by

$$
d_{C_{n}}\left(x_{0}, c\right)+\left\lfloor\frac{d_{C_{n}}(b, c)+1}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m}{2}\right\rfloor
$$

Hence

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\lfloor\frac{n}{2 r}\right\rfloor+\max \left\{\left\lfloor\frac{2 m+1}{2}\right\rfloor,\left\lfloor\frac{r-2 m}{2}\right\rfloor\right\} .
$$

Thus, we have

$$
\operatorname{diam}\left(C_{n, r}\right)= \begin{cases}\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m}{2}\right\rfloor, & \text { if } 0<m \leq\left\lfloor\frac{r-1}{4}\right\rfloor \\ \left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 m+1}{2}\right\rfloor, & \text { if }\left\lfloor\frac{r-1}{4}\right\rfloor<m \leq\left\lfloor\frac{r}{2}\right\rfloor\end{cases}
$$

# International Advanced Research Journal in Science, Engineering and Technology 

Vol. 7, Issue 10, October 2020
DOI 10.17148/IARJSET. 2020.71020
Sub-case (1c): $\left\lfloor\frac{r}{2}\right\rfloor<m \leq(r-1)$. In this case $r$-th distanced vertex $b$ from $e$ will be in between of cand $d$. Also, $r$-th distanced vertex $f$ from $b$ will be in between of $a$ and $c$. Here

$$
\begin{gathered}
d_{C_{n, r}}(c, b)=d_{C_{n}}(c, e)-d_{C_{n}}(b, e)=2 m+1-r \\
d_{C_{n, r}}(f, c)=d_{C_{n}}(f, b)-d_{C_{n}}(c, b)=2 r-2 m-1 \\
d_{C_{n, r}}(a, f)=d_{C_{n}}(a, c)-d_{C_{n}}(f, c)=2 m+1-r \\
d_{C_{n, r}}(b, d)=m_{1}-d_{C_{n}}(c, b)=r-m-1 .
\end{gathered}
$$

So maximum distanced vertex from $x_{0}$ will lies in path $f-c$ or in path $c-b$. Now maximum distance from $x_{0}$ to vertices of path $f-c$ is $d_{C_{n, r}}\left(x_{0}, c\right)+\left\lfloor\frac{d_{C_{n}}(f, c)+2}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 r-2 m+1}{2}\right\rfloor$ and maximum distance from $x_{0}$ to vertices of path $c-b$ is $d_{C_{n, r}}\left(x_{0}, c\right)+\left\lfloor\frac{d_{C_{n}}(c, b)+1}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 m+2-r}{2}\right\rfloor$.
Hence

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\lfloor\frac{n}{2 r}\right\rfloor+\max \left\{\left\lfloor\frac{2 r-2 m+1}{2}\right\rfloor,\left\lfloor\frac{2 m+2-r}{2}\right\rfloor\right\}
$$

Thus


Fig 1: The graph $C_{n, r}$ with odd $n$ and $\left\lfloor\frac{n}{2 r}\right\rfloor<m \leq r-1$


Fig 2: The graph $C_{n, r}$ with odd $n$ and $0<m \leq\left\lfloor\frac{n}{2 r}\right\rfloor$

## International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

## DOI 10.17148/IARJSET.2020.71020

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\{\begin{array}{l}
\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 r-2 m+1}{2}\right\rfloor, \quad \text { if }\left\lfloor\frac{r}{2}\right\rfloor<m \leq\left\lfloor\frac{3 r-1}{4}\right\rfloor ; \\
\left\lfloor\frac{n}{2 r}\right\rfloor+1+\left\lfloor\frac{2 m-r}{2}\right\rfloor,
\end{array} \text { if }\left\lfloor\frac{3 r-1}{4}\right\rfloor<m \leq r-1 . ~ \$\right.
$$

## Case-II: nis even.

Sub-case (2a) :m=0.In this case maximum distance from $x_{0}$ to $S_{\left\lfloor\frac{n}{2 r}\right\rfloor}$ is $\left\lfloor\frac{n}{2 r}\right\rfloor-1+\left\lfloor\frac{r+1}{2}\right\rfloor$ and $P_{m}$ does not exist. So, in this case $\operatorname{diam}\left(C_{n, r}\right)=\left\lfloor\frac{n}{2 r}\right\rfloor-1+\left\lfloor\frac{r+1}{2}\right\rfloor$.
Sub-case (2b): $0<m \leq\left\lfloor\frac{r}{2}\right\rfloor$. As, $r \geq m$ so the $r$-th distanced vertex from $e$ isband it is inbetween $a$ and $c$. Now $d_{C_{n}}(c, e)=2 m$ and $d_{C_{n}}(b, e)=r$. So $d_{C_{n}}(b, c)=d_{C_{n}}(b, e)-d_{C_{n}}(c, e)=r-2 m$ and $d_{C_{n}}(a, b)=d_{C_{n}}(a, c)-$ $d_{c_{n}}(b, c)=2 m$. Hence maximum distance from $x_{0}$ to vertices of path from $a$ to $b$ is

$$
d_{C_{n, r}}\left(x_{0}, a\right)+\left\lfloor\frac{d_{C_{n}}(a, b)+2}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m+1}{2}\right\rfloor .
$$

Again, maximum distance from $x_{0}$ to vertices of $b$ tocpath is

$$
d_{C_{n, r}}\left(x_{0}, c\right)+\left\lfloor\frac{d_{C_{n}}(b, c)+1}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m+1}{2}\right\rfloor .
$$

Hence

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\lfloor\frac{n}{2 r}\right\rfloor+\max \left\{m,\left\lfloor\frac{r-2 m+1}{2}\right\rfloor\right\} .
$$

Thus


Fig 3: The graph $C_{n, r}$ with even $n$ and $0<m \leq\left\lfloor\frac{r}{2}\right\rfloor$

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\{\begin{array}{l}
\left\lfloor\frac{n}{2 r}\right\rfloor+r-m+1, \quad \text { if }\left\lfloor\frac{r}{2}\right\rfloor<m \leq\left\lfloor\frac{3 r+1}{4}\right\rfloor \\
\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 m+1}{2}\right\rfloor,
\end{array} \quad \text { if }\left\lfloor\frac{3 r+1}{4}\right\rfloor<m \leq r-1 .\right.
$$

Sub-case (2c): $\left\lfloor\frac{r}{2}\right\rfloor<m \leq(r-1)$. In this case $r$-th distanced vertex $b$ from $e$ will be in between of $c$ and $d$. Also $r$ $t h$ distanced vertex $f$ from $b$ will be in between of $a$ and $c$.
Here

$$
d_{C_{n, r}}(c, b)=d_{C_{n}}(c, e)-d_{C_{n}}(b, e)=2 m-r
$$

## International Advanced Research Journal in Science, Engineering and Technology

Vol. 7, Issue 10, October 2020

## DOI 10.17148/IARJSET.2020.71020

$$
\begin{gathered}
d_{C_{n, r}}(f, c)=d_{C_{n}}(f, b)-d_{C_{n}}(c, b)=2 r-2 m \\
d_{C_{n, r}}(a, f)=d_{C_{n}}(a, c)-d_{C_{n}}(f, c)=2 m-r \\
d_{C_{n, r}}(b, d)=m-d_{C_{n}}(c, b)=r-m .
\end{gathered}
$$

So maximum distanced vertex from $x_{0}$ will lie in path $f-c o r$ in path $c-b$. Now maximum distancefrom $x_{0}$ to vertices of path $f-c$ is $d_{C_{n, r}}\left(x_{0}, c\right)+\left\lfloor\frac{d_{c_{n}}(f, c)+2}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+r-m+1$ and maximum distance from $x_{0}$ to vertices of path $c-b$ is

$$
d_{C_{n, r}}\left(x_{0}, c\right)+\left\lfloor\frac{d_{C_{n}}(c, b)+1}{2}\right\rfloor=\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{r-2 m+1}{2}\right\rfloor .
$$

Hence,

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\lfloor\frac{n}{2 r}\right\rfloor+\max \left\{r-m+1,\left\lfloor\frac{2 m-r+1}{2}\right\rfloor\right\} .
$$

Thus

$$
\operatorname{diam}\left(C_{n, r}\right)=\left\{\begin{array}{c}
\left\lfloor\frac{n}{2 r}\right\rfloor+r-m+1, \text { if }\left\lfloor\frac{r}{2}\right\rfloor<m \leq\left\lfloor\frac{3 r+1}{4}\right\rfloor \\
\left\lfloor\frac{n}{2 r}\right\rfloor+\left\lfloor\frac{2 m-r+1}{2}\right\rfloor, \text { if }\left\lfloor\frac{3 r+1}{4}\right\rfloor<m \leq r-1 .
\end{array}\right.
$$

On account of all cases describes in above we get the results.


Fig 4: The graph $C_{n, r}$ with even $n$ and $\frac{r}{2}<m \leq r-1$

## References

[1]. O. Ore, Theory of Graphs, Colloquium Publ. 38, American Mathematical Society, Providence,R. 1., 1962.
[2]. J. Gross and J. Yellen, Graph Theory and Applications, CRC Press, 2004.
[3]. L. H. Hsu and C. K. Lin, Graph theory and interconnection networks, CRC Press, 2009.
[4]. J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer AcademicPublishers, Dordrecht, 2001.
[5]. N. Graham and F. Harary, "Changing and unchanging the diameter of a hypercube," DiscreteAppl. Math., 1992, 37/38, p. 265-274.
[6]. J. J. Wang, T. Y. Ho, D. Ferrero and T. Y. Sung, "Diameter variability of cycles and tori,Inform.," Sci., 2008, 178, p. 2960-2967.
F.R.K. Chung and M.R. Garey, "Diameter bounds for altered graphs," J. Graph Theory, 1984, 8 (4), p. 511-534.

