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Abstract: For a simple connected graph 𝐺 =  (𝑉, 𝐸), an ordered set 𝑊 ⊆ 𝑉 , is calleda resolving set of 𝐺 if for every 

pair of two distinct vertices 𝑢and 𝑣, there is anelement 𝑤in 𝑊such that 𝑑(𝑢, 𝑤)  ≠  𝑑(𝑣, 𝑤). A metric basis of 𝐺 is a 

resolving setof 𝐺 with minimum cardinality. The metric dimension of 𝐺 is the cardinality ofa metric basis and it is 

denoted by 𝛽(𝐺). In this article, we determine the metricdimension of any power of finite paths. 
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I. INTRODUCTION 

 

The study of Metric dimension or resolving set of a simple connected graph using distance between vertices is so much 

popular among research scholars as it is applicable to many areas like network, robotic navigation, drug design etc; The 

concept of the metric dimension of a graph was first introduced by Slater [13]. Theirintroduction of this invariantwas 

motivated by its application to the placement of a minimum number of sonar/lorandetecting devices in a network so 

that the position of every vertex in the network can be uniquely described in terms of its distances to the devices in the 

set. They use location set in place of resolving set. Also, Harary and Melter [8] in 1976  introduced the same concept 

as metric dimension rather than location number. 

 

Throughout this article, 𝐺 = (𝑉, 𝐸) denotes a simple connected graph with vertex set 𝑉 and edge set 𝐸. 

Distance between two vertices 𝑢 and 𝑣  in  𝐺, denoted by 𝑑(𝑢, 𝑣) is thelength of a shortest 𝑢 − 𝑣 path. For an ordered 

subset 𝑊 =  {𝑤1, 𝑤2, . . . , 𝑤𝑘}  ⊂ 𝑉 and a vertex 𝑣 of 𝐺, distance code of 𝑣 with respect to 𝑆 is a 𝑘-vector given by 

𝑐𝑜𝑑𝑒𝑊(𝑣) =  (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), . . . , 𝑑(𝑣, 𝑤𝑘)). 

 

If 𝑐𝑜𝑑𝑒𝑤(𝑢)  ≠  𝑐𝑜𝑑𝑒𝑤(𝑣) for all distinct vertices 𝑢 and 𝑣, then 𝑊 is called a resolving set for the graph 𝐺. Every 

simple connected graph 𝐺 has a resolving set as the vertex set 𝑉 forms a resolving set. The metric dimension of graph 

𝐺 is the minimum cardinalityof a resolving set for 𝐺 and it is denoted by 𝛽(𝐺). A resolving set with cardinality 𝛽(𝐺) is 
called a metric basis and elements of it are called basis elements. Throughout this article, distance code 𝑐𝑜𝑑𝑒𝑤 (𝑣) is 

simply denoted by 𝑐𝑜𝑑𝑒(𝑣). 
 

The 𝑟-th power of a graph 𝐺 is the graph 𝐺𝑟  having the vertex set same as that of 𝐺 and edges between pair of 

vertices at distance at most 𝑟 in 𝐺. Power graphs are usedto increase the connectivity of an existing network so it is 

necessary to study the metricdimensions of graphs and its power graphs. In[10] , Javaid et al. initiated to find themetric 

dimension for the square of cycles 𝐶𝑛
2. Imran et al. [9] later bounded the metricdimension of 𝐶𝑛 

2 and 𝐶𝑛
2, and then 

Borchert and Gossel in [1]  extended their results and determined the exact metric dimension of these two families of 

power of cycles. 

 

Theorem 𝟏. 𝟏 [𝟏]  For an integer𝑛 > 6 

𝛽(𝐶𝑛
2) = {

4,   𝑛 ≡ 1(𝑚𝑜𝑑 4);
3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 

Theorem 1.2 [1] For an integer 𝑛 > 8 

𝛽(𝐶𝑛
3) = {

5, 𝑛 ≡ 1(𝑚𝑜𝑑 6);
4,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

In this article, we determine the metric dimension of power of any paths. 
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II. PRELIMINARIES 

 

In this section, we give some basic definitions, lemmas and proposition that will be used in sequel. For a path 𝑃𝑛 with 

vertex set 𝑉(𝑃𝑛) =  {𝑣1, 𝑣2, . . . , 𝑣𝑛−1}, 𝑟-th power of path 𝑃𝑛 , denoted by 𝑃𝑛
𝑟 , is a simple graph with vertex set 𝑉 (𝑃𝑛) 

and two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent if 𝑑𝑃𝑛
(𝑣𝑖 , 𝑣𝑖) ≤  𝑟. It is clear to observe that 𝑑𝑃𝑛

𝑟(𝑣𝑖 , 𝑣𝑗) = ⌈
𝑑𝑃𝑛(𝑣𝑖,𝑣𝑗)

𝑟
⌉ =

⌈
|𝑣𝑖 −𝑣𝑗|

𝑟
⌉ = ⌈

|𝑖−𝑗|

𝑟
⌉.The set 𝑉 (𝑃𝑛

𝑟) (vertex set of 𝑃𝑛
𝑟  ) can be divided into the blocks 𝐵0 , 𝐵1, . . . , 𝐵

⌈
𝑛

𝑟
⌉−1

where the blocks 

𝐵𝑖 ’𝑠 are defined by 𝐵𝑖 =  {𝑣𝑖𝑟+𝑗 ∈ 𝑉 (𝑃𝑛
𝑟) ∶  0 ≤  𝑗 ≤  (𝑟 −  1)}. 

 

Proposition 2.1 For 𝑃𝑛
𝑟 , the blocks 𝐵𝑖 's have the following properties 

a) Each block Bi with 0 ≤  𝑖 ≤ ⌈
𝑛

𝑟
⌉ − 1, consists relements, namely,𝑣𝑖𝑟 , 𝑣𝑖𝑟+1 , 𝑣𝑖𝑟+2, . . . , 𝑣𝑖𝑟+(𝑟−1) whereas the block 

𝐵
⌈
𝑛

𝑟
⌉

− 1  contain exactly ℓ elements provided 𝑛 ≡ ℓ 𝑚𝑜𝑑 (𝑟). 

 

b) For each 𝑖 ∈ {0, 1, . . . , ⌈
𝑛

𝑟
⌉ − 1}, the induced sub-graph of 𝐵𝑖 forms a clique. 

 

Lemma 2.1 Any 𝑟 + 1 consecutive vertices in 𝑃𝑛
𝑟  forms a clique. 

 

Proof: Recall that 𝑉 (𝑃𝑛
𝑟) =  {𝑣0, 𝑣1, . . . , 𝑣𝑛−1} and two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent in 𝑃𝑛 

𝑟if and only if |𝑖 − 𝑗|  ≤  𝑟. 

Let 𝑆 =  {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑟} be a set of 𝑟 + 1 consecutive vertices in 𝑃𝑛
𝑟 . Also let 𝑣𝑝  and 𝑣𝑞  be any two vertices in 𝑆. 

Since 𝑣𝑝 , 𝑣𝑞 ∈ 𝑆, 𝑝, 𝑞 ∈ {𝑖, 𝑖 + 1, . . . , 𝑟} and hence |𝑝 −  𝑞|  ≤  𝑟, which imply that 𝑣𝑝 and 𝑣𝑞 are adjacent. Therefore, 

any pair of vertices in 𝑆 are adjacent 𝑖. 𝑒. , 𝑆 forms a clique in 𝑃𝑛
𝑟 . 

 

Definition 2.1 For an integer 𝑖 satisfying 0 ≤  𝑖 ≤  𝑟 −  1, by a class[𝑖] we mean the set [𝑖]  =  { 𝑗 ≡  𝑖 (𝑚𝑜𝑑 𝑟), 0 ≤
 𝑗 ≤  𝑛 −  1}. For 0 ≤  𝑡 ≤  𝑟 −  1, a vertex 𝑣𝑘 is called 𝑡-class element if 𝑘 ∈ [𝑡]. Also, a vertex 𝑣𝑘 is called the 

largest 𝑡-class element if 𝑘 is the largest element in [𝑡]. From here to onward, we denote the set of all t-class elements 

by 𝑆[𝑡]. 
 

Lemma 2.2 Let 𝑟 ≥  2 be an integer and ∅ be the empty set. Then following are hold in 𝑃𝑛
𝑟 

(a) 𝑆[𝑥] = 𝑆[𝑦] for  𝑥 ≡  𝑦 (𝑚𝑜𝑑 𝑟) 

 

(b) 𝑆[𝑥] ∩  𝑆[𝑦] =  ∅ for 𝑥 ≢ 𝑦 (𝑚𝑜𝑑 𝑟). 

 

(c) 𝑉(𝑃𝑛
𝑟) = ⋃ 𝑆[𝑡]𝑟−1

𝑡=0 . 

 

Proof : (a) From definition, it is clear that 𝑆[𝑥] =  𝑆[𝑦]for 𝑥 ≡  𝑦 (𝑚𝑜𝑑 𝑟). 

 

(b) If possible, let 𝑥 ≢  𝑦 (𝑚𝑜𝑑 𝑟) and 𝑣𝑘 ∈ 𝑆[𝑥] ∩  𝑆[𝑦] for some 𝑘. Then 𝑘 ∈ [𝑥] and 𝑘 ∈ [𝑦] 𝑖. 𝑒. , 𝑘 ∈ [𝑥]  ∩  [𝑦], 
which is a contradiction as 𝑥 ≢  𝑦 (𝑚𝑜𝑑 𝑟) implies [𝑥] ∩  [𝑦] =  ∅.  Therefore, 𝑆[𝑥] ∩  𝑆[𝑦] =  ∅  whenever 𝑥 ≢

𝑦 (𝑚𝑜𝑑 𝑟). 

 

(c) From definition of 𝑡-class element, we have ⋃ 𝑆[𝑡]𝑟−1
𝑡=0 ⊆ 𝑉(𝑃𝑛

𝑟). Now we show the reverse condition 𝑉(𝑃𝑟
𝑛) ⊆

⋃ 𝑆[𝑡]𝑟−1
𝑡=0 . Let 𝑣𝑘 ∈ 𝑉 (𝑃𝑛

𝑟) be an arbitrary vertex. Then there exists an unique integer 𝑡 such that 𝑘 =  𝑡 (𝑚𝑜𝑑 𝑟) and 

0 ≤  𝑡 ≤  𝑟 −  1. Then 𝑣𝑘 ∈ 𝑆[𝑡] because an element 𝑣𝑘 ∈ 𝑆[𝑡] if and only if 𝑘 ∈ [𝑡]. Therefore 𝑣𝑘 ∈ ⋃ 𝑆[𝑡].
𝑟−1
𝑡=0  This 

completes the proof. 
 

 

Lemma 2.3 For any two vertices 𝑢 =  𝑣𝑖𝑟+𝑟1
and 𝑤 = 𝑣𝑖𝑟+𝑟2

of 𝑃𝑛
𝑟  , 

 

𝑑 𝑃𝑛
𝑟(𝑢, 𝑣) = {

|𝑖 − 𝑗|, 𝑖𝑓   𝑟2 ≤ 𝑟1;
|𝑖 − 𝑗| + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Proof: Without loss of generality, we may assume 𝑢 is left to 𝑤 𝑖. 𝑒., 𝑖𝑟 + 𝑟1 <  𝑗𝑟 + 𝑟2. If 𝑟2 ≤  𝑟1, then 

 

𝑑(𝑢, 𝑣) = ⌈
𝑗𝑟 + 𝑗1 − 𝑖𝑟 − 𝑖1

𝑟
⌉ 
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= ⌈
(𝑗 − 𝑖)𝑟 + 𝑗1 − 𝑖1

𝑟
⌉ 

= ⌈
(𝑗 − 𝑖 − 1)𝑟 + {𝑟 − (𝑖1 − 𝑗1)

𝑟
⌉ = 𝑗 − 𝑖 

 

 

Again if 𝑟2 > 𝑟1, then 𝑑(𝑢, 𝑣) = ⌈
(𝑗−𝑖)𝑟+(𝑗𝑖−𝑖1)

𝑟
⌉ = 𝑗 − 𝑖 + 1. 

 

 

Remark 2.1 For 0 ≤  𝑠 ≤  𝑟 −  1, 𝑑(𝑣𝑠, 𝑢)  =  𝑑(𝑣𝑠, 𝑤) implies 𝑑(𝑣𝑖𝑟+𝑠, 𝑢)  =  𝑑(𝑣𝑖𝑟+𝑠, 𝑤). 
 

 

III.  METRIC DIMENSION OF 𝑃𝑛
𝑟  

 

In this section, first we present a lower bound for the metric dimension of 𝑃𝑛
𝑟and then we build up a resolving set with 

cardinality same as that lower bound. It is noted that {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑟} forms a clique in 𝑃𝑛
𝑟  for every 𝑖 ∈

 {0, 1, . . . , 𝑛 − 𝑟 − 1}. The lemma below [4] represents an effective result to determine a lower bound for the metric 

dimension of 𝑃𝑛
𝑟. 

 

Lemma 3.1 Let  𝐴 ⊂ {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑟} with |𝐴|  =  ℓ, 𝑓𝑜𝑟 2 ≤  𝑙 ≤  𝑟 +  1. If 𝑋 resolves 𝐴 then |𝑋|  ≥  ℓ −  1. 

 

Proof. We prove this lemma by induction on ℓ. The result obviously is true for ℓ =  2. Now we show that it is true for 

ℓ = 𝑘 with an assumption that it holds for ℓ =  𝑘 − 1. Let the elements of 𝐴 in orderare 𝑣𝑖+𝑎1
, 𝑣𝑖+𝑎2

, . . . , 𝑣𝑖+𝑎𝑘 ,
where 

0 ≤  𝑎1 < 𝑎2 < . . . < 𝑎𝑘 ≤  𝑟. As 𝑋 resolves 𝐴, there is an element 𝑥 ∈ 𝑋 such that 𝑑(𝑥, 𝑣𝑖+𝑎1
)  ≠ 𝑑(𝑥, 𝑣𝑖+𝑎2

). If  𝑥 =

𝑣𝑖+𝑎2
, then 𝑑(𝑥, 𝑣𝑖+𝑎𝑠

)  =  1 for all 𝑠 ∈ {1, 3,· · · , 𝑘} and 𝑋 \ {𝑥} resolves 𝐴\ {𝑣𝑖+𝑎2
}. If 𝑥 ≠ 𝑣𝑖+𝑎2

, then 𝑑(𝑥, 𝑣𝑖+𝑎2
)  =

 𝑑(𝑥, 𝑣𝑖+𝑎𝑠
) for all 𝑠 ∈ {2, 3,· · · , 𝑘} and 𝑋 \ {𝑥} resolves 𝐴 \ {𝑣𝑖+𝑎1

}. Thus in both cases 𝑋 \ {𝑥} resolves a subset of  

{𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑟} with cardinality 𝑘 − 1. Therefore, by assumption, |𝑋 \ {𝑥}|  ≥  𝑘 −  2 and hence |𝑋|  ≥  𝑘 −  1. 

 

With the help of Lemma 3.1, the following result represents a lower bound for 𝛽(𝑃𝑟
𝑛) for all values of 𝑛 and 𝑟 <

𝑛

2
 . 

 

Lemma 3.2 For two integers 𝑛 and 𝑟 with 𝑟 <
𝑛

2
, 𝛽(𝑃𝑟

𝑛)  ≥  𝑟 .                 

 

Proof. Let 𝐵 be a resolving set of 𝑃𝑟
𝑛 and 𝑣𝑖 ∈ 𝐵. Then 𝐴 = {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑟}is not resolved by 𝑣𝑖 as 𝑑(𝑣𝑖 , 𝑣𝑖+𝑠)  =  1 

for all 𝑠 ∈  {1, 2,· · · , 𝑟}.  Applying Lemma 3.1, we have |𝐵 \ {𝑣𝑖}|  ≥  𝑟 −  1 and so|𝐵|  ≥  𝑟. 
 

Now our aim is to construct a resolving set for 𝑃𝑟
𝑛 with cardinality  𝑟. 

 

Lemma 3.3 Let 𝑖 and  ℓ be two integers such that 0 ≤  𝑖 <  𝑖 +  ℓ ≤  𝑟 −  1. Then 𝐴 = {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+ℓ} ⊂

𝑉 (𝑃𝑛
𝑟) resolves the set ⋃ {𝑣𝑗𝑟+𝑖, . . . , 𝑣𝑗𝑟+𝑖+ℓ+1}

⌈
𝑛

𝑟
⌉−1

𝑗=1
⊆ 𝑉 (𝑃𝑛

𝑟), i.e., 𝐴 resolves the set ⋃ 𝑆[𝑗]𝑖+ℓ+1
𝑗=𝑖  

 

Proof. To prove this lemma, it is sufficient to show that for any pair of vertices 𝑢, 𝑤 ∈

⋃ {𝑣𝑗𝑟+𝑖, . . . , 𝑣𝑗𝑟+𝑖+ℓ+1} 
⌈
𝑛

𝑟
⌉−1

𝑗=1
there exists at least one vertex 𝑥 ∈ 𝐴 such that 𝑑(𝑢, 𝑥)  ≠ 𝑑(𝑤, 𝑥). Let 𝑢, 𝑤 ∈

⋃ {𝑣𝑗𝑟+𝑖, . . . , 𝑣𝑗𝑟+𝑖+ℓ+1}
⌈
𝑛

𝑟
⌉−1

𝑗=1
 be two distinct vertices. Then we may write 𝑢 = 𝑣𝑎𝑟+𝑟1

and 𝑤 = 𝑣𝑏𝑟+𝑟2 
for some 0 ≤

 𝑎, 𝑏 ≤  ⌈
𝑛

𝑟
⌉ − 1 and 𝑖 ≤  𝑟1, 𝑟2 ≤  𝑖 +  ℓ +  1. Without loss of generality, we may assume 𝑢 is in left side of 𝑤, i.e., 

𝑎𝑟 + 𝑟1 <  𝑏𝑟 + 𝑟2. Now if we take 𝑥 = 𝑣𝑟1
∈ 𝐴, then 𝑑(𝑣𝑟1

, 𝑢) =  𝑎 and 𝑑(𝑣𝑟1
, 𝑤) =  𝑏 or 𝑏 +  1 according as 𝑟2 ≤

 𝑟1 or 𝑟2 > 𝑟1. Therefore if  𝑟2 > 𝑟1, then 𝑑(𝑢, 𝑣𝑟1
)  ≠  𝑑(𝑤, 𝑣𝑟1

). Again if 𝑟2 ≤  𝑟1, then also 𝑑(𝑢, 𝑣𝑟1
) ≠  𝑑(𝑤, 𝑣𝑟1

) 

as 𝑎𝑟 + 𝑟1 <  𝑏𝑟 + 𝑟2. So 𝑣𝑟1
∈ 𝐴 resolves 𝑢 𝑎𝑛𝑑 𝑤; and hence 𝐴 resolves  ⋃ {𝑣𝑗𝑟+𝑖 , . . . , 𝑣𝑗𝑟+𝑖+ℓ+1}

⌈
𝑛

𝑟
⌉−1

𝑗=1
. 

 

By similar argument as in Lemma 3.3, we have the following result. 
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Lemma 3.4 Let 𝑖 and ℓ be two integers such that 0 ≤  𝑖 <  𝑖 +  ℓ ≤  𝑟 –  1. Then 𝐵 = {𝑣𝑛−𝑟+𝑖 ,

𝑣𝑛−𝑟+𝑖+1, . . . , 𝑣𝑛−𝑟+𝑖+ℓ}  ⊂ 𝑉(𝑃𝑛
𝑟) resolves the set ⋃ {𝑣𝑛−𝑗𝑟+𝑖−1, . . . , 𝑣𝑛−𝑗𝑟+𝑖+ℓ}

⌈
𝑛

𝑟
⌉−1

𝑗=1
⊆ 𝑉 (𝑃𝑛

𝑟), i.e., 𝐵 resolves the 

set ⋃ 𝑆[𝑗]𝑖+𝑙
𝑗=𝑖−1 . 

 

The following theorem gives the exact value of metric dimension of 𝑃𝑛   
𝑟 for all values of  𝑛 and 𝑟. 

 

Theorem 1.  For two integers𝑛and𝑟with 𝑟 <
𝑛

2
, 𝛽(𝑃𝑛

𝑟)  =  𝑟. 

 

Proof. From Lemma 3.2, we have 𝛽(𝑃𝑛
𝑟)  ≥  𝑟. Thus, to prove the theorem it is sufficient to construct a resolving set 𝐴 

with cardinality 𝑟. Consider 𝐴 =  {𝑣0, 𝑣1, . . . , 𝑣𝑟−1} be the set of first 𝑟 consecutive vertices of  𝑃𝑛
𝑟  . Now if we apply 

Lemma 3.3 to 𝐴 then 𝐴 resolve ⋃ 𝑆[𝑡]
𝑟−1
𝑡=0 = 𝑉(𝑃𝑛

𝑟). Therefore  𝐴 is resolving set for 𝑃𝑛
𝑟  with cardinality 𝑟 and 

consequently  𝛽(𝑃𝑛
𝑟)  ≤  𝑟. Hence the theorem. 
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