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INTRODUCTION 

 This is a continuation and application of Sd-Topology over the theory of a Model (DOI: 10.17148/IARJSET.2020.71201) 

to provide a lucid and short proof of the famous Gödel’s completeness and incompleteness theorems. Here as we are 

using Sd Topology so the conditions will be restricted as the cardinality of the universe of the working model should be 

card 𝓤 ≥ℵ0  and also the cardinality of the working theory should be card(Th 𝓤)≥ card (𝓤 ).  The inspiration of this 

article also have a very deep connection with philosophy. The similar statements of the Gödel's incompleteness theorems 

have also been mentioned in the ancient Rigveda's 10/129th mandala as following, 

नासदासीन्नो सदासीत्तदानी ीं नासीद्रजो नो व्योमा परो यत् | 

किमावरीवः िुह िस्य शममन्नम्भः किमासीद्गहनीं गभीरम् ॥ १॥ 

िो अद्धा वेद ि इह प्र वोचतु्कत आजाता िुत इयीं कवसृकटः | 

अवामगे्दवा अस्य कवसजमनेनाथा िो वेद यत आबभूव ॥६॥ 

इयीं कवसृकटयमत आबभूव यकद वा दधे यकद वा न | 

यो अस्याध्यक्षः परमे व्योमन्त्सो अङ्ग वेद यकद वा न वेद ॥७॥ 

The meaning of these Slokas are: 

1. Then even non-existence was not there, nor existence, There was no air then, nor the space beyond it. What covered 

it? Where was it? In whose keeping? Was there then cosmic fluid, in depths unfathomed. 

6. But, after all, who knows, and who can say whence it all came, and how creation happened? the gods themselves are 

later than creation, so who knows truly whence it has arisen? 

7. Whence all creation had its origin, the creator, whether he fashioned it or whether he did not, the creator, who surveys 

it all from highest heaven, he knows— or maybe even he does not know. 
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DEFINITION :  If 𝓤  is a model for the language ℒ , the theory of 𝓤  is denoted by Th𝓤  , is defined to be the set of 

all sentences of ℒ  (i.e formulas with no free variables) which are true in 𝓤 . So Th𝓤= { σ of ℒ  : 𝓤 ⊨ σ } 

For example if ℒ  = { <,+, . ,0,1} then Thℝ is famous as the name Real Analysis. Similarly over the same language Thℤ 

is  known as number theory again for ℒ  = {+, . ,0,1} Thℂ is renowned as complex analysis.  

 

[ Note: here we denote the models for a given language as italic notations as the universe of the model i.e ℝ = < ℝ, I >  

where I is the respective interpretation function , also further we indicate the cardinality of a model as the cardinality of 

its universe i.e cardℝ  means cardℝ = c]  

 

Construction of Sd -topology on Th𝓤   (When  card 𝓤 ≥ ℵ0) : 

Lets define a mapping k : P(Th𝓤 ) → P(Th𝓤 )  as 

 k(A)= A  if card A < card 𝓤           [ where A is subset (i.e sub theory) of  Th𝓤 ] 

k(A)= Th𝓤   if card A ≥ card 𝓤   

It’s easy to verify that k is a Kuratowski’s Closer Operator  

since k(∅) =∅ ,A⊆ k(A) & k(k(A))=k(A); ∀A ⊆ Th𝓤   and k(A U B)=k(A) U k(B) ;∀A,B ⊆ Th𝓤    

 

LEMMA: Let k be a Kuratowski’s Closer operator on a set X. Then there is a unique topology τ on X such that k(A)=Ā 

; in (X, τ) ∀A ⊆ X  where Ā is the closer of A. 

 

Proof:  Let ∑ = { k(A) : A ⊆ X}  since k(k(A)) = k(A), ∀A ⊆ X   

so we can treat  ∑ = { A ⊆ X : k(A)=A}  , Obviously ∅ ∈ ∑  and X ∈ ∑  

Again if  A, B ∈ ∑  then as  k(A U B)=k(A) U k(B) = A U B , so AUB ∈ ∑   thus ∑   is closed under finite union. Again 

if Ai ∈ ∑   then as ∩i Ai ⊆ Ai  so by the property of k ,  

k(∩i Ai )⊆ k( Ai  ) = Ai  therefore  ∩i Ai  ⊆ k(∩i Ai ) ⊆  ∩i Ai and k(∩i Ai ) =  ∩i Ai  

thus ∩i Ai ∈ ∑  so it’s also closed under arbitrary intersection. Therefore τ is defined as  

τ = { V : X- V∈ ∑  }, surly a topology on X with ∑ is the set of all closed sets in (X, τ). 

Now Ā ⊆ k(A) since k(A) is a closed set containing A. Again  Ā  ⊆ k(Ā) ⊆ k(k(A)) =k(A). 

But k(A) ⊆ k(Ā) so we get k(A)=  Ā  .  

For uniqueness if τ1 and τ2 are two topologies on X such that Cl τ1 (A) = Cl τ2 (A) , ∀A ⊆ X  . 

Then { Cl τ1 (A) :  A ⊆ X } ={ Cl τ2 (A) :  A ⊆ X }  so τ1 = τ2  (Where Cl τ1 (A) = Ā in (X, τ1))  

( Q.E.D) 

 

Now with the help of this lemma and the Kuratowski’s Closer Operator ‘k’ what we had defined earlier , we can construct 

a unique topology over Th𝓤 .  Where k(A) = Ā , ∀A ⊆ Th𝓤  . We called that topology is the Sd -topology on Th𝓤  . 

We are denoting that topology further as τSd . Another thing to note that if card 𝓤 <ℵ0  or card(Th 𝓤)< card (𝓤 ) then 

(Th𝓤 , τSd) will be very boring and elementary so in general we consider (Th𝓤 , τSd) with card 𝓤 ≥ℵ0  and card(Th 𝓤)≥ 

card (𝓤 ). 

Some Properties of the topological space (Th𝓤  , τSd): 

1) In (Th𝓤, τSd) any Sub Theory ( i.e non trivial subsets of a theory) containing equal or more sentences than the 

cardinality of the universe of the respective model , then it’s closer is itself the theory.  In other words we can say that in 

(Th𝓤, τSd)if A ⊆ Th𝓤  and card(A)≥ card (𝓤 ) then A is dense in (Th𝓤 , τSd).   

Proof:  Its trivial to check that as the operator defined as k(A)= Th𝓤   if card A ≥ card 𝓤  . Also as in (Th𝓤, τSd)  , k(A)= 

Ā ,  ∀A ⊆ Th𝓤  .  So whenever  card A ≥ card 𝓤  then Ā = Th𝓤.  (Q.E.D) 

2) In (Th𝓤, τSd) any Sub Theory A with card(A) < card (𝓤 ) is closed . Also vise-versa. 
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DEFINITION: A sentence σ∈ Th𝓤 is said to be a Theorem iff there exist a convergent sequence of different sentences  

{ σn } n∈ℕ (i.e steps) in Th𝓤, which converges to σ in (Th𝓤, τSd).                                         Then the set {σn : n∈ℕ } U 

{σ} is called a proof.                                                                                                                                                                  

Basically as we know that the last line of a proof is called a Theorem. 

Theorem: A sentence is a Theorem iff  it can be proved using finite number of steps. 

 To proof this theorem using finite steps we have to discuss some lemmas in (Th𝓤, τSd) 

LEMMA 1: In (Th𝓤, τSd) if card 𝓤 = ℵ0 a sequence is convergent iff its semi-constant. ( i.e exactly one term of the 

sequence repeated infinitely many times)  

Proof: In (Th𝓤, τSd) if card 𝓤 = ℵ0 the space is a cofinite space and the above lemma is evident there also that sequence 

converges to that particular term(point) always.We can find this lemma in almost all general topology book. 

LEMMA 2: In (Th𝓤, τSd) if card   > ℵ0 a sequence is convergent iff its eventually constant. 

Proof: Let { σn } n∈ℕ  be a non (eventually) constant sequence in (Th𝓤, τSd) converges to σ ∈ Th𝓤 . 

So σ ∉{ σn : ∀n∈ℕ }  but the set { σn : n∈ℕ } is countable, so its closed in (Th𝓤, τSd).  

Then Th𝓤- { σn : n∈ℕ } is a neighbourhood of σ which contains no σn ,which is a contradiction. 

The converse of the lemma is obvious.  

 

Proof of the theorem: If (Th𝓤, τSd) is with card 𝓤 = ℵ0 then from the lemma 1 we can see that there any sequence is 

convergent iff its semi-constant. But as the definition of Theorem its proof cannot repeat any of its sentences. Thus for 

this case the proof should be finite. The converse is also true as by the lemma1. Now if (Th𝓤, τSd) with card   > ℵ0 then 

by lemma2 the proof of any theorem should be an eventually constant sequence of sentences. With the same logic as 

before the proof should be finite. Again by lemma 2 its converse is also true. (Q.E.D) 

 

Gödel's Completeness Theorem: 

A theory is consistent iff it is satisfiable.   

The logical statement of this theorem is ℒ ⊨ σ iff  ℒ ⊢ σ . 

Stating the theorem in lucid words, if σϵ Th𝓤 for every model 𝓤 over a language ℒ then σ is deducible ( i.e provable 

using finite no. steps). Logically speaking a sentence of a theory is a syntactic consequence iff its a semantic consequence.  

For example the theorem says that , when a sentence is shown to be provable from the axioms of ring theory by 

considering an arbitrary ring and showing that the sentence is satisfied by that ring. 

Proof: We want to prove the following theorem involving the Sd topology as defined by us and since there is some 

restrictions as in general we considered (Th𝓤 , τSd) with card 𝓤 ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 ). Thus its evident to say 

that we will restrict the proof of the theorem over the mentioned conditions. It's evident to see that its a corollary of the 

previous theorem. Since any sequence in (Th𝓤, τSd) with card 𝓤 ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 ) is convergent iff its 

eventually constant. Thus if σ ∈ Th𝓤 then its deducible. 

Conversely , Let σ is deducible in Th𝓤. Then there is an eventually constant sequence { σn } in (Th, τSd)  which terminates 

in σ . So { σ1, σ2, σ3.... σ } is a closed subset of (Th𝓤 , τSd) .  

Thus surely σ ∈ Th𝓤.    [ Q.E.D]  The converse of the theorem is called Soundness. 

Axioms: For axioms we indicate about the Non logical axioms or Postulates. Thus, a set of axioms is an elementary basis 

for a formal logic system that together with the rules of inference define a deductive system. But in our following field 

of discussion we will define Axioms through the topological spectacles.  
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Definition:  Let (Th𝓤, τSd) with card 𝓤 ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 ) and 𝔅 be a minimal open base of  Th𝓤. Let 𝔅 

= { Vi : iϵ I } , now by using axiom of choice we can choose xi ϵVi  for every iϵ I.  Thus the set Г = { xi : iϵ I } is a minimal 

dense subset of Th𝓤. Such subsets are called set of Axioms for Th𝓤. 

Theorem: Set of Axioms is a minimal dense subset of (Th 𝓤, τSd) with card 𝓤 ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 ) . 

Proof: As we know that for card(𝓤) = ℵ0 ;(Th𝓤,τSd) is equivalent to the cofinite topology whereas for card(Th 𝓤) = ℵ1 

;(Th 𝓤, τSd) is equivalent to the cocountable topology and both of them are not 2nd countable i.e they do not have any 

countable open base. So the set of axioms i.e Г = { xi : iϵ I } are obviously uncountable there. Since they are derived from 

a minimal base using injective choice functions so surly such sets are minimal of their kind. Again as card Г ≥ card 𝓤 = 

ℵ0 or ℵ1  so surly such Г  are dense in (Th 𝓤, τSd). Now we would like to extend our theorem for higher cardinals. Since 

our experiment runs over the set of infinite cardinals i.e {ℵ0 , ℵ1 , ℵ2 ... } which is a countably ordered set like ℕ so we 

can use mathematical induction here (Because continuum hypothesis and ZFC are taken for granted ). Let (Th 𝓤, τSd) 

with card 𝓤 =ℵm ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 ) .[ for any mϵ ℕ] . Now let 𝔅 = { Vi : iϵ I } be a minimal open base of  

Th𝓤. Suppose card 𝔅 < ℵm but card (Th 𝓤 - Vi)<card Th𝓤 ≤ ℵm. For every Vi ϵ 𝔅. Now by cardinal arithmetic  ∪iϵ I Th 

𝓤 - Vi < ℵm  also ∪iϵ I (Th 𝓤 - Vi  ) is non empty. So Th 𝓤 - ∪iϵ I (Th 𝓤 - Vi  ) is open and contained in every Vi ϵ 𝔅 . 

Which is a contradiction. So card by mathematical induction card 𝔅 =ℵm ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 ) .[ for any mϵ 

ℕ]  Thus Г = { xi : iϵ I } will always be dense in (Th 𝓤, τSd) since card Г = card 𝔅 = card (𝓤 ). 

Property: From the previous theorem its obvious that the spaces(Th 𝓤, τSd) with card 𝓤 ≥ℵ0  and card(Th 𝓤)≥ card (𝓤 )  

are not 1st countable too. So  A ⊆ Th𝓤  with Ā = Th𝓤 and σϵ Th𝓤-A then its impossible to find a sequence in A 

converging to σ . 

Corollary: The Gödel’s incompleteness theorem(1st). 

These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of 

mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a 

complete and consistent set of axioms for all mathematics is impossible. 

 

Observe that from our previous theorem Г  is dense in Th𝓤. Now by previous property we can see that if σϵ Th𝓤- Г then 

its impossible to find any sequence inside Г converging to σ . So σ can not be proved or disproved using any set of axioms 

in Th𝓤. 

Formal Statement(1st): Any consistent formal system F within which a certain amount of elementary arithmetic can be 

carried out is incomplete; i.e., there are statements of the language of F which can neither be proved nor disproved in F." 

(Raatikainen 2015  

In general we can say that there exist at least one σ ϵ Thℕ  such that there doesn’t exist any Г  ⊂ Thℕ  such that Г ⊢ σ or 

Г ⊢ ⌐σ .  

For any such consistent formal system, there will always be statements about natural numbers that are true, but that are 

unprovable within the system. The second incompleteness theorem, an extension of the first, shows that the system cannot 

demonstrate its own consistency. 

Example: Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which 

states that every Goodstein sequence eventually terminates at 0. Kirby and Paris showed that it is unprovable in Peano 

arithmetic. 

Difference between the two completeness: 

Note that, in spite of their names, one is not a negation of the other. 
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A set of axioms is (syntactically, or negation-) complete if, for any statement in the axioms' language, that statement or 

its negation is provable from the axioms which is used in the incompleteness theorem . Where as  deductive system is 

called complete if every logically valid formula is the conclusion of some formal deduction, and the completeness 

theorem for a particular deductive system is the theorem that it is complete in this sense which has been used in the 

completeness theorem.                                                

CONCLUSION 

The remarkable Gödel’s completeness and incompleteness theorems are the milestones in proof theory as well as in the 

whole  field of mathematics, logic and philosophy. But their proves are too much long and difficult to digest by non 

mathematicians especially the Henkin’s proof of the completeness theorem.  Thus here we tried to give an easy and short 

proof of these theorems by introducing a new topological aspect, however the proves are restricted and conditionally 

dependent. 
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