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Abstract: The vibration behaviour of unstiffened and stiffened skew plate subjected to uni-axial and bi-axial in-plane 

loadings is studied. As the applied in-plane loading is not uniform, the resultant plate in-plane stresses are evaluated 

from the plate membrane analysis. Using these stress distributions, partial differential equations governing the stability 

of skew plates are derived. The first order shear deformation (FSDT) theory is considered in the present formulation. 

Effects of skew angles, boundary conditions, number of stiffeners and uniaxial and biaxial types of loadings on the 

buckled vibration behaviour of the unstiffened and stiffened skew plate are investigated. 
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I. INTRODUCTION 

 

Skew plates are important structural element in modern engineering structures such as aircrafts, space vehicles, missiles 

and many complex structures. Quite often, these structures are subjected to partial edge loading, concentrated loading. 

To understand the performance of these structural systems, study of vibration characteristics of the structural element in 

the prebuckling of the skew plates due to inplane uniaxial, biaxial, partial edge loading, concentrated loadings is 

important. Free vibration behaviour forms a significant part of the analysis of the static and dynamic behaviour of 

plates. Fundamental frequency of transverse vibration of a rectangular anisotropic plate of a discontinuously varying 

thickness has been studied by Guitierrez and Laura [1]. Buckling of plate girder webs under partial edge loading was 

studied by Rockery and Baghichi [2]. There exist 21 possible combinations of simple boundary conditions for 

rectangular plates as stated by Leissa [3]. Results were found in the literature for all 21 cases for isotropic plates not 

having in-plane forces. Published results exist for very few cases where in-plane forces are present. This lack of results 

is even more serious in the case of vibrating plates subjected to in-plane shear loading. Exception to this statement is 

the excellent papers by Massonet [4] and Dickinson and his co-workers [5-7]. Mssonet considered the case of simply 

supported rectangular plate subjected to in-plane shear loading, while Dickinson has obtained very accurate frequency 

equations for different combination of boundary conditions and has even tackled the rather formidable problem of non-

uniform in-plane shearing forces. Vibration of rectangular plates subjected to in-plane forces by the finite strip method 

has been studied by Chan and Foo [8].  

A good deal of references is also available in the literature on stability and vibration of stiffened plates. The bending, 

stability and vibration of stiffened plates are well documented in the book by Troitsky [9]. Aksu [10] has presented a 

variational principle in conjunction with the finite difference method for the free vibration analysis of uni-directionally 

and crossed stiffened plates. Shastry and Rao [11] have analyzed the free vibration of stiffened plate. Mukherjee and 

Mukhopadhayay [12] have investigated the free vibration of eccentrically stiffened plates. Bapu Rao et al. [13] have 

also reported their work on experimental determination of frequencies with real time holographic technique for skew 

stiffened cantilever plates. The large amplitude free flexural vibration of thin, elastic orthotropic stiffened plate is 

studied by Pratap and Vardan [14]. The boundary condition considered is either immovable or movable. The solution is 

obtained on the basis of a single term vibration mode shape by making use of Galerkin method. Mizusawa et al. [15, 

16] have studied the effect of the arrangement of stiffening beams, skew angles and stiffness parameters on the 

vibration characteristics of the skew stiffened plates by using the Rayleigh-Ritz method with B-spline functions as the 

coordinate functions. 

II. PROPOSED ANALYSIS 

 

The governing equations for the buckling, vibration of unstiffened and stiffened skew plates  subjected to in-plane 

harmonic edge loading are developed. The presence of non-uniform external in-plane loads, boundary conditions, 

stiffeners with and without cutouts in the plate induce a non-uniform stress field in the structures. This necessitates the 

determination of the stress field as a prerequisite to the solution of the problems like vibration, buckling and dynamic 

stability behaviour of stiffened plates. As the thickness of the structure is relatively smaller, the determination of stress 

field reduces to the solution of a plane stress problem in the plate skin and stiffeners (where the thickness and breath are 

small compared to length). The stiffened plates are modeled and the governing equations are solved by finite element 

method. 
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The governing equations for specified problems like vibration, static and dynamic stability are as:. 

Vibration with in-plane load: 

 

           0=−+ qKPKqM Gb
                       (1) 

                     Or                                 02 =−− qMKPK Grcb                                       (2) 

 

 Finite Element Formulation 

In the present analysis, the plate is modelled with nine noded isoparametric quadratic elements where the contributions 

of bending and membrane actions are taken into account. One of the advantages of the element is that it includes the 

effect of shear deformation and rotary inertia in its formulation. The formulation has been generalized in such a manner 

that the stiffener can be placed anywhere within the plate element and need not be situated on the nodal lines as in the 

approach given in Mukherjee and Mukhopadhyay [12]. This provides considerable flexibility in the mesh generation.  

According to the Reissener- Mindlin plate theory, the displacements of the plate can be fully described by the 

components of the vector 

 T
yxwvuU =                           (3) 

where u and v are the displacements in the plane of the plate, w is the out of plane deflection, x  and y  are the 

rotations of the normal to the un deformed mid surface in the x-z and y-z plane, respectively.  

where the strain in the middle plane of the plate are 
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Numerical methods like finite element method (FEM) are preferred. for problems involving complex in plane loading 

and boundary conditions as analytical methods are not easily adaptable. The formulation is based on Mindlin's plate 

theory, which will allow for the incorporation of shear deformation. The plate skin and the stiffeners/composite are 

modelled as separate elements but the compatibility between them is maintained.  

The nine noded isoparametric quadratic elements with five degrees of freedom (u, v, w, X and y ) per node have 

been employed in the present analysis.  

The coordinates at a point within the element are approximated in terms of its nodal co-ordinates as follows: 

x = 
=

9

1r

N r  x r   and  y  =  
=

9

1r

N r  y r ,                           (5) 
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         x = 
=
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xr  and y  = 
=

9

1r

N r yr                    (6)  

To account for the higher shear deformations, a higher order displacement field is employed. The displacement model 

is derived out of a power series expansion of the mid surface displacements in the power of the thickness co-ordinate 

as: 

Using the isoparametric coordinates, the element stiffness matrix is expressed as 
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                                            
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The element mass matrix can be expressed in iso parametric coordinate as 

                                      
− −

=

1

1

1

1

 ddJNmNM pp

T

ep                         (8) 

The geometric Stiffness matrix can be derived. 

                                   
        dzdydxBBK PGp

T

PGpG =
                                       (9) 

When expressed in isoparametric coordinates the geometric stiffness matrix can be expressed as: 

                     
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The geometric stiffness of the stiffener element can be expressed as: 

                                                     dJBBK SGSS

T

SGSG 
+

−

=

1

1

                              (11) 

  be similar with appropriate changes for the co-ordinate variables.
  

The equivalent nodal forces are given by 

 

            ( )  ddJt
o

PNF T

e =                                           (12) 

The intensity of loading within the patch is assumed to be uniform. In such situations it becomes necessary to obtain the 

equivalent nodal forces when a concentrated load is acting within the element. Again, the equivalent nodal forces are 

expressed as: 

       JNPP T

or
=                                                              (13) 

The equations are solved using the technique proposed by Corr and Jennings [ ] where the matrices [K], [M] and [KG] 

are stored in single array according to skyline storage algorithm. In all the cases, the stiffness matrix [K] is factorized 

according to Cholesky’s decomposition technique. With this, the solution for displacement is simply obtained by its 

forward elimination and backward substitution techniques. These displacements components are used to find out the 

stress field. These stresses are used to calculate the geometric stiffness matrices. The solution of equations go through a 

number of operations. Moreover it requires a number of iterations to get the solution since these equations come under 

the category of eigenvalue problem. In such cases, the solution of eigen vector and eigen value is more than one where 

the different solutions correspond to different modes of vibration or different modes of buckling. The mode which 

gives lowest value of the eigen value is quite important and it is known as fundamental mode.  

 

III. RESULTS AND DISCUSSIONS 

 

A finite element code has been written in FORTRAN 90 considering possible boundary conditions and loading cases.  

The code is capable of analysing the following  

The stiffened plate structures in practice are seldom subjected to uniform loading at the edges. Cases of practical 

interest arise when the in-plane stresses are caused by patch, triangular, point or any arbitrary forces acting along the 

boundaries. The non-uniform loading and boundary conditions cause non-uniform in-plane stress distribution within 

the structure. Non-uniform stress distribution may also be caused due to material and geometrical discontinuities in the 

structures.  

Majority of the model parameters and results are presented in non-dimensional form to make them independent of the 

plate size, thickness, material properties, etc for the convenience of the analysis. The non-dimensionalisation of 

different parameters like vibration, buckling and excitation frequency for dynamic stability analysis is taken as given 

below: 

❑ Frequencies of vibration ( )  Dtb  2
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❑ Frequencies of excitation ( )  Dtb 2  

Where D is the plate flexural rigidity, D = )21(123 −tE , P is the applied load, rcP is the buckling load,   is 

the density of the plate material and t is the plate thickness. In addition, certain quantities are expressed as the ratio of 

that quantity to some reference quantity. 

The dimensionless buckling load coeffeicient (
2 2/crk N b D= ) and fundamental frequency 

2 2

0 / /b h D  = ) of simply supported isotropic skew plate. 

Assuming a general case of several longitudinal ribs and denoting  

❑ EI
S

 the flexural rigidity of a stiffener at a distance (Dx) from the edge y = 0, the stiffener parameter 

terms  

❑  and   are defined as: tbAS=  = Ratio of cross-sectional area of the stiffener to the plate, 

where 
SA  is the area of the stiffener.  

❑ bDIE S=  = Ratio of bending stiffness rigidity of stiffener to the plate, where 
SI is the moment 

of inertia of the stiffener cross-section about reference axis. 

The basic configuration of the problem considered here is a unstiffened and stiffened plate  subjected to uniaxial and 

biaxial uniform edge loadings as shown in figures 1  The cross-section of the stiffened plate is shown in figure 1. Skew 

rectangular plate cross section under uniaxially loading is shown in figure 2.  

                                                                                     

                                                            

 

b 

                                                                                                                        c            

                                                       

                           a                                                                                  

     Uni-axial loading                             (b) Bi-axial loading 

   Figure 1    Plate subjected to inplane uniform edge loading 

 
Figure 2:  Skew rectangular plate under uniaxially loading 

Free Vibration Analysis of stiffened plates 

Validation studies of concentrically stiffened clamped square plate 

A square plate clamped in all edges having a centrally placed concentric stiffener as presented by Nair & Rao [17] 

using a package stift1, Mukharjee [12] , Mukhopadhyay [18], and Seikh [19] using FEM , semi analytical method, and 

spline finite strip method respectively has been analyzed presently in table 1. Seikh [19] has given results neglecting 

and including mass moment of inertia which has been validated in present results marked as Present (1) for M.I. 

Neglecting and as mass moment of inertia including. The first six frequencies are compared. The agreement is 

excellent. In Mukhopadhyay [18] in-plane displacement is not considered in the analysis so results causes slightly 

varying. Table 1 also present convergence study showing good convergence of results. 

Plate size = 600mm x 600 mm       Plate thickness = 1.0 mm,  

Poisson’s ratio = 0.34                        Mass density = 2.78e-6  Kg /
3mm  

E = 6.87
27 /10 mmN−  ,                   As = 67.0 mm

2
, Is = 2290 mm

4
  

Js = 22.33 mm
4

 

Table 1  Frequency in (rad / s) of clamped stiffened plate with a concentric Stiffener 
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Source Mode 

No 

1 2 3 4 5 6 

Present        

 

 

Present 

 

6 x 6 

8 x 8 

10 x 10 

10 x 10 

318.62 

317.36 

317.00 

317.00 

404.53 

401.66 

400.84 

400.84 

474.30 

472.34 

471.74 

471.74 

541.56 

538.26 

537.32 

537.32 

727.81 

719.23 

716.35 

716.35 

771.47 

763.23 

759.54 

759.54 

Nair and Rao [17] 

Mukharjee [12] 

Mukhopadhyay [18] 

(1) Seikh [19] 

(2) Seikh [19] 

317.54 

322.34 

305.12 

316.85 

316.85 

400.12 

412.23 

382.34 

400.35 

400.35 

472.23 

506.87 

454.76 

471.69 

471.68 

537.14 

599.34 

519.17 

536.95 

536.94 

714.14 

772.15 

696.18 

716.04 

716.02 

760.17 

860.93 

741.15 

759.14 

759.12 

The  validation studies of buckling Parameter for simply supported and clamped unstiffened skew plates has been 

presented in table 2 in the form of buckling load parameter. The results compare well with those of Mizusawa et. al.[7]. 

The buckling load based on the proposed approach has, however, indicated higher values with the increase of skew 

angle, which suggest that the mesh divisions need to be increased with the increase of skew angle for more accurate 

results 

Table 2  Buckling Parameter for simply supported and clamped unstiffened skew plates. 

Boundary 

Conditions 

Skew Angle Mizusawa et.al  

[ 7] 

Present 

Simply 

Supported 

0 

15 

30 

4 

5.90 

10.08 

4 

6.17 

10.20 

 

 

Clamped 

0 

15 

30 

45 

10.07 

-- 

13.53 

20.05 

10.08 

10.94 

13.94 

21.79 

 

Skew stiffened plate 

After getting the values for unstiffened skew parallelogrammic plates, the analysis is done for parallelogrammic skew 

stiffened plates with skew angles from 00 to 450. The parameter for stiffened plates ( = 0.1,  = 10 and GJs/Db = 0.0). 

The all edges simply supported and also clamped plates have been considered and results presented in table 3. The plate 

is subjected to uniform compression in x direction.  

Table 3 Buckling Parameter for SSSS and CCCC skew stiffened plates. 

Boundary Conditions Skew Angle Present 

 

SSSS 

0 

30 

45 

16.00 

20.90 

29.90 

 

CCCC 

0 

30 

45 

30.8 

37.1 

56.3 

 

If done with various mesh sizes, it is observed that the results of all edges simply supported plate converged better than 

those having all edges clamped. This is due to the fact that the rotation along the clamped edges has to be released to 

obtain consistent results as this would induce the additional complexity of introducing the transformation of 

displacements along the skew axis. 

After this study, the effect of variation of the bending stiffness of the stiffeners is studied for skew stiffened plates. The 

stiffeners are placed at the centre and properties taken as: ( = 0.1, and GJs/Db = 0.0). The ratio of  is varied. The 

aspect ratio of plate is 1. The result is presented in table 5. Now the effect of varying torsional stiffness of the stiffeners 

on a centrally stiffened skew plate is studied. The stiffener properties are as: ( = 0.1,  = 10) and GJs/Db varying 

from 0 to 5.0 and the result is presented in table 4. In the formulation of skew stiffened plates, the mesh division is 

independent of the location of the stiffeners.  Hence for some mesh sizes, the stiffeners followed the element boundary, 

while in some other dimensions it remains away from the element boundary. Convergence study has also been done. It 
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is observed that the values converges to the correct values regardless of the location of the stiffeners within the element. 

It is also observed that the results of the rectangular plates converge earlier than those of skew plates. 

Table 4 Buckling Parameter for SSSS skew stiffened plates with varying  . 

Skew Angle   Present 

0 5 

10 

10.93 

16 

45 5 

10 

20.60 

29.89 

 

Table 5 Buckling Parameter for SSSS skew stiffened plates with varying torsional stiffness of the stiffener. 

Poisson’s ratio = 0.3 

Skew Angle GJs/Db Present 

0 0 

2.5 

5 

16.00 

17.15 

17.15 

45 0 

2.5 

5 

29.89 

40.40 

45.49 

 
 

IV. CONCLUSION 

 

An isoparametric quadratic stiffened plate bending element has been introduced. The element has been successfully 

employed for the solution of vibration and stability problems of concentric and eccentric stiffened plates with/without 

cutout. The element has performed extremely well in free vibration analysis of concentric as well as eccentric stiffened 

plates for all shapes-rectangular and skew. The isoparametric Mindlin type element has the desirable effect of shear 

locking. The present formulation accounts for the eccentricities of the middle plane of the plate element and the 

centroidal axes of the stiffeners with respect to neutral surfaces. The performance of eccentrically stiffened plate has 

been found to be excellent. The comparison with the results of previous investigators has revealed a good agreement 

amongst them.  

The stability resistance increases with increase of restraint at the edges for all types of loading, stiffener parameter and 

plate aspect ratios. The stability resistance increases with increase of number of stiffeners. 

The fundamental frequency of the skew plate decreases in the pre-buckled regime and then increases in the post-

buckled regime with the increase of in-plane loadings for different skew angles, support conditions, number of 

stiffeners and load ratios. The fundamental frequency of the skew plate increases with the increase of skew angle. The 

frequency of the skew plate is same for all the types of loadings when the plate is unloaded. The frequency of skew 

plate increases with the increase of the edge restraints and it is higher for all the edges clamped and lowers for all the 

edges simply supported. The frequency of the skew plate is lower for higher load ratio as well as decreases with higher 

rate than the lower load ratio.  
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