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model irrespective of its individual proof. 
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I. INTRODUCTION 

 

In mathematics I think the most familiar and commonly asked question is that ‘ Is the converse holds?’ . Yes its always 

being necessary to look after the existence of the converse statement after proving any theorem in mathematics. But it 

will always be a remarkable thing if for any statement we can tell that its converse holds over the respective theory or 

not without proving it. Here our quest and experiments are basically focused on that using some very basic group theoretic 

results.  

 

 If 𝓤  is a model with card 𝓤 ≥ ℵ0 over the language ℒ , the theory of 𝓤  is denoted by Th𝓤  , is defined to be 

the set of all sentences of ℒ  (i.e formulas with no free variables) which are true in 𝓤  with card 𝓤 ≥ ℵ0 

So Th 𝓤   = { σ of ℒ  : 𝓤 ⊨ σ} .Now let Ω ⊂ Th 𝓤   such that Ω is the set of all σ ∈ Th 𝓤   whose converse are also in 

Th 𝓤   . We are denoting the converse of  σ as σ-1. So Ω = { σ | 𝓤 ⊨ σ ∧ 𝓤 ⊨ σ-1}. 

Now its evident that σi ∈ Ω and σj ∈ Ω then σi ∧ σj ∈ Ω . Actually our intension is to use ‘∧’ as a binary composition on 

Ω .Without loss of generality ∧ is both commutative and associative. Now we treat an unique statement σ ∈ Ω as the 

identity statement and defined as σ = ‘This is this’ .  So let σi ∈ Ω                                                                                              and 

σi
-1 ∈ Ω be its converse then σi ∧ σi

-1  = σ  ∀ σi ∈ Ω .  Here one thing of special attention is that we have not joined the 

statements by ‘iff’ rather than simply ‘&’ . For example we can think σi ∈ Ω , such that σi = this is X         and σi
-1  = X is 

this , then σi ∧ σi
-1  = σ = This is this. With the help of the underlying transitivity. In the same way we can treat other bi -

conditional sentences also, for example Ω ⊂ Th ℝ  and let σi ∈ Ω where σi stands for ‘closed and bounded subsets of ℝ 

are compact subsets of IR’. Now σi
-1  i.e ‘compact subsets of ℝ are closed and bounded subsets of ℝ’  will also be in Ω . 

Now if we treat the clause ‘closed and bounded subsets of IR’ as ‘This’ and ‘compact subsets of ℝ’ as ‘X’ then we get σi 

= this is X, and σi
-1  = X is this ;and evidently we get      σi ∧ σi

-1  = σ = This is this .  We will see all sentences like’ Y is 

Y’ or ‘Y=Y’ is as same as the identity statement  σ = ‘This is this’. So (Ω , ∧) be an abelian group. Also note that in (Ω , 

∧) , if σi ≠σ then σi ∧ σi = σi 
2 ≠ σi  .From here we will do only some basic group theories and try to connect the desired 

results for further need of model theory.  

 

Some special properties of the group (Ω , ∧): 

1. (Ω , ∧) is torsion free according to its construction. 
2. (Ω , ∧) is always infinite since its torsion free. 
3. (Ω , ∧) is non trivial Abelian so (Ω , ∧) is not a free group. 
4. (Ω , ∧) has no non trivial finite subgroup because its torsion free and abelian. 
5. (Ω , ∧) is not finitely generated because by the theorem ‘ A finitely generated abelian group is free iff its torsion 

free’.  
6. (Ω , ∧) is not divisible. 
 

II. OBSERVATION 

 

According to such properties there will not be any chance that (Ω , ∧) is similar to some of our known groups, even its 

not isomorphic to groups like (ℚ*,.) or (ℝ*,.) etc, according to o(Th 𝓤). Because they have finite subgroups. But there 
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might be possibility that it can be similar with(ℚ*/{-1,1},.) or((ℝ*/{-1,1},.) etc. This observation leads us to go on our 

further quest and experiments.  

Theorem: The group Ω is isomorphic to a subgroup of the symmetric group of Th 𝓤. 

Proof: Let Ω acts on Th 𝓤. thus for each σi ∈ Ω we can get a bijection  ψ σi : Th 𝓤 → Th 𝓤  defined as                     ψ σi 

(a)= σi ∧ a. Along with that there will be an associate homomorphism Σ: Ω → Sym(Th 𝓤) , where Sym (Th 𝓤) stands 

for the symmetric group of Th 𝓤  with  Σ(σi) = ψ σi . So, = { σi ∈ Ω | Σ(σi) = ψI } where ψI be the identity map. Therefore 

by isomorphism theorem Ω / Ker Σ is isomorphic into Sym(Th 𝓤) .Now claiming that Ker Σ = { σ } , because if σi ∈ 

Ker Σ then Σ(σi) = ψI where ψI (a) =σi ∧ a =a  ∀a∈ Th 𝓤. So σi = σ. So Σ: Ω → Sym(Th 𝓤)  is an isomorphism. 

Since Ω is abelian and Σ is not an onto isomorphism so Σ(Ω)is an ablian subgroup of Sym(Th 𝓤)  of o(Ω). The above 

result is an immediate consequence of Cayley’s theorem which states that every group is isomorphic to some permutation 

group.  

Now our work will be to predict the exact structure of Σ(Ω). Because if we are able find any permutation ψ σi in Σ(Ω) 

then at a glance we are also able to say that σi
-1  is also true in 𝓤 . We note this as a corollary, 

Corollary:  If ψ σi∈ Σ(Ω) then 𝓤 ⊨ σi
-1  

 To focus on our central problem i.e on Th 𝓤  if a statement is true then how to predict that its converse is also true or 

not without proving it; we will now electrify on the abelian subgroups of Sym(Th 𝓤) since  Ω is abelian and isomorphic 

to a subgroup of Sym(Th 𝓤). Thus Σ(Ω) enjoys the same group theoretic properties   as  (Ω , ∧). 

Its evident that Alt (Th  𝓤) is obviously a normal subgroup of Sym(Th 𝓤). But its simple also. Since Σ(Ω)is abelian and 

not finitely generated so Σ(Ω) can’t be simple, thus there will be no question to compare Σ(Ω) and Alt (Th 𝓤 ). Therefore 

we have to look about some else subgroups of Sym(Th 𝓤 ). 

 

 

Let A be any infinite cardinal number , if φ ∈ Sym(Th 𝓤) then the set S( φ ) = { σ ∈ Th 𝓤 | φ(σ) ≠ σ}                 Now we 

will define Sym(Th 𝓤,A) = { φ ∈ Sym(Th 𝓤) : o(S( φ )) < A } . It’s easy to verify that Sym(Th 𝓤,A) is a normal 

subgroup of Sym(Th 𝓤).  For our further experiments we will prefer A=ℵ0. 

Theorem: If G is an infinite subgroup of Sym(Th 𝓤, ℵ0) and k ∈ Th 𝓤  then the order of the stabilizer of k is equals to 

the order of G. 

Proof: Let Gk = { x ∈ G | kx = x} and o(Gk) ≠ o(G) with all the above conditions. Now let Tk be the orbit of G containing 

k. So, o(G)  = o(Gk)o(Tk). Thus according to our assumption, o(Tk) =o(G). ( As cardinal arithmetic) . Now ∃ g∈G such 

that gk ≠ k . If b∈ Tk then ∃ h∈G such that kh =b . thus b∈ S(h-1gh) as h-1ghb ≠ b. Therefore, Tk ⊂ ∪ S(h-1gh). Since each 

S(h-1gh) has same finite order say n and o(Tk)=o(G), so g has o(G) numbers of conjugates. Also b∈ Tk then Gb is conjugate 

to Gk . Hence o(Gb) < o(G). So there are n+1distinct elements k1,..,kn+1 of Tk . Since each conjugate of g and moves exactly 

n elements so they will be in some Gki .Thus o(G)< Σ(Gki) = (n+1)o(Gk) < o(G) ,  Which is a contradiction. 

Corollary: If G is an infinite subgroup of Sym(Th 𝓤, ℵ0) then there exist a proper sub group H of G such that o(H)=o(G). 

Corollary(ii): If G is an infinite subgroup of Sym(Th 𝓤, ℵ0) and H is an abelian subgroup of G then there is an abelian 

subgroup K of G such that H⊂ K and o(K)=o(G).  

 

Proof: By Zorn’s lemma in G there will be a maximal abelian proper subgroup K  such that H⊂ K. As we know that as G 

is infinite and U⊂ G and o(U)<o(G), then o(C(U))=o(G). Now if we put K=U  so we get o(C(U))=o(G) . Hence ∃ x∈ 

C(K)/K such that <K,x> be abelian ,which is a contradiction. So o(K)=o(G). 

 

Corollary (iia):If  G is an uncountable Abelian group, then G has a well-ordered descending chain of subgroups of length 

o(G). 

 

We are skipping the proof here though we can find the proof in the following book* 

 

#Thus if Σ(Ω) or Ω are of order greater than ℵ0  then they have a well-ordered  descending chain of subgroups of length 

o(Ω). 

 

Lemma. Let N be a nontrivial normal subgroup of Sym(Th 𝓤).Then either N =Alt(Th 𝓤) or N > Sym(Th 𝓤, ℵ0).  

(i.e N =Sym(Th 𝓤, ℵi), for some i∈IN) 

  

We are skipping the proof here though we can find the proof in the following book** 

 

Now let o(Th 𝓤)+ be the next higher cardinal after just o(Th 𝓤) , so we can see that Sym(Th𝓤, o(Th𝓤)+) = Sym(Th 𝓤). 

Thus by the previous lemma we are getting-  
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Lemma: Σ(Ω) is not a normal subgroup of Sym(Th 𝓤).  

 

Proof: its already verified that Σ(Ω) ≠ Alt(Th𝓤) , again by our previous lemma its clear that Alt(Th 𝓤) is also a normal 

subgroup of Sym(Th 𝓤, ℵ0). Which is also true for any c, such that ℵ0<c< o(Th 𝓤)+. Since Alt(Th 𝓤) is non abelian by 

corollary (ii). 

#So we have to check other sub groups of Sym(Th 𝓤) rather than Alt(Th 𝓤) and Sym(Th 𝓤,b), with ℵ0<b< o(Th 𝓤)+. 

 

III. CONCLUSION 

 

Here we are halting our quest because the classification of infinitely generated abelian groups is far from complete, i.e at 

present it’s an open problem. Though there is a complete classification of divisible abelian groups and torsion abelian 

groups but these are absolutely not fulfilled our present requirement. Though we had proceed to some filtered result and 

might be the help of computer algorithms and programs we can continue our further quest.  
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