

International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

In the Presence of Thermal Radiation, MHD Free Convective Visco-elastic Fluid Flow Past an Infinite Vertical Plate

G BALREDDY

Dept of Mathematics, Mahatma Gandhi Institute of Technology, Hyderabad , Telangana 500075 , India

ABSTRACT: The unstable free convective chemical reaction is discussed in this study, along with MHD Visco-elastic fluid flow following an infinite vertical plate in the presence of thermal radiation with uniform temperature and species diffusion. The closed analytical approach is used to solve dimensionless governing partial differential equations. Numerical results for the velocity, temperature, concentration and the rate of heat and mass transfer are shown graphically for different values of physical parameters involved.

Keywords: MHD, Visco-elastic fluid, Heat & mass transfer, free convection and Chemical reaction

1. INTRODUCTION

Non-Newtonian fluid flow is used in industrial applications, hence the flow behaviour of such fluids is essential in some of these situations. Molten metals, polymers, pulps, emulsions, slurries, and raw materials in the fluid form are just a few examples. Non-Newtonian flow has several uses in bioengineering, such as blood circulation in human and animal arteries.

This paper first studies the flow of viscous incompressible fluid past an impulsively started infinite horizontal plate in its own plane by Stokes [1] similar to the several researchers who studied the several problems related to the flow of Walter's Liquid B using this equation. These constitutive equations of certain class of non-Newtonianfluids with short memories have been proposed by Walters [2] and Beardand Walters [3] for elastic-viscous fluid, referred to as WaltersLiquid 'B'. Bestman [5] have studied free convection heat transfer to steady radiating Non-NewtonianMHD flow past a vertical porous plate. Jha[7] has discussedMHD free-convection and mass transfer flow of an elasto-viscous fluid. Choubey and Yadav [6] investigated Magneto hydro-dynamic flow of a Non-Newtonian fluid past a porous plate. Das and Panda[11] analyzed magneto hydro-dynamic steady free convective flow and mass transfer in a rotating elasticviscous fluid past an infinite vertical porous flat plate with constant suction. Damesh and Shannak [12] studied viscoelastic fluid flow past an infinite vertical porous plate in the presence of first order chemical reaction. Hameed and Nadeem [10] were discussed an unsteady MHD flow of a Non-Newtonian fluid on a porous plate. Nayak et al. [17] investigated MHD flow of a visco-elastic fluid along vertical porous surface with chemical reaction. Rajagopal and Gupta [4] investigated an exact solution for the flow of a non-Newtonian fluid past an infinite porous plate. Samria et al. [8] studied MHD free convection flow of a visco-elastic fluid past an infinite vertical plate is tried. Rajesh [13] studied source of the heat and transfer of mass and such effects on MHD flow of an elasto-viscous fluid through a porous medium. Kumar and Varma [14] investigated thermal diffusion and radiation effects on unsteady MHD flow past an impulsively started exponentially accelerated vertical plate with variable temperature and variable mass diffusion. Nabil et al.[15] discussed numerical study of viscous dissipation effects on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium. Ramana Murthy [16] studied unsteady MHD Free Convective visco elastic flow and mass transfer through porous medium.Umamaheswar et al.[18] investigated unsteady MHD free convective visco-elastic fluid flow bounded by an infinite inclined porous plate in the presence of heat source, viscous dissipation and Ohm cheat. Attia [19] studied unsteady flow of a non-Newtonian fluid above a rotating disk with heat transfer. Ramesh et al. [20] analyzed double diffusive convection in a layer of Maxwell viscoelastic fluid in porous medium in the presence of Soret and Dufour effects. Rashidi et al. [21] investigated mixed convective heat transfer for MHD visco elastic fluid flow over a porous wedge with thermal radiation. Jha et al. [22] studied influence of Soret effect on MHD mixed convection flow of visco-elastic fluid past a vertical surface with Hall Effect. Prakash et al.[23] investigated the Effects of chemical reaction and radiation absorption on MHD flow of dusty viscoelastic fluid. Ravikumar et al. [24] discussed theoretical investigation of an unsteady MHD free convection heat and mass transfer flow of a non-Newtonian fluid flow past a permeable moving vertical plate in the presence of thermal diffusion and heat sink. Rushi Kumar et al. [25] studied thermal diffusion effects on MHD heat and mass transfer flow past a moving vertical plate when the magnetic field relative to the fluid or to the plate. This study is motivated by the above investigations, attempts to establish the purpose of the present work in a way to consider unsteady MHD free convective chemically

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

reacting viscoelastic fluid flow past an infinite vertical plate with uniform temperature and species concentration. Closed analytical method is used to solve the governing equations and further, numerical results for the velocity, temperature, concentration and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.

2. MATHEMATICAL ANALYSIS

This study also considers heat and mass transfer that is unsteady free convective with a flow of an electrically conducting visco-elastic fluid past an infinite vertical plate in the presence of heat source. Transverse magnetic field of uniform strength B_0 is applied normal to the direction of the flow. The induced magnetic field is neglected in comparison to the applied magnetic field as the magnetic Reynolds number of the flow is taken to be very small. The flow is assumed to be in x' – direction which is taken along the vertical plate in upward direction against to the gravitational field and the y'-axis is taken to be normal to the plate. Initially the plate and the surrounding fluid are at the same temperature T'_{∞} with concentration level C'_{∞} at all points in stationary condition. At time t > 0, the plate is given an impulsive motion with a velocity $u = u_0$ in its own plane and all at once the plate temperature and spices concentration are up stretched to T'_{w} and C'_{w} respectively. For free convection flow, it is also assumed that

- The viscous dissipation is neglected in the energy
- The effects of variation in density (ρ) with temperature and species concentration are considered only in the body force term in accordance with usual Boussinesq's approximation.
- The fluid considered here is gray, absorbing / eliminating radiation but a non-scattering medium.

• Since the flow of the fluid is assumed to be in the direction of x' axis, so the physical quantities are functions of the coordinates y' and t' only.

Then by usual Boussinesq's approximation, the unsteady visco-elastic fluid flow is governed by the following equations $\partial u' = \partial^2 u' = K_a = \partial^3 u' = \sigma B_a^2 u'$

$$\frac{\partial u}{\partial t'} = v \frac{\partial u}{\partial {y'}^2} - \frac{\kappa_0}{\rho} \frac{\partial u}{\partial {y'}^2 \partial t'} - \frac{\partial B_0 u}{\rho} + g\beta \left(T' - T'_{\infty}\right) + g\beta^* \left(C' - C'_{\infty}\right)$$
(1)

$$\rho C_P \frac{\partial T'}{\partial t'} = k \frac{\partial^2 T'}{\partial {y'}^2} - \frac{\partial q_r}{\partial y'}$$
⁽²⁾

$$\frac{\partial C'}{\partial t'} = D \frac{\partial^2 C'}{\partial {y'}^2} - K_r \left(C' - C'_{\infty} \right)$$
(3)

with the initial boundary conditions:

$$t' \leq 0: u' = 0, \ T' = T'_{\infty}, \ C' = C'_{\infty} \quad \text{for all } y'$$

$$t' > 0: \ u' = u_0, \ T' = T'_{w}, \ C' = C'_{w} \quad \text{at } y' = 0 \quad (4)$$

$$u' = 0, \ T' \to T'_{\infty}, \ C' \to C'_{\infty} \quad \text{as } y' \to \infty,$$
where $A = \frac{u_0^2}{v}$. The local radiant for the case of an optically thin graygasis expressed by $\frac{\partial q_r}{\partial y'} = -4a^*\sigma \left(T'_{\infty} - T'^4\right)$
(5)

It is assumed that the temperature differences within the flow are sufficiently small and that T'^4 may be expressed as a linear function of the temperature .This is obtained by expanding T'^4 in a Taylor series about T'_{∞} and neglecting the higher order terms, thus, we get

$$T'^{4} \cong 4T_{\infty}'^{3}T' - 3T_{\infty}'^{4}$$
From equations (5) and (6), equation (2) reduces to
(6)

$$\rho C_P \frac{\partial T'}{\partial t'} = k \frac{\partial^2 T'}{\partial v'^2} + 16a^* \sigma T_{\infty}'^3 (T_{\infty}' - T')$$

On introducing the following non-dimensional quantities:

Copyright to IARJSET

IARJSET

293

(7)

International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

$$u = \frac{u'}{u_0}, t = \frac{t'u_0^2}{v}, y = \frac{y'u_0}{v}, \theta = \frac{T' - T'_{\infty}}{T'_{w} - T'_{\infty}}, G_r = \frac{g\beta v (T'_{w} - T'_{\infty})}{u_0^3},$$

$$C = \frac{C' - C'_{\infty}}{C'_{w} - C'_{\infty}}, k = \frac{vK_r}{u_0^2}, G_m = \frac{g\beta^* (C'_{w} - C'_{\infty})}{u_0^3}, \Pr = \frac{\mu C_P}{k}, Sc = \frac{v}{D},$$

$$M = \frac{\sigma B_0^2 v}{\rho u_0^2}, R = \frac{16a^* v^2 \sigma T'_{\infty}}{k u_0^2}, S = \frac{K_0^2 u_0^2}{\rho v^2},$$
In equations (1) to (4), leads to
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial y^2} - S \frac{\partial^3 u}{\partial y^2 \partial t} - Mu + G_r \theta + G_m C$$
(9)
$$\frac{\partial \theta}{\partial t} = \frac{1}{D} \frac{\partial^2 \theta}{\partial x^2} - \frac{R}{D} \theta$$
(10)

$$\frac{\partial t}{\partial t} = \frac{1}{\Pr \partial y^2} - \frac{1}{\Pr \partial y^2} - \frac{1}{\Pr \partial y^2} - kC$$
(10)

with the initial and boundary conditions:

$$t \le 0; \ u = 0, \ \theta = 0, \ C = 0 \text{ for all } y$$

 $t > 0; \ u = 1, \ \theta = 1 \ C = 1 \text{ at } y = 0$ (12)

 $u \to 0, \ \theta \to 0 \ C \to 0 \ \text{as } y \to \infty$

SOLUTION OF THE PROBLEM

To reduce the above system of partial differential equations to a system of ordinary differential equations in dimensionless form, suppose that the trial solution for the velocity, temperature and concentration as:

$$u(y,t) = u_0(y)e^{i\omega t}$$
⁽¹³⁾

$$\theta(y,t) = \theta_0(y)e^{i\omega t} \tag{14}$$

$$\phi(y,t) = \phi_0(y)e^{i\omega t} \tag{15}$$

The corresponding boundary conditions can be written as

$$u_0 = e^{-i\omega t}, \quad \theta_0 = e^{-i\omega t}, \quad \phi_0 = e^{-i\omega t} \quad \text{at} \quad y = 0$$

$$u_0 \to 0, \quad \theta_0 \to 0, \quad \phi_0 \to 0, \quad \text{as} \quad y \to \infty$$
 (16)

Substituting the equations (13)-(15) into equations (9)-(11) and solve the ordinary differential equations with the help of boundary conditions. We get the solutions of the velocity, temperature and concentration as:

$$u(y,t) = A_3 e^{-k5y} + A_1 e^{-k2y} + A_2 e^{-k1y}$$
(17)

$$\theta(y,t) = e^{-k^2 y} \tag{18}$$

$$\phi(\mathbf{y},t) = e^{-k_1 \mathbf{y}} \tag{19}$$

Skin-friction, Nusselt number and Sherwood number are important physical parameters for this type of boundary layer flow.

Skin friction

Knowing the velocity field, the skin - friction at the plate can be obtained, which in non -dimensional form is given by

 $C_f = -\left(\frac{\partial u}{\partial y}\right)_{y=0}$

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

$$C_f = A_3 k_5 + A_1 k_2 + A_2 k_1$$

Nusselt number

Knowing the temperature field, the rate of heat transfer coefficient can be obtained, which in non –dimensional form is given, in terms of the Nusselt number, is given by

$$N_{u} = -\left(\frac{\partial\theta}{\partial y}\right)_{y=0} = k_{2}$$

Sherwood number

Knowing the concentration field, the rate of mass transfer coefficient can be obtained, which in non –dimensional form, in terms of the Sherwood number, is given by

$$S_{h} = -\left(\frac{\partial \phi}{\partial y}\right)_{y=0} = k_{1}$$

Result and discussions:

The preceding section has a closed analytical solution to the problem of unsteady MHD free convective chemically reacting visco-elastic fluid flow past a moving vertical plate in the presence of thermal radiation.. In order to get the physical insight into the problem, the numerical values of the velocity field is computed for different values of the system parameters such as magnetic parameter (M), viscoelastic parameter (Γ), solutal Grashof number (Gm), thermal Grashof number (Gr), radiation parameter (R), Prandtl number (Pr), chemical reaction parameter (Kr) respectively. Throughout the computations we employ G=0.5;Kr=5;Gr=10;Gm=5;Sc=0.78;R=4;w=0.1;i=2;M=3,Pr=0.7. Figure 2 reveals that the velocity variations with the help of the visco elastic parameter (Γ) in case of cooling and heating of the plate at time t=0.4. It is observed that the elasticity of the fluid increases and then decreases in case of cooling of the plate, whereas it decreases in the case of heating of the plate, finally takes asymptotic values 1.3 for both the cases. It may be concluded that the energy due elastic property of the fluid increases the velocity and then gets dissipated. Figure 2 in case of cooling and heating of the plate. It is observed that the velocity of the fluid decreases with the increase of the magnetic parameter values for cooling of the plate at time 0.4. As expected, the velocity decreases with an increase in the magnetic parameter. It is because the application of the transverse magnetic field will result in a resistive type force (Lorentz force) similar to the drag force which tends to resist the fluid flow and thus reducing its velocity. Also, the boundary layer thickness decreases with an increase in the magnetic parameter. We also see that velocity profiles decrease with the increase of the magnetic effect indicating that the magnetic field tends to retard the motion of the fluid. The magnetic field may control the flow characteristics. The reverse phenomenon is found in the case of heating of the plate. Fig. 4 presents the plot of increase in channel porous permeability on the velocity profile. As observed, as the permeability of the medium increases there is increase in the fluid velocity since barriers placed on the flow path reduce as Da increases allowing for free flow thus increasing the velocity. Figure (5) and (6) shows the effects of thermal Grashof number Gr and mass Grashof number Gm on the velocity profiles. From this figure it is found that the velocity increases in case of cooling of the plate. It is because that increase in the values of thermal Grashof number and mass Grashof number has the tendency to increase the thermal and mass buoyancy effect. This gives rise to an increase in the induced flow transport and a reverse effect is identified in case of heating of the plate.

Figure 8 shows the effect of the chemical reaction parameter (Kr) in the case cooling and heating of the plate, the presence of the chemical reaction significantly affects both profiles. It should be mentioned that the case studied relates to a destructive chemical reaction. In fact, as the chemical reaction parameter increases, a considerable reduction in the velocity occurs, and the presence of the peak indicates that the maximum velocity takes place in the fluid body close to the surface, but not at the surface itself. It is evident that an increase in this parameter significantly alters the concentration boundary-layer thickness but does not change the momentum one.

Such effect of concentration, temperature profiles for different values of chemical reaction parameter is illustrated in Figure (7) and (9) it is found that the concentration decreases as chemical reaction parameter. Figure 10 and (11) shows the effect of Schmidt number Sc on the velocity and concentration profiles Sc = 0.22 (hydrogen), 0:6 (water vapor), and 0:78 (ammonia). It is observed that velocity and concentration decreases with increasing Schmidt number values due to the decrease in the molecular diffusivity, which results in a decrease in the concentration andvelocity boundary layer thickness. Figure (12) shows the effect of Prandtl number (Pr) on the velocity profiles. It is observer that the temperature profiles. It is observer that the temperature increases with increasing values of Prandtl number (Pr).

International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

Fig.2. Velocity profiles for different values of visco-elastic parameter (Γ).

Fig.3. Velocity profiles for different values of magnetic parameter (M).

Fig.4. Velocity profiles for different values of permeability parameter (K).

International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

Fig.5. Velocity profiles for different values of Grashof number (Gr).

Fig.6. Velocity profiles for different values of modified Grashof number (Gm).

Fig.7. Concentration profiles for different values of chemical reaction parameter (Kr).

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

Fig.8. Velocity profiles for different values of chemical reaction parameter (Kr).

Fig.9. Temperature profiles for different values of radiation parameter (R).

Fig.10. Velocity profiles for different values of Schmidt number (Sc).

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

Fig.11. Concentration profiles for different values of Schmidt number (Sc).

Fig.12. Velocity profiles for different values of Prandtl number (Pr).

Fig.13. Temperature profiles for different values of Prandtl number (Pr).

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

Table for Skin friction, Nusselt number and Sherwood number values different values of Pr=0.71;G=0.5;Kr=10;Gr=10;Gm=5;Sc=0.78;R=4;i=1;w=0.1;M=3 at y=0;

Pr	Γ	Kr	Gr	Gm	Sc	R	Ι	W	Μ	C _f Nu Sh		
0.71	0.5	5	10	5	0.78	4	1	0.1	3	-2.3729	2.0352	2.0140
0.72										-2.3726	2.0357	2.0140
0.73										-2.3722	2.0362	2.0140
0.74										-2.3719	2.0367	2.0140
0.71	0.1	5	10	5	0.78	4	1	0.1	3	-2.1840	2.0352	2.0140
	0.2									-2.2287	2.0352	2.0140
	0.3									-2.2750	2.0352	2.0140
	0.4									-2.3230	2.0352	2.0140
0.71	0.5	1	10	5	0.78	4	1	0.1	3	-2.8955	2.0352	0.9675
		2								-2.6868	2.0352	1.3100
		3								-2.5514	2.0352	1.5799
		4								-2.4516	2.0352	1.8100
0.71	0.5	5	2	5	0.78	4	1	0.1	3	0.1384	2.0352	2.8206
			4							-0.4284	2.0352	2.8206
			6							-0.9952	2.0352	2.8206
			8							-1.5619	2.0352	2.8206
0.71	0.5	5	10	2	0.78	4	1	0.1	3	-1.4204	2.0352	2.8206
				4						-1.8926	2.0352	2.8206
				6						-2.3648	2.0352	2.8206
				8						-2.8370	2.0352	2.8206
0.71	0.5	5	10	5	0.72	4	1	0.1	3	-2.1572	2.0352	2.7100
					0.74					-2.1474	2.0352	2.7474
					0.76					-2.1379	2.0352	2.7842
					0.78					-2.1287	2.0352	2.8206
0.71	0.5	5	10	5	0.78	1	1	0.1	3	-3.0559	1.0686	2.8206
						2				-2.6124	1.4636	2.8206
						3				-2.3322	1.7726	2.8206
						4				-2.1287	2.0352	2.8206
0.71	0.5	5	10	5	0.78	4	0.2	0.1	3	-2.0589	2.0035	2.7956
							0.4			-2.0655	2.0071	2.7984
							0.6			-2.0724	2.0106	2.8012
							0.8			-2.0796	2.0141	2.8040
0.71	0.5	5	10	5	0.78	4	1	0.1	3	-2.0871	2.0177	2.8068
								0.2		-2.1287	2.0352	2.8206
								0.3		-2.1783	2.0526	2.8344
								0.4		-2.2371	2.0698	2.8482
0.71	0.5	5	10	5	0.78	4	1	0.1	1	-3.6819	2.0177	2.8068
									2	-2.7427	2.0177	2.8068
									3	-2.0871	2.0177	2.8068
									4	-1.5706	2.0177	2.8068

5. CONCLUSIONS

The study has examined the unsteady free convective chemically reacting, MHD visco-elastic fluid (Walter's liquid-B model) flow past an infinite vertical plate with uniform temperature and also with uniform mass diffusion in the presence of thermal radiation. The dimensionless governing partial differential equations are solved by usual closed analytical method, we can conclude the following:

• The fluid velocity increases with increasing parameters Γ , K, Gr, Gm and Pr for cooling of the plate whereas the reverse effect is found in the case of heating of the plate.

• The fluid velocity decreases with increasing values of the parameters M, Kr and Sc for cooling of the plate, for heating of the plate.

• The fluid temperature decreases with increasing values of R(radiation parameter) or Pr (Prandtl number) while it increases with t (time).

Copyright to IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Vol. 8, Issue 6, June 2021

DOI: 10.17148/IARJSET.2021.8651

• The fluid concentration decreases with increase in kr(chemical reaction parameter) and Sc (Schmidt number) while it increases with t (time).

REFERENCES

1. Stokes, G.G., 1851, "Flow of Viscous Incompressible Fluid Past an Impulsively Started Infinite Horizontal Plate," *Cambridge Phil. Trans.* (9)8.

2. Walters, K., 1964, "Second-order Effects in Elasticity, Plasticity and Fluid Dynamics," Pergamon, New York, p. 507.

3. Beard, D., Walters, K., 1964, "Elastico-viscous boundary-layer flows. Part I. Two Dimensional Flow near a Stagnation Point," *Proc. Camb.Phil. Soc.* 60, 667.

4. Rajagopal, K.R., Gupta, A.S., 1984, "An Exact Solution for the Flow of a Non-Newtonian Fluid Past an Infinite Porous Plate," *ActaMechanica*. **19**, 158-161.

5. Bestman, A.R., 1985, "Free Convection Heat Transfer to Steady Radiating Non-Newtonian MHD Flow Past a Vertical Porous Plate," *Int.J. Numerical Methods in engineering*. **21**, 899-908.

6. Choubey, K.R., Yadav, R.R., 1985, "Magneto Hydrodynamic Flow of a Non-Newtonian Fluid Past a Porous Plate," *Astrophysics and Space Science*.**115**, 345-351.

7. Basant Kumar Jha., 1991, "MHD Free-Convection and Mass Transfer Flow of an Elasto-Viscous Fluid," Astrophysics and Space Science.185(1), 129-135.

8. Samria, N.K., Prasad, R., Reddy, M.U.S., 1991, "MHD Free-Convection Flow of a Visco-Elastic Fluid Past an Infinite Vertical Plate," Astrophysics and Space Science. 181, 135-145.

9. Chowdhury, M. K., Islam, M. N., 2000, "MHD Free Convection Flow of Visco-Elastic Fluid Past an Infinite Vertical Porous Plate," *Heat and Mass transfer*. **36**(5), 439 – 447.

10. Hameed, M., Nadeem., 2007, "Unsteady MHD Flow of a Non-Newtonian Fluid on a Porous Plate," J.math.Anal. 325, 724-733.

11. Das, S.S., Panda, J.P., 2009, "Magneto Hydrodynamic Steady Free Convective Flow and Mass Transfer in a Rotating Elastic-Viscous Fluid Past an Infinite Vertical Porous Flat Plate With Constant Suction," *AMSE Mod meascont B*. **78**, 1-19.

12. Damesh, R.A., Shannak, B.A., 2010, "Visco-Elastic Fluid Flow Past an PInfinite Vertical Porous plate in The Presence of First Order Chemical Reaction," *App. math. Mech.* **31**, 955-962.

13. Rajesh, V., 2011, "Heat Source and Mass Transfer Effects on MHD Flow of an Elasto-Viscous Fluid Through a Porous Medium," Annals of faculty engineering Hunedoara. *Int. J of engineering*, 1584-2665.

14. Kumar, A.G.V., and Vijaya Kumar Varma, S., 2011, "Thermal Diffusion and Radiation Effects on Unsteady MHD Flow Past an Impulsively Started Exponentially Accelerated Vertical Plate with Variable Temperature and Variable Mass Diffusion," *Int. J. of Applied Mathematical Analysis and Applications*, *Vol.6*, No.1- 2, pp.169-192.

15. Nabil, T.M., Eldabe, Sallam N. Sallam, Mohamed Y., Abou-zeid., 2012, "Numerical Study of Viscous Dissipation Effect on Free Convection Heat and Mass Transfer of MHD Non-Newtonian Fluid Flow Through a Porous Medium," *Journal of Egyptian Mathematical society*. **20**, 139-151.

16. M.V. Ramana Murthy. "Unsteady MHD Free Convective visco elastic flow and mass transfer through Porous medium". Int. Jr. Math. Comput. Sci. 2 (2012), No. 2, 172-188

17. Nayak, A., Dash, G.C., Panda., 2013, "MHD Flow of a Visco-Elastic Fluid along Vertical Porous Surface With Chemical Reaction," A. Phys. Sci. 83(2), 153-161.

18. Umamaheswar, M., Varma, S.V.K., Raju, M.C., 2013, "Unsteady MHD Free Convective Visco-Elastic Fluid Flow Bounded by an Infinite Inclined Porous Plate in the Presence of Heat Source, Viscous Dissipation and Ohmic Heat," *International Journal of Advanced Science and Technology*, volume **61**, 39 – 52.

19. Attia, H.A., 2013, "Unsteady Flow of a Non-Newtonian Fluid Above a Rotating Disk With Heat Transfer," *Int. J. of Heat and Mass Transfer* volume **46** issue 14, 2695 – 2700.

20. Ramesh Chand, G. C., Rana., 2014, "Double Diffusive Convection in a Layer of Maxwell Viscoelastic Fluid in Porous Medium in the Presence of Soret and Dufour Effects," *Journal of Fluids*, 1-7.

21. Rashidi, M.M., Ali, M., Freidoonimehr, N., Rostami, B., Hossain, M.A., 2014, "Mixed Convective Heat Transfer for MHD Viscoelastic Fluid Flow Over a Porous Wedge With Thermal Radiation," *Advances in mechanical Eng.* Volume **6**.

22. Jha, A.K., Choudhary, K., Sharma, A., 2014, "Influence of Soret Effect on MHD Mixed Convection Flow of Visco-Elastic Fluid Past a Vertical Surface With Hall Effect," *Int. J. of Applied Mechanics and Engineering* volume **19** issue 1.

23. Prakash, J., Vijaya Kumar, A.G., Madhavi, M., Varma, S.V.K., 2014, "Effects of Chemical Reaction and Radiation Absorption On MHD Flow of Dusty Viscoelastic Fluid," *An International Journal of (AAM)*. (9)141-156.

24. Ravikumar, V., Raju, M.C., Raju, G.S.S., 2015, "Theoretical Investigation of an Unsteady MHD Free Convection Heat and Mass Transfer Flow of a Non-Newtonian Fluid Flow Past a Permeable Moving Vertical Plate in the Presence of Thermal Diffusion and Heat Sink," *Int.J. of Engineering Research in Africa* volume 16 90 – 109.

25. Kumar, B.R., Sravan Kumar, T., and Vijaya Kumar, A.G., 2015. "Thermal Diffusion and Radiation Effects on Unsteady Free Convection Flow In the Presence of Magnetic Field Fixed Relative to the Fluid or the Plate". *Frontiers Heat and Mass Transfer*, 6, 12, pp. 1-9.