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Abstract: In this paper we study doped yttrium garnet (YIG) nanoparticles Y3[Fe2−yMy]a
(Fe3−zMz)dO12, (M = Al, 

Ga, Sc are nonmagnetic ions), appropriate for Self-Controlled Magnetic Hyperthermia (SCMH) for in vivo and in vitro 

applications. A microscopic model (modified Heisenberg Hamiltonian) is presented, describing the super-exchange 

magnetic interactions in the tetrahedral and octahedral sublattices and between them. A methodology is proposed for 

determining the inter-sublattice and intra-sublattice exchange constants for different degrees of doping as well as the 

constants of single-ion magnetic anisotropy in dependence of temperature, concentration of doped magnetic ions and 

size of the magnetic nanoparticle (MNP). Using the Green's functions method, for the mixed yttrium garnet 

nanoparticles, the dependence of SAR coefficient on the amplitude and the frequency of the alternating magnetic dield, 

the temperature, and the magnetic inter-exchange interaction are studied. The calculations are made for monodisperse, 

non-interacting single-domain, heterogeneous spherical MNPs of the core/shell type. 
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I. INTRODUCTION 

 

Magnetic hyperthermia (MH) is a comparatively new and innovative method for a fight of oncological diseases [1]. 

The numerous experiments demonstrate that the local heating of the tumours in the temperature range from 41° C to 

46° C leads to their destruction and eventually to their complete disintegration while the healthy cells are preserved. 

This is due to the fact that tumours are more sensitive to overheating than healthy tissues. 

The use of MNPs on biomedical applications has increased considerably in recent years. MNPs have been proposed as 

magnetic guidance in drug delivery and magnetic separation, as contrast agents in magnetic heat imaging, and as heat 

magnetic mediators in hyperthermia treatments [2-5]. The latter has been gaining lot of interest especially in the field of 

cancer treatment as an addition to other modalities such radiotherapy and chemotherapy. 

MNPs-based hyperthermia has a number of advantages over conventional thermal heating for medical purposes: 1) 

MNPs can be directed through targeting agents to cancer formations, making the procedure selective; 2) Cancer cells 

absorb MNPs, thus generating heat only in the tissues associated with MNPs, i.e. the procedure is performed at the 

cellular level [6,7]. 3) MNPs are "clothed" in stable colloidal membranes and can be delivered to cancer formations in a 

non-invasive way: intravenously or intramuscularly. 

In summary: the ideal mechanism for generating heat in tumour cells is non-invasive, preferably with precise 

localization; with high heating intensity and is temperature controllable. 

Based on the above conditions, it is clear that it is extremely important to find methods for accurate monitoring of the 

heating temperature and for preventing overheating. It is not possible simply to turn off the magnetic field when the 

critical temperature is reached; at least due to the fact that the MNPs are not evenly distributed throughout the whole 

volume of the tumour and the temperature field is not homogeneous inside it. The solution of this problem is the use of 

MNPs (ferromagnetic or ferrimagnetic), which have a phase transition temperature TC from a magnetically order state 

in magnetically disordered state in the range from 41° C to 46° C. Above this temperature, the particle goes into a 

paramagnetic state and the heating process stops, i.e. the process becomes self-regulating depending on the value of the 

temperature. This is called self-controlling magnetic hyperthermia. This means that the temperature of the magnetic 

phase transition can be considered as a necessary condition for a given MNP to be appropriate for the method of the 

SCMH, because it guarantees patient’s safety. The additional conditions for MNPs to be applicable for SCMH are: a) 

High value of saturation magnetization MS for greater response to the external magnetic field; b) Large value of the 

coercive field HC, which leads to better efficiency of the thermal heating process; c) MNP size less than 35 nm, which 

allows possibility of their transportation through capillary blood vessels (for in vivo and in vitro application); d) Non-
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toxicity and biocompatibility; e) The frequency f and the amplitude h0 of the external alternating electromagnetic field 

must be biocompatible. High-frequency magnetic fields lead to involuntary excitation of peripheral and core muscles 

and nerves, cardiac stimulation and arrhythmia, as well as uncontrolled heating of tissues. This limit is defined by the 

expression: h0 ∗ f < 6.2 x 107 Oe/s - called h0 ∗ f factor [8]. 

An important condition for MNPs to be suitable for magnetic hyperthermia is their non-toxicity. This article will not 

examine toxicity issues in depth, but it will note a few key points. Improving the biocompatibility of MNPs is done by 

adding a special coat ("coating"). Examinations of MNPs coated with SiO2 [9], dextran [10], cirtant ligands [11], fatty 

amino acids [12] and polyvinyl pyrrolidone [13] have shown colloidal stability and biocompatibility. 

The use of MNPs for SCMH is connected with the dynamic response of the magnetic moment of the magnetic dipole in 

the alternating magnetic field and with the thermal fluctuations occurring in the MNPs. The mechanism of heat 

generation can be due to three phenomena: hysteresis losses, Neel’s relaxation mechanism and Brownian’s relaxation 

mechanism. The first mechanism is connected with the displacement of the domain walls and is observed in MNPs 

larger than a critical size by transition from a multi-domain to a single-domain phase [15]. For particles below the 

critical size and suitable for in vivo and in vitro application, the heating is due to the magnetic moment of the 

nanoparticle as a whole. In single-domain superparamagnetic particles, heat generation is due to the Neel-type 

relaxation mechanism [16] and the rotational Brownian-type relaxation mechanism [17]. In the Neel relaxation 

mechanism, the magnetic moments which are blocked in the direction of the easy axis of magnetization deviate from 

this axis in the direction of the external field. This mechanism is similar to the hysteresis losses in multidomain 

particles, as there is "internal friction" due to the rotation of the magnetic moments in the direction of the field, which 

leads to generation of heat. In the Brownian type, the whole particle oscillates with a magnetic moment in the direction 

of the easy axis, as the heat is being generated due to the viscous resistance of the medium. Neel and Brownian 

mechanisms act simultaneously, as the Brownian predominate for larger particles in low viscosity media [18], while 

Neel relaxation dominates for small particles and high viscosity biological solutions [16]. Which of the two 

mechanisms (hysteresis or relaxation) dominates depends on the volume of MNP. There is a critical volume of 

nanoparticles VC [19], below which the relaxation predominates. Since the relaxation time τR of the MNP strongly 

depends on the particle size, it is proved that dominance occurs when τR is equal to the reciprocal value of the 

frequency of the alternating magnetic field f [20], i.e. 2πf × τR = 1. For typical frequencies of the alternating magnetic 

fields used in SCMH (f = 200 kHz), the relaxation times of MNPs should be in the range of 10−5 ÷ 10−6 s, which 

according to [21] defines Neel relaxation as the dominant mechanism for single-domain nanoparticles with size below 

35 nm (suitable for in vivo and in vitro applications). 

To assess the efficiency of heat transfer from MNPs to tissues, the so-called SAR (specific absorption rate) coefficient 

is used, which is defined as the absorbed heat power normalized to the mass of the MNPs when an external alternating 

electromagnetic field with a gven frequency f and amplitude h0 is applied: 

 

SAR =
Adsorbed power

Mass of MNPs
                                                                                                                                                        (1) 

 

If MNPs are placed in an alternating magnetic field with frequency f and amplitude h0, the heat A will be released in 

one cycle of the alternating magnetic field equal to the area of the hysteresis curve. The SAR per unit mass of the 

infiltrated MNP’s sample is then defined as: 

 

SAR = Af.                                                                                                                                                                        (2) 

 

The quantitative characterization of the efficiency of transformation of magnetic energy into heat is determined by the 

possibility to calculate the area of the hysteresis curve and the dependence of this area on the parameters characterizing 

the properties of MNP. 

For the treatment of tumors by SCMH, three groups of compounds have been examined thoroughly: Single-domain 

magnetites (Fe3O4 or γ-Fe3O4), which have excellent biocompatibility[22], iron oxides of structural formula Me1-

xZnxFe2O4, where Me = Ni, Co, Mn, Zn, Mg,[23,24], Sr-ion doping of manganese perovskite with the structural 

formula La1-xSrxMnO3.[25,26] and yttrium garnets doped with trivalent diamagnetic Al3+, Sc3+, In3+ and Ga3+ ions with 

structure formula Y3[Fe2−yMy]a
(Fe3−zMz)dO12[27-29]. 

In our previous studies,[23,25,29] modelling the heterogeneity in single-phase nanoparticles with a change in the 

exchange interaction constants, magnetic anisotropy and number of nearest neighbours in the surface and in the core, 

we investigated in detail MNPs for the last three groups and determined MNPs, which are suitable for SCMH based on 

their magnetic phase transitions, size, magnetization and coercivity values. 

In our paper [29] we study doped yttrium garnet (YIG) nanoparticles Y3[Fe2−yMy]a
(Fe3−zMz)dO12, (M = Al, Ga, Sc 

are nonmagnetic ions), appropriate for Self-Controlled Magnetic Hyperthermia (SCMH) for in vivo and in vitro 

applications. We theoreticaly find a set of mixed yttrium garnet magnetic nanoparticles (NPs), which are suitable for 
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applications in medicine for cancer therapy.  There are two Sc doped YIG NPs which are the best candidates for SCMH 

with x = 1.08, d = 27.5 nm, SARmax = 13.52 W. g−1 as well as x = 1.10, d = 29.7 nm, SARmax = 15.44 W. g−1 for 

which the conditions for bio-compatibility and maximization of SAR are fulfilled simultaneously. Moreover, we have 

found also Al and Ga doped YIG NPs which can be applied for the magnetic hyperthermia but with something smaller 

SAR effectivity[29]. 

 

YAlG YGaG YScG 

x d (nm) SAR(W/g) x d (nm) SAR(W/g) x d (nm) SAR(W/g) 

1.67 26.0 4.26 1.62 26.0 4.78 1.06 24.0 5.18 

1.71 28.0 7.34 1.65 31.8 12.05 1.08 26.0 8.13 

1.75 33.8 13.94    1.10 33.0 4.18 

 

Table 1 SAR values for YAlG, YGaG and YScG for particles with diameter applicable for in vivo and in vitro therapy 

and with a bio-acceptable temperature of the phase transition of T = 315 K[29]. 

 

But the SAR values depend also for external parameters - the amplitude of the alternating magnetic field h0 and its 

frequency f, as well as microscopic parameters – magnetic exchange interactions, magnetic anisotropy. 

The aim of the present paper, on the basis of entirely microscopic mechanism proposed by us [30] for calculating the 

SAR, to study the dependence of the thermal efficiency for (YIG) nanoparticles Y3[Fe2−yMy]a
(Fe3−zMz)dO12, (M = 

Al, Ga, Sc are nonmagnetic ions) on the characteristics of the alternating magnetic field and the magnetic exchange 

interactions. This requires the calculation of the dynamic characteristics of the systems: energy of spin excitations, their 

damping and the relaxation time, giving the response of the magnetic system to an external alternating magnetic field. 

 

II. MODEL AND METHOD 

 

The compound yttrium iron garnet has a cubic structure with a space group of symmetry  Oh
10 − Ia3d [31]. The location 

of Fe3+ and Y3+ ions are shown on Fig. 1. 

 

 
 

Fig. 1 Octahedral (a-sites), tetrahedral (d-sites) and dodecahedral (c-sites) sites in the unit cell of the yttrium iron 

garnet. 

 

The distribution of the cations in the garnet’s lattice depends on their size as the Y3+ ions having the largest diameter 

occupy the c-sites, while the a-sites and d-sites have been occupied by the smaller Fe3+ ions. Since yttrium ions are 

nonmagnetic, there are only two magnetic sublattices formed by iron ions at the 16a and 24d places, which are situated 

antiferromagnetically relative to each other [32]. The ratio of tetrahedral (d-places) and octahedral (a-places) sites is 3 

to 2. Thus the net magnetic moment is in the direction of the magnetization of the d-sublattice. The appearance of 

ferrimagnetic arrangement and magnetic phase transition below TN = 599 K [33] is due to the inter-sublattice super-

exchange interaction Jad between magnetic Fe3+ ions in tetrahedral and octahedral sites mediated by oxygen ion which 

is the strongest magnetic exchange interaction in this system. The intra-sublattice interactions Jaa and Jdd are small due 

to the unfavourable location of the ions in the sublattices [34]. 
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Substitution of Fe3+ ions with nonmagnetic ions (e. g. Al3+, Ga3+, Sc3+, In3+) leads to a change in the magnetization of 

the doped YIG samples. This is associated with a change in the number of magnetic ions in the tetrahedral and 

octahedral sites, as the magnetic moment will increase with the replacement of Fe3+ ions at the a-places with Sc3+, In3+ 

ions and will decrease with replacement the iron at d-places with Al3+, Ga3+ ions. In both cases, this will reduce the 

Curie temperature TC compared to the undoped sample because the number of magnetic interactions per formula unit 

decreases [31,32,35,36]. Thus the formula of mixed garnets has the form:  Y3[Fe2−yMy]a
(Fe3−zMz)dO12 where y and z 

determine the part of the nonmagnetic ions occupying the octahedral and tetrahedral places, respectively, as x = y + z 

determines the degree of doping. 

The Hamiltonian which will describe the magnetic characteristics of mixed garnets with structural formula 

Y3[Fe2−yMy]a
(Fe3−zMz)dO12  has the form: 

 

H(x) = − ∑ Jik
ad(x)

<ik>

(S⃗ i
a. S⃗ k

d) − ∑ Jlj
da(x)

<lj>

(S⃗ l
d. S⃗ j

a) − ∑ Jij
aa(x)

<ij>

(S⃗ i
a. S⃗ j

d) 

−∑ Jkl
dd(x)<kl> (S⃗ k

d. S⃗ l
d)  − ∑ K1i

a (Si
az)2

i − ∑ K1i
d (Si

dz)
2

i − gμB ∑ h⃗ . (i S⃗ i
a + S⃗ i

d),                                                      (3) 

 

where S⃗ i
γ
 for γ = a, d is the Heisenberg spin operator in the γ-sublattice at the i-crystallographic place. The first two 

terms define the exchange interactions between a- and d- sublattices. Although the super-exchange inter-sublattice 

interactions Jad and Jda are equal, the first two terms are separated due to the fact that the first neighbours in the 

interaction of a magnetic ion from the a-sublattice with the magnetic ions from the d-sublattice (< ad >0= 6 ) are 

different from the number of the nearest neighbours in the interaction of a magnetic ion from the d-sublattice with the 

magnetic ions from the a-sublattice (< da >0= 4). For completeness, we note that the number of nearest neighbours in 

internal sublattice interactions is < aa >0= 6  and < dd >0= 4  for a- and d- sublattices, respectively. In mixed 

garnets, when the number of nonmagnetic ions changes in consequence of substitution, we have a direct decrease in the 

number of interacting nearest neighbours in a- and d- sublattices and between them. The reduction of the nearest 

neighbours will of course depend on the degree of doping x and how the nonmagnetic ions are distributed 

(preferentially) on the tetrahedral and octahedral sites and can be expressed as follows: 

 

< ad >=< ad >0 (1 −
z

3
) ;   < da >=< da >0 (1 −

y

2
); 

< dd >=< dd >0 (1 −
z

3
) ;   < aa >=< aa >0 (1 −

y

2
).                                                                                            (4) 

 

The third and fourth terms in eq. (3) define the intra-sublattice super-exchange interactions Jaa and  Jdd. As noted 

above, these two interactions are antiferromagnetic and are an order of magnitude smaller than the inter-sublattice, i.e. 

the following inequation is valid: |Jad| ≫ |Jdd| > |Jaa|. Kγ for γ = a, d determines the value of the single-ion 

anisotropy of the magnetic ions in the octahedral and tetrahedral sites, h⃗  is the external magnetic field. 

For small MNPs (appropriate for in vivo and in vitro application with size up to 35 nm) their heterogeneity should be 

taken into account because the altered surface properties with respect to bulk samples significantly affect the 

magnetization, coercivity and temperature of the magnetic phase transition. We consider the nanoparticle divided into 

two parts a core and a surface shell. The surface of the MNP consists of spins with a reduced number of neighbours due 

to broken periodic invariance, unpaired electronic orbitals, oxidation and vacations. From a microscopical point of 

view, we shall model a heterogeneous MNP of the core/shell type by defining different interaction constants and 

magnetic anisotropy in the surface layer and core. With the index "s" we denote all characteristics and interactions in 

the shell, and with the index "b" - all characteristics and interactions in the core. The interruption of the Feγ − O − Feγ 

bonds on the surface lead to an increase in the ionic character and will probably lead to an increase of the lattice 

constant of the shell compared to the bulk samples. This reduces the magnitude of the super-exchange interaction Jad 

and an antiferromagnetic arrangement in the surface layer or spin disorder surface layer [37,38] is appeared. Thus, the 

model of the magnetically “dead” surface layer can be used. Our model allows, taking into account that Js
ad < Jb

ad, and 

also the competition between the ferrimagnetic and antiferromagnetic arrangements, to modulate a noncollinear spin 

arrangement of the surface. Such a noncollinear spin arrangement of the YIG nanoparticle surface has been reported in 

[39]. Experimental studies have shown that the magnetic anisotropy in bulk samples of YIG’s is a two order of 

magnitude smaller than that in MNPs [40,41]. We assume that there is no interaction between the individual particles 

and the probe is homogeneous, i.e. all particles are spherical with the same size. 

Instead of the spin operators (Si
γ
)
x
 and (Si

γ
)
y
 we enter the following operators: 

 

(Si
γ
)
±

= (Si
γ
)
x
± (Si

γ
)
y
. 
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To calculate the magnetic characteristics of mixed garnet’s MNPs, we use the Green's functions (GFs) method which 

finds wide application in the study of multiparticle complex systems, whose separate subsystems are intensively 

influenced. This leads to an appearance of nonlinear interactions, in which a small parameter is missing and the 

application of the standard perturbations methods are not applicable. GFs are universal approach to calculating the 

static and dynamic characteristics of different systems. The formalism is very convenient because it does not consider 

operators, but rather complex functions that have simple analytical properties. The GF allows a uniform solution to all 

quantum statistical problems of multiparticle systems without the need to develop separate methods. Taking into 

account the broken translational invariance responsible for the occurrence of surface and size effects the exchange 

interaction constants can have different values on the surface and in the bulk [42]. The observed analytical expressions 

are numericaly calculated in order to study the temperature dependences of static and dynamic properties. 

We define the following retarded GFs: 

 

Gij,E
ad =≪ Si

a+;  Sj
d− ≫E; 

Gij,E
da =≪ Si

d+;  Sj
a− ≫E; 

Gij,E
aa =≪ Si

a+;  Sj
a− ≫E;                                                                                                                                                    (5) 

Gij,E
dd =≪ Si

d+;  Sj
d− ≫E. 

Using the equation of motion: 

 

EGij =
i

2π
< [Si

+;  Sj
−] > +≪ [[Si

+; H];  Sj
−] ≫.                                                                                                              (6) 

 

We have calculated the GFs in the random phase approximation (RPA), eq. (A.1) which is given in Appendix A. 

The magnetization of the system is: 

 

MS(T) = |(3 − z)Cd(y)Msd(T) − (2 − y)Ca(z)Msa(T)|,                                                                                             (7) 

 

where the functions Cd(y) and Ca(z) are determined empirically by modifying the Neel’s model of ferrimagnetism. 

They are calculated taking into account the random distribution of nonmagnetic ions around magnetic Fe3+ ions in 

tetrahedral and octahedral sites and taking into account the fact that nonmagnetic ions in one sublattice affect the 

interaction in the other sublattice [43]. In the framework of the present work, we use the explicit nature of these 

functions defined by Roschmann et al. [44] as follows: 

 

Ca(z) = 1 − α(
z

3
)
6

 as α(Ga) = 2.2 and α(Al) = 1.6; 

Cd(z) = 1 − 70.02y − 2 (
y

2
)
4

 for Al; Sc; Ga; In,                                                                                                          (8) 

 

where the index α is introduced in order to fit better the experimental data by doping with different nonmagnetic ions. 

The magnetization of a- and d- sublattices is calculated to: 

 

Msγ =
1

Nγ
∑ < Sk

γz
>;  γ = a; dk .                                                                                                                                    (9) 

 

< Sk
γz

> is determinated by the following equation [45]: 

 

< Sk
γz

>= (Sγ + 0.5)coth[(Sγ + 0.5)βξk
γ
] − 0.5coth[0.5βξk

γ
],                                                                               (10) 

 

where β =
1

kBT
 and ξk

γ
=

1

Nγ
∑ ξkl

γ
;  γ = a; dl . 

 

The expressions of the energies ξkl
γ

 are given in Appendix B. In order to calculate the ξkl
γ

 beyond the RPA the following 

correlation functions must be defined: < Si
d−Sj

a+ >; < Si
a−Sj

d+ >; < Si
a−Sj

a+ > and < Si
d−Sj

d+ >. Using the spectral 

theorem [46] we get: 

 

< Si
a−Sj

a+ >=
1

2π
{Φaa(Eij

1) + Φaa(Eij
2)} < Si

az > δij; 

< Si
d−Sj

d+ >=
1

2π
{Φdd(Eij

1) + Φdd(Eij
2)} < Si

az > δij; 

< Si
a−Sj

d+ >= −< Si
d−Sj

a+ >=
Jij
ad

π
{Θ(Eij

1) + Θ(Eij
2)} < Si

az >< Sj
dz >,                                                                  (11) 
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where: 

 

Φγγ(E)
=(2−Ψij)(E−Eij

γγ
)

exp(
E

kBT
)−1

  , γ = a, d; Θ(E) = 2E − Ψij and Ψij = Eij
aa + Eij

dd. 

Eij
1,2

 is the excitation energy between two local spins in the sites i and j determined self-consistently by the poles of the 

GFs (eq. (A.1)). 

 

Eij
1,2 = 0.5(Eij

aa + Eij
dd) ± [(Eij

aa − Eij
dd)

2
− 4Eij

adEij
da]

2

.                                                                                             (12) 

 

Most theories for calculating SAR are macroscopic: based on Debye's description of dielectric losses, which leads to the 

creation of the so-called linear response theory (LRT) [16,47]; based on the Stoner-Wohlfarth model in the numerical 

calculation of the Landau-Lifshitz equation with simulations through the Monte-Carlo method [14,48,49]. All these 

models are characterized by intuitiveness and interpretability of individual aspects of this complex task. They have 

been constantly modified and supplemented in order to improve the understanding of the mechanisms of magnetic 

hyperthermia and to improve the predictions of these theories [50-53]. An entirely microscopic model for calculating 

SAR was recently proposed by Apostolova et al. [30], which makes it possible to study thermal efficiency as a function 

of the microscopic magnetic characteristics of the system and the energy of elementary excitations and damping. 

Briefly, in our study, based on Kubo formalism, the average absorbed power P of the MNP has been calculated for the 

first time, finding the imaginary part of the magnetic susceptibility χpq
′′ (ω) 

 

P =  −2∑ ωχpq
′′ (ω)hmax

p
p,q
ω>0

hmax
q

,       p, q = x, y, z,                                                                                                   (13) 

 

where χpq
′′ (ω) is the imaginary part of the magnetic susceptibility and on microscopic level is expressed by a retarding 

Green's function. For antiferromagnetic and ferrimagnetic nanoparticles the magnetic susceptibility has the form: 

 

χpq(ω) = −∑ g2
ij

γ,η
μB

2 〈〈(S⃗ i
γ
)
p
; (S⃗ j

η
)
q
〉〉ω,                                                                                                                    (14) 

 

where γ, η = a, d are the spin variables in the defined sublattices, i, j determine the summation by the nearest 

neighbours, ω = 2πf, g is the gyromagnetic ratio and μB is the Bohr magneton. From eq. (14) the area of the hysteresis 

curve can be calculated through quantities characterizing the system from a microscopic point of view. This gives us 

the opportunity, on the basis of a properly defined model Hamiltonian, to calculate the necessary Green's functions 

〈〈(S⃗ i
γ
)
p
; (S⃗ j

η
)
q

〉〉ω using the method of Tserkovnikov [54]. From the expression SAR =
Pf

ρ
 we are able to determine the 

dependences of the thermal heating efficiency on the microscopic characteristics of the magnetic system. 

To calculate the SAR we must include the damping effects. Without limiting the community we will assume that the 

Green's functions have poles in the lower part of the complex plane, i.e. Е̃ij = ±Eij − iγij. Eij and γij are the energy of 

the spin excitations shown in eq. (12) and the damping, respectively. For the calculation of the latter we use the 

following expression: 

 

Γij = lim
t→∞

Im {
i

t
∫ dt′t′ [

〈ji(t);jj
+(t′)〉

〈Si
+(t);Sj

−(t′)〉
]},                                                                                                                     (15) 

 

where ji(t) = 〈[Si
+, H]〉. 

In order to find the absorbed power P we must calculate the inter- and intra-sublattices spin damping Γij
γη

. The 

equations of the damping are given in Appendix C and are calculated from eq. (15). 

If a linearly polarized magnetic field is attached to the x–axis, in order to obtain the analytical expression for the 

absorbed power P, we must calculate the transverse susceptibility χxx(χ⊥). Without going into details by following our 

calculations in [30] for the average absorbed power P we get: 

 

P = 4∑
2g2μB

2

πij ∗
EA2

E2+A1
∗ Γtot ∗ [

{[E−Eij
dd+2Eij

da]〈Sl
az〉}

[Λ(E)]2+4E2(Γtot)
2 +

{[E−Eij
aa+2Eij

ad]〈Sl
dz〉}

[Λ(E)]2+4E2(Γtot)
2 ] E2(h0)

2,                                                   (16) 

 

where: Λ(E) =
(E2−А1)

2
−E2А2

2−E2(Γ′)
2
+А3

2

E2+A1
, Γtot = Γ′ +

А2А3

E2+A1
, and the terms for A1, A2, A3, Γ

′ are given in Appendix C. 
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For garnet (YIG) nanoparticles Y3[Fe2−yMy]a
(Fe3−zMz)dO12, (M = Al, Ga, Sc are nonmagnetic ions), appropriate for 

Self-Controlled Magnetic Hyperthermia (SCMH) for in vivo and in vitro applications determined in [29] we study the 

dependence of the thermal efficiency for dopped nanoparticles  on the characteristics of the alternating magnetic field 

and the magnetic exchange interactions. 

 

III. NUMERICAL RESULTS AND DISCUSSION 

 

Now we present the numerical calculations for the SAR values as a function of parameters of the alternating magnetic 

field for mixed garnet nanoparticles with structural formula Y3[Fe2−yMy]a
(Fe3−zMz)dO12, where M = Al, Ga, Sc. 

From the above discussion it is clear that from a magnetic point of view the MNPs are single-domain, heterogeneous of 

the core/shell type, the probe is monodisperse and there is no interaction between the particles. A homogeneous 

distribution of MNPs in the heating region is assumed. We consider that the doping does not change the type of the 

elementary cell. The difference in the sizes of the magnetic Fe ions and the substitution with nonmagnetic ions change 

the number and intensity of spin’s interaction in the sublattices and between them. 

For numerical calculations, the values of the super-exchange magnetic interactions (intra- and inter- sublattice) must be 

determined depending on the degree of x with nonmagnetic ions. As already noted, nonmagnetic ions can occupy both 

octahedral and tetrahedral places. The distribution of doped ions at the a- and d- sites can be determined experimentally 

by nuclear-magnetic resonance imaging [55] or on the basis of thermodynamic calculations of two energies equilibrium 

cation distribution model [32,56]. The values of Jad, Jaa and Jdd are determined from their relationship with the 

molecular field coefficients Nad, Naa and Ndd using the following expression [31]: 

 

Jγη = B
nη

<γη>
Nγη,                                                                                                                                                            (17) 

 

where: γ, η = a, d and B =
1

16
gγgημB

2a3NA with the following notations: nη - the number of Fe ions in the γ sublattice, 

Nγη - the molecular field coefficients, < γη > - the number of the nearest neighbours for a given magnetic ion in the γ 

sublattice, gη - the factor of spectroscopic splitting, μB - the Bohr magneton, a - the crystal lattice constant, and NA - 

the Avogadro constant. 

Based on experimental data for magnetization as a function of temperature and using Neel's phenomenological theory 

of molecular field (TMF) for ferromagnetism, Anderson determines the molecular field coefficients (MFC) for undoped 

YIG [57]. Dionne [43] observed a set of expressions determining the dependence of Nγη on the doping concentration of 

nonmagnetic ions by modifying the TMF for doped yttrium garnet and using data for MS(T). He performs this under 

the following assumptions: 1) The replacement of magnetic ions with nonmagnetic ions in d-sublattice is the reason for 

the decrease of the value of Naa without changing the value of Ndd and vice versa; 2) Nad decreases depending on the 

statistical distribution of the nonmagnetic ions in both sublattices. The following relation is valid: 

 

Nγη(y, z) = Fγη(y, z)Nγη(0,0),                                                                                                                                     (18) 

 

where Fγη(y, z) is a dilution function. 

 

Roschmann et al. [56] based on the analysis of the temperature dependence of the saturation magnetization for different 

nonmagnetic doping ions (Al, Ga, Sc) derive a system of Fγη(y, z) functions: 

 

Fad(y, z) = 1 − f(y + z) − b(y − 3z)2; 

Faa(y, z) = (1 −
z

3
)(1 − cz + gz2);                                                                                                                             (19) 

Fdd(y, z) = (1 −
y

2
)(1 + ey)2, 

 

as for the set of values the molecular field coefficients for undoped YIG we use those obtained in [56]: 

 

Nad = 98
mole

cm3 ;  Ndd = −67.8
mole

cm3 ;  Naa = −30.4
mole

cm3  .                                                                                           (20) 

 

 

 

 

 

https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 7.105Vol. 9, Issue 2, February 2022 

DOI:  10.17148/IARJSET.2022.9219 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  155 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

For the coefficients f, b, c, g, e from eq. (19) the following values were observed: 

 

Dopant f b c g e 

Al 0.12 0.011 0.18 0.01 0.06 

Ga 0.14 0.124 0.19 0.01 0.07 

Sc 0.123 0.013 0.2 0.01 0.07 

 

Table2 Coefficients for the dilution functions of eq. (19) according to [56]. 

 

Substituting eq. (18) into eq. (17) we obtain: 

 

Jγη(y, z) = [
a(y,z)

a(0,0)
]
3 nη<γη>o

<γη> nη
o Fγη(y, z)J

γη(0,0) = Fγη(y, z) [
a(y,z)

a(0,0)
]
3

Jγη(0,0),                                                             (21) 

 

where < γη >o and nη
o determine the number of the nearest neighbours of a given magnetic ion in inter- and intra- 

sublattice interactions and the number of magnetic ions in the γ- sublattice for undoped YIG. Taking into consideration 

that nd = 3 − z and na = 2 − y calculating Fγη(y, z) for given y and z at known values of Jγη(0,0) for undoped YIG 

we determine the values of the exchange magnetic interaction between tetrahedral and octahedral places as well as for 

each magnetic sublattice for different doping of nonmagnetic ions. For completeness it should be noted that as the 

number of nonmagnetic ions increases, the constant of the crystal lattice changes, which requires in eq. (21) to add a 

term of the form [
a(y,z)

a(0,0)
]
3

 (see in eq. (17) the constant B=
1

16
gγgημB

2a3NA). This term, for example, by doping with Al 

ions for values of x in the range from 0 to 1.75 varies in the range 1 ÷ 0.967 [58] and defines an error in the range from 

0 to 3.3 %, which can be ignored. From the implemented analysis, the type of expression by which we will calculate 

Jγη(y, z) has the form: 

 

Jγη(y, z) = Fγη(y, z)J
γη(0,0)                                                                                                                                         (22) 

 

For super-exchange interaction constants Jγη(0,0) of undoped YIG we will use those published in [58]: Jad =
−36.84 K, Jdd = −2.59 K  and Jaa = −1.30 K. Using eq. (21) and eq. (22) the values Jγη(y, z)  for YIG doped with Al, 

Ga, Sc and In are numericaly calculated and presented in Fig 2. Distribution of the nonmagnetic ions x in the octahedral 

y and tetrahedral z sites in the mixed yttrium garnet Y3 [Fe2−yAly]a
(Fe3−zAlz)dO12 used for the the calculated super-

exchange inter- and intra- sublattice interactions are taken from papers as follows: 1/ for Al3+ [35,36,44]; 2/ for Ga3+ 

[36,44]; 3/ for Sc3+ [32,59] and 4/for In3+ [31,32]. 

 

However, indium is incompatible with biological matter, making it impossible to use the compounds 

Y3[Fe2−yIny]a
(Fe3−zInz)dO12 for in vivo and in vitro medical applications. Its compounds are toxic when injected into 

the blood. They damage the heart, kidneys and liver. Its inclusion is for the purpose of completeness of the exposition 

and comparative analysis with results obtained with mixed yttrium garnet doped with Sc (for more information see 

[29]). 

 

The magnetic anisotropy, which we use in the numerical calculations, depends on the temperature, the degree of doping 

with nonmagnetic ions and the size of the nanoparticles. The values of K1 are presented graphically in Fig. 3 a) and Fig. 

3 b) determining the dependence of the first constant of magnetic anisotropy on the concentration of nonmagnetic ions 

Ga3+ (curve 1) and In3+ (curve 2) for two values of temperature T = 5 K Fig. 3 a) and room temperature (T = 300 K ) 

Fig. 3 b). The curves are constructed on the basis of experimental data published in [59-63]. 

 

For completeness, we note that for YIG for all temperatures the values of K1 are negative. This means that the axes of 

the easy magnetization are along the body diagonal of the cube, while the axes of the hard magnetization are along the 

edge of the cube. In the mixed garnets, examined by us, only Fe3+ ions are magnetic, and it can be concluded that the 

dependence of the constant of the single-ion magnetic anisotropy on x will have the same character as presented in Fig. 

3 a) and Fig. 3 b), regardless of the type of the doping ion. Of course, the values of K1 will depend on the size of the 

doping ion, which, depending on its radius, will cause compressive or tensile strain of the lattice and change of the 

internal crystal field. Moreover, within the single-ion model, the anisotropy is considered to be an additive 

characteristic of the individual ions, depending only on the type of magnetic ion and the crystallographic 
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a/ 

 
b/ 

 
c/ 

 

Fig. 2 Dependence of the constant of a/ inter-super-exchange interaction |Jad| b/ intra- sublattice interaction between 

tetrahedral d-sites |Jdd| and c/ intra-sublattice interaction between octahedral a-sites |Jaa| on the degree of doped with 

nonmagnetic ions: 1/ Al3+ curve 1 2/ Ga3+ curve 2; 3/ Sc3+ curve 3 and 4/ In3+ curve 4. 

 

 
a) 

 
b) 

 

Fig. 3 Dependence of the constant of magnetic anisotropy |K1| on the degree of doped with nonmagnetic ions: Ga3+ 

curve 1 and In3+ curve 2 for different values of temperature a) T = 5 K and b) T = 300 K. 

 

position occupied by it. Because of this reason, we assume that when doping with nonmagnetic ions with a radius 

smaller than that of Fe3+ (Al, Ga) the dependence of K1 on x is determined by curve 1 in Fig. 3 a) and Fig. 3 b), and 

when doping with an ion with more large radius (In, Sc) curve 2 of the same figures. 
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In the calculations we use the temperature dependence of the YIG constant on an undoped bulk sample. This 

dependence is depicted in Fig. 4 a) and is constructed on the basis of experimental data published in [64]. We shall 

consider that the temperature dependence does not change at a given value of the degree of doping x. 

 
a) 

 
b) 

 

Fig. 4 The dependence of the magnetic anisotropy constant |K1| on: a) the temperature T and b) the size d of the 

nanoparticles at T = 5 K for undoped YIG. 

 

The additivity of the single-ion anisotropy allows to calculate for each value of x and T the constant K1 for one 

magnetic ion for a given mixed garnet in Kelvin units (K) passing from erg/cm3 to K f. u.⁄  with subsequent division of 

the number of magnetic ions of the unit formula. 

Fig. 4 b) determines the dependence of K1 at undoped garnet on the size of the MNPs. This figure was obtained on the 

basis of experimental results published in [40,65,66]. The following conclusions can be drawn: 

1) Within this article, we discuss the magnetic properties of MNPs with a size of (20 - 35) nm. It is obvious that for 

them the constant of the magnetic anisotropy is one order of magnitude higher compared to the bulk samples (see 

Fig.4). 

2) We assume that the surface magnetic anisotropy depends on x and T in the same way as in the bulk samples (see Fig. 

3 and Fig. 4). The reason for this assumption is that by doping with nonmagnetic ions the magnetic anisotropy is 

determined only by the Fe3+ ions. 

The numerical calculations and the discusion for the temperatute of the magnetic phase transition TC, the saturation 

magnetization MS and coercivity HC as a function of the degree of doping x and the size d of MNPs for the mixed 

yttrium garnets nanoparticles with structure formula Y3[Fe2−yMy]a
(Fe3−zMz)dO12  as M = (Al, Ga, In, Sc) are given in 

our previous paper[29]. Based on this analysis, we determined a set of magnetic nanoparticles that satisfy the 

biocompatibility condition and determine their thermal efficiency (see Table 1 in the Introduction). 

First we present the dependence of the SAR values on the external parameters: 1) the amplitude of the alternating 

magnetic field h0;  2)  its frequency f. 
Fig. 5 a) and Fig. 5 b) show the dependence of the SAR parameters on the electromagnetic field: the amplitude h0 and 

the frequency f at a fixed size of MNPs suitable for SCMH. The quadratic dependence of the thermal efficiency on h0 

and linear on f has been established. Obviously, it is more advantageous to change the field amplitude at lower 

frequency values because this leads to higher SAR values. On the other hand, the resonance condition (2πf × τR = 1) 

must be taken into consideration where τR is time for the relaxation for the Neel's relaxation mechanism [14]. At very 

low frequencies this condition is violated, which leads to a strong reduction in SAR even at high field values. These 

results are in qualitative coincidence with the experimental results [49,67,68] and are proof of the adequacy of the 

microscopic model, approximations used by us and the accuracy of the calculations. This is due to the fact that the 

microscopic theory of SAR constructed by us [42] on the basis of Kubo formalism formally has many similarities with 

the linear response theory (LRT) describing similar dynamic behaviour of MNP in an alternating electromagnetic field 

with respect to the dependence of thermal efficiency on the amplitude and the frequency of the external magnetic field 

(the nature of the elliptic hysteresis curves is similar). However, there is an important difference between these two 

models connected with magnetization. In LRT, the magnetization used in the calculation of SAR was taken from 

experiments and assumed to be equal to the magnetization in bulk samples. The latter often leads to overestimated 

values of SAR. To overcome this problem, a “magnetically dead” layer on the surface of the nanoparticles is usually 

considered which reduces the magnetization and thus, the calculated SAR values are more realistic. In our model, the 

magnetization is calculated taking into account the crystal structure, as the deviation of the crystal structure on the 
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surface is taken into account by reducing the number of nearest neighbours and changing the constants of the exchange 

interaction. The exchange interaction constants can be conveniently chosen to correctly describe the magnetization of 

the nanoparticles and the temperature of the magnetic phase transition. 

 
a) 

 
b) 

 

Fig. 5 Dependence of SAR on: a) amplitude h0 for different frequencies 1) f = 370 kHz; 2) f = 200 kHz and 3) f = 100 

kHz, the vertical black lines determine the limit of bio tolerance of the human organism to an alternating magnetic field 

h0 ∗ f ≤ 6.2 × 107Oe/s ; b) frequency f for different amplitudes of the alternating field 1) h0 = 100 Oe; 2) h0 = 200 Oe 

and 3) h0 = 370 Oe for YScG at T = 300 K and NP size d = 26 nm. 

 
a) 

 
b) 

 

Fig. 6. Dependence of SAR on: a) temperature for different values of the amplitude h0 and the frequency f of the 

alternating electromagnetic field: 1) h0 = 167 Oe;  f= 370 kHz; 2) h0 = 310 Oe; f = 200 kHz; 3) h0 = 620 Oe; f = 100 

kHz; (the three curves have been obtained under the condition h0 ∗ f = 6.2 × 107Oe/s); b) the frequency f 
(calculations for each frequency are made at such amplitude h0 of the field, for which the equality h0 ∗ f =
6.2 × 107Oe/s is fulfilled) for YScG at T = 300 K and size of the NP d = 26 nm. 

 

Fig. 6 a) determines the temperature dependence of the SAR close to the temperature of the magnetic phase transition, 

but lower than it for three pairs of values for the amplitude and frequency of the external field, which satisfy the 

biocompatibility condition (h0 ∗ f factor). For all curves, the SAR peak is observed at the same temperature T = 308 K, 

i.e. it  is independent on the field characteristics. It is clear that the temperature dependence of the thermal efficiency in 

Neel relaxation has a resonant shape and increases sharply near TN. As the field increases from 167 Oe to 620 Oe, the 

SAR maximum increases approximately 8 times. This means that there is a possibility of a significant increase in the 

heating intensity during the procedure and reduction of its duration as well. In the temperature range from 290 K to 308 

K, SAR increases although τR decreases with increasing of the temperature. This can be qualitatively explained by the 

type of the expression for the area of the hysteresis curve from [14] and that in this temperature range the magnetization 

changes slightly with temperature. In the range from 308 K to 315 K a sharp drop in thermal efficiency observes. This 
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is a consequence of the sharp drop in the magnetization near the phase transition temperature. This behaviour is in 

accordance with [69]. 

Fig. 6 b) presents the dependence of SAR on frequency as for each f the calculation is performed for such amplitude h0 

of the field for which the condition for safe influence of the alternating electromagnetic field is fulfilled, i.e. h0 ∗ f =
6.2 × 107Oe/s. Numerical calculations clearly show the sensitivity of the thermal efficiency of mixed garnet 

nanoparticles when changing the parameters of the alternating magnetic field (AMF). The calculations were made in 

compliance with the resonance requirement (2πf × τR = 1). This fact shows that for frequencies in the range from 100 

Hz to 200 Hz, for mixed garnet nanoparticles a good thermal efficiency should be achieved. This will also reduce the 

time during which the patient is exposed to high-frequency electromagnetic fields. 

As noted above, the degree of doping significantly changes the magnetic characteristics of mixed garnets: with 

increasing of doping with nonmagnetic ions, the value of single-ion anisotropy and magnetic inter-exchange interaction 

decrease. In Fig. 7 is presented the dependence of SAR on |Jab|at T = 300 K and h0 = 200 Oe; for different values of 

the frequency of the alternating electromagnetic field. It is clear that for d=32nm when |Jab| increases the value of SAR 

decreases (Fig.7 a)). Vice versa for the MNP with a size d=22.5nm the thermal efficiency increases with |Jab| increases 

(Fig.7 b)).   This behaviour is fully expected due to the following qualitative considerations: a/ Fig. 3 a) and Fig. 3 b) 

show that as the degree of doping increases, the value of the single-ion anisotropy decreases and |Jab| decreases (Fig. 

4). b/ On the other hand the relaxation time depends exponentially on the magnetic anisotropy [52] of a MNP and 

through the resonant term in the expression of thermal efficiency in linear response theory [14] affects the values of 

SAR. 

1/According to (Fig. 8) for d=32nm with increasing the degree of dopping x thermal efficiency increases (see the green 

vertical line) t.e when  |Jab| decreases. For a large values of size of NPs (d=32nm) when the anisotropy increases the 

spins are practically blocked and only a weak precession near the equilibrium position may be observed. This means 

that with decreasing of K1 and the magnetization moves more and more easily between the stable energy states (the 

spins unblocked) and the the area of the hysteresis increases and the thermal losses grow t.e the value of SAR increases. 

This situation explains the fact that with decreasing the absolute value of inter-super-exchange interaction |Jad| SAR 

grows (Fig. 7a). 

2/According to (Fig. 8) for d=22.5nm with increasing the degree of dopping x thermal efficiency decreases (see the 

black vertical line) t.e. when  |Jab| decreases. For a small values of size of NPs (d=22,5nm) with decreasing of K1 the 

magnetization moves easily between the stable energy states (the K1V < kBT, where V is the volume of the nanoparticle 

is fulfield) stimulated by thermal fluctuations. This means that the area of the hysteresis loops get smaller and smaller. 

Then the thermal losses reduce when magnetic anisotropy decreases. This situation explains the fact with decreasing 

the absolute value of inter-super-exchange interaction |Jad| SAR rate down (Fig. 7b). 

This behaviour is important for the effectiveness of SCMH because when we vary the degree of doping and the size of 

the MNP, we fit the phase transition temperature into the bio-acceptable range (315 K). It is clear that in the range of 

concentrations for which a bio-acceptable phase transition temperature is achieved, the thermal efficiency increases. 

 

IV. CONCLUSION 

 

In this paper we study doped YIG MNPs Y3[Fe2−yMy]a
(Fe3−zMz)dO12 (M = Al, Ga, Sc are nonmagnetic ions) 

appropriate for SCMH for in vivo and in vitro applications. A microscopic model (modified Heisenberg Hamiltonian) 

and the Green’s function technique are used to investigate the dependence of SAR coefficient on the amplitude and the 

frequency of the alternating magnetic dield, the temperature, and the magnetic inter-exchange interaction. Using the 

Tserkovnikov's method the static and dynamic characteristics of the magnetic nanoparticles beyond the random phase 

approximation (taking into account the correlation functions) are calculated. Analytical expressions for the elementary 

spin excitations energies and their damping are presented. It was found that: 1/ For d=32nm when  |Jab| decreases  

thermal efficiency increases but for d=22.5nm when |Jab| reduces the vavue of the SAR grows. This behavior is 

explained on the basis of competition between thermal spin fluctuations (which predominated in little MNPs with low 

magnetic anisotropy) and  precession near the equilibrium position for the practically  blocked spins (which is 

characteristic of big MNPs with high magnetic anisotropy). On the base of methodology proposed for the fisrt time are 

determinated the inter-sublattice and intra-sublattice magnetic exchange constants for different degrees of doping. This 

behaviour is important for the effectiveness of SCMH because when we vary the degree of doping and the size of the 

MNP, we fit the phase transition temperature into the bio-acceptable range (315 K). It is clear that in the range of 

concentrations for which a bio-acceptable phase transition temperature is a chieved, the thermal efficiency increases. 
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a) 

 
b) 

 

Fig. 7 Dependence of SAR on |Jab|  at T = 300 K and h0 = 200 Oe; for different values of the frequency of the 

alternating electromagnetic field: 1) f = 200 kHz; 2) f = 150 kHz and 3) f = 100 kHz for sizes of YGaG-MNP a) d=32 

nm b) d=22.5nm. 

 
Fig. 8  Dependence of SAR on the size of the YGaG MNPs for the different the degree of doping: 1/ x=1.56; 2/ x=1.62 

and 3/ x=1.65 for T = 300K and h0 = 200 Oe; f = 200 kHz. The vertical dotted lines determine MNP with fixed sizes: 

the green one d=32nm and the black – d=22.5nm. 
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Appendix А: 

 

The calculated Green’s functions for Y3[Fe2−yMy]a
(Fe3−z38Mz)dO12 in the random phase approximation are: 

 

Gij,E
aa =

i

π
 

(E−Eij
dd)<Si

az>

(E−Eij
aa)(E−Eij

dd)−Eij
adEij

da δij;   Gij,E
dd =

i

π
 

(E−Eij
aa)<Si

dz>

(E−Eij
aa)(E−Eij

dd)−Eij
adEij

da δij 

 

Gij,E
da =

i

π
 

(E−Eij
da)<Si

az>

(E−Eij
aa)(E−Eij

dd)−Eij
adEij

da δij;   Gij,E
ad =

i

π
 

(E−Eij
ad)<Si

dz>

(E−Eij
aa)(E−Eij

dd)−Eij
adEij

da δij,                                                             (А.1) 

 

where: 

Eij
aa =

2

N
∑ Jik eff

aa
k < Sk

az > δij − 2∑ Jij eff
aa

k < Sk
az > δij −

2

N
∑ Jik

ad
k < Sk

dz > −gμBhδij; 
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Eij
dd =

2

N
∑ Jik eff

dd
k < Sk

dz > δij − 2∑ Jij eff
dd

k < Sk
dz > δij −

2

N
∑ Jik

da
k < Sk

az > −gμBhδij; 

 

Eij
da = 2Jik

da < Sk
dz > δij;  Eij

ad = 2Jik
ad < Sk

az > δij, 

 

with:  Jik eff
aa = Jik 

aa + Ki
aδij;  Jik eff

dd = Jik 
dd + Ki

dδij. 

 

Appendix B: 

 

The analytical expressions of the energies ξkl
γ

 are calculated to: 

 

ξij
a =

1

< Si
az >

{
2

N
∑Jik eff

aa (< Sk
a−Sj

a+ > −2

k

< Sk
azSj

az >) − Jij eff
aa (< Si

a−Sj
a+ > −< Si

azSj
az >) 

 

−
2

N
∑Jik eff

ad (< Sk
d−Sj

a+ > −2

k

< Sk
dzSj

az >) − Jij eff
ad (< Si

d−Sj
a+ > −< Si

dzSj
az >) 

 

−gμBh < Sk
az > δij} 

 

ξij
d =

1

< Si
dz >

{
2

N
∑Jik eff

dd (< Sk
d−Sj

d+ > −2

k

< Sk
dzSj

dz >) − Jij eff
dd (< Si

d−Sj
d+ > −< Si

dzSj
dz >) 

 

−
2

N
∑Jik eff

da (< Sk
a−Sj

d+ > −2

k

< Sk
azSj

dz >) − Jij eff
ad (< Si

a−Sj
d+ > −< Si

azSj
dz >) 

 

−gμBh < Sk
dz > δij}                                                                                                                                                (B.1) 

 

Appendix C: 

 

The damping for Y3[Fe2−yMy]a
(Fe3−z38Mz)dO12, giving only those terms for which the law on energy conservation is 

fulfilled: 

 

Γij
aa =

4π

N
∑ (Jil

aa)2l 〈Sl
az〉{nl

aa ∗ [2〈Sj
az〉 + nl

aa + ni
aa] − ni

aanl
aa}δ(El

aa + Ej
aa − Ei

aa − El
aa) ; 

Γij
dd =

4π

M
∑ (Jil

dd)
2

l 〈Sl
dz〉{nl

dd ∗ [2〈Sj
dz〉 + nl

dd + ni
dd] − ni

ddnl
dd}δ(El

aa + Ej
aa − Ei

aa − El
aa); 

Γij
ad =

4π

N
∑ (Jil

ad)
2

l ni
ad ∗ nl

ad δ(Ei
ad − El

ad)δlj; 

Γij
da =

4π

N
∑ (Jil

da)
2

l ni
da ∗ nl

da δ(Ei
da − El

da)δlj                                                                                                           (C.1) 

 

where ni
γη

=
1

N
∑ 〈Si

γ−
Sj

η+
〉j  and Ei

γη
=

1

N
∑ Eij

γη
j  for  γ, η = a, d. 

 

 

А1 = Eij
ddEij

aa − Eij
adEij

da − Γij
aaΓij

dd − Γij
adΓij

da;                                                                                                            (С.2) 

 

А2 = Eij
dd + Eij

aa;                                                                                                                                                           (С.3) 

 

А3 = Eij
ddΓij

aa + Eij
aaΓij

dd + Eij
daΓij

ad + Eij
adγijΓij

da;                                                                                                        (С.4) 

 

γ′ = Γij
aa + Γij

dd.                                                                                                                                                             (С.5) 

 

 

 

 

https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 7.105Vol. 9, Issue 2, February 2022 

DOI:  10.17148/IARJSET.2022.9219 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  162 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

REFERENCES 

 

[1] S. Nagarajan, Z. Yong, Recent Paremts Biomed. Eng. 1 (2008) 34. 

[2] O. Bruns, H. Ittrich, K. Peldschus, M. Kaul, U. Tromsdorf, J. Lauterwasser, M. Nikovich, B. Mollwitz, M. Merkel, 

N. Bigall, Nat. Nanotechnol. 4, 193 (2009) 

[3] Q. Pankhurst, N. Thanh, S. Jones, J. Dabson, J. Phys. D: Appl. Phys. 42, 224001 (2009) 

[4] A. Gupta, M. Gupta, Biomaterials 26, 3995 (2005) 

[5] S. Mornet, S. Vasseur, F. Duguet, J. Mater. Chem. 14, 2161 (2004) 

[6] A. Ito, H. Honda and T. Kobayashi, Cancer Immunol. Immunother. 55 (2006) 320. 

[7] Z. Shateradadi, G. Nabiyouni, M. Soleymani, Prog. Biophys. Mol. Biol. 133 (2018) 9. 

[8] S. Dutz, R. Hergt, J. Murbe, R. Muller, M. Zeisberger, W. Andra, J. Topfer, M. Bellemann, J. Magn. Magn.Mater. 

308 (2007) 305. 

[9] R. A. K. Pradhan, R. Bah, R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, R. R. Rakhimov, J. Appl. Phys. 103 

(2008) 07F704. 

[10] R. Y. Hong, J. H. Li, J. M. Qu, L. L. Chen, H. Z. Li, Chem. Eng. J. 150 (2009) 572. 

[11] O. R. Rajagopal, J. Mona, S. N. Kale, T. Bala, R. Pasricha, P. Poddar, M. Sastry, B. L. V. Prasad, D. C. Kundaliya, 

S. B. Ogale, Appl. Phys. Lett. 89 (2006) 023107. 

[12] S. Jadhav, D. Nikam, V. M. Khot, N. Thorat, M. Phadatare, R. S. Ningthoujam, A. B. Salunkhe, S. H. Pawar, New 

J. Chem. 37 (2017) 3121. 

[13] Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, M. Doi, Mater. Sci. Eng.-Mater. Biol. Appl. 30 (2010) 

990. 

[14] J. Carrey, B. Mehdaoui and M. Respaud, J. Appl. Phys. 2011, 109, 083921. 

[15] Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, M. Doi, Mater. Sci. Eng.-Mater. Biol. Appl. 30 (2010) 

990. 

[16] R. E. Rosensweig, J. Magn. Magn. Mater. 252 (2002) 370. 

[17]W. Brown, Phys. Rev. B 130 (1963) 1677. 

[18] B. Jeyadevan, J. Chem. Soc. Jpn. 118 (2010) 391. 

[19] R. Hergt, W.Andra, C. d’Ambly, I. Hilger, W.Kaiser, U.Richter, H.Schmidt, IEEE Trans. Magn. 34 (1998) 3745. 

[20] K. Krishnan, IEEE Trans. Magn. 46 (2010) 2523. 

[21] G. Landi, Phys. Rev. B 89 (2014) 014403. 

[22] S. Lee, J. Jeong, S. Shin, J. Kim, J. Magn. Magn. Mater. 2004, 282, 147. 

[23] A. T. Apsotolov, I. N. Apostolova, J. M. Wesselinowa, Eur. Phys. J. B 2013, 86, 483. 

[24] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 2006, 298, 83. 

[25] A. Rashid and S. Manzoor, J. Magn. Magn. Mater. 2016, 420, 232. 

[26] M. Soleymani, M. Edrissi and A. M. Alizadeh, J. Mater. Chem. B 2017, 5, 4705. 

[27] T. Nishimori, Yu. Akiyama, T. Naohara, T. Maehara, H. Hirazawa, Yo. Itagaki and H. Aono, Jour Ceram. Soc. 

Jpn. 122 (2014) 35. 

[28] H. Aono, Jour Ceram. Soc. Jpn. 122 (2014) 237. 

[29] A.Apostolov, I.Apostolova and J.Wesselonowa, Phys. Stat. Sol b, ….(2022) 

[30] I. Apostolova, A. Apostolov and J. Wesselinowa, J. Magn. Magn. Mater. 2021, 522, 167504. 

[31] Vu Huong, D. Nguyet, N. Duong, T. Loan, S. Soontaranon, L. Anh, Add. Mater. Dev. 5 (2020) 270. 

[32] M.A.Gilleo and S.Geller, Phys.Rev. 110 (1958) 73. 

[33] B. Ravi, X. Gou, Q. Yan, R. Gambino, S. Sampath and J. Parise, Sur. Coat. Techn. 201 (2007) 7597. 

[34] D. Strenzwilk and E. Ardenson, Phys. Rev. 175 (1968) 654. 

[35] P. Gornert and C. d’Ambly, Phys. Stat. Sol. (a) 29 (1975) 95. 

[36] S. Geller, J. Cape, G. Espinnosa and D. Leslie, Phys. Rev. 148 (1966) 522. 

[37] K. Belov and I. Sokolov, Sov.Phys. Usp. 20 (1977) 149. 

[38] T. Kim and M. Shima, Jor. All. Phys. 101 (2007) 09M516. 

[39] A. Morrish, and K. Haneda, J. Phys. Colloq. 41 (1980) C1-171. 

[40] M. Rajendran, S. Deka, P. Joy and A. Bhattacharya, Jour. Mang. Magn. Mater. 301 (2006) 212. 

[41] D. Nguyet, N. Duong, T. Satoh, L. Anh and Th. Hien, Jour Alloys Comp. 541 (2012) 18. 

[42] J. M. Wesselinowa and I. Apostolova, J. Phys.: Condens. Matter 19 (2007) 216208. 

[43] G. Dionne, J. Appl. Phys. 41 (1970) 4847. 

[44] P. Roschmann and P. Hansen, Jour. Appl. Phys. 52 (1981) 6257. 

[45] J. Korcki, M. Przybylski, U. Gradmann, J. Magn. Magn. Mater. 89 (1990) 325. 

[46] S. V. Tyablikov, Methods in the Quantum Theory of Magnetism, Plenum Press, New York (1967). 

[47] R. Hergt, W.Andra, C. d’Ambly, I. Hilger, W.Kaiser, U.Richter, H.Schmidt, IEEE Trans. Magn. 34 (1998) 3745. 

[48] G. Landi, Phys. Rev. B 89 (2014) 014403. 

https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 7.105Vol. 9, Issue 2, February 2022 

DOI:  10.17148/IARJSET.2022.9219 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  163 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

[49] E. Vedre, G. Landi, M. Carriao, A. Dummond, J. Gomes, E. Vieira, M. Sousa, A. Drummond, AIP Adv. 2 (2012) 

032120. 

[50] S. Ruta, R. Chantrell, O. Hovorka, Sci. Rep. 5 (2015) 9090. 

[51] L. C. Branquinho, M. S. Carrião, A. S. Costa, N. Zufelato, M. H. Sousa, R. Miotto, R. Ivkov and A. F. Bakuzis, 

Sci. Rep. 3 (2013) 2887. 

[52] E. Verde, G. Landi, J. Gomes, M. Sousa, A. Bakuzis, J. Appl. Phys 111 (2012) 123902. 

[53] C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. 

Estradé, F. Peiró, Z. Saghi, PA. Midgley, I. Conde-Leborán, D. Serantes, D. Baldomir. Sci. Rep. 3 (2013) 1652. 

[54] Yu. Тserkovnikov, Theor. Math. Phys. 7 (1971) 250. 

[55] R.L.Streever and G.A.Uriano, Phys. Rev.139 (1965) 305. 

[56] P. Roschmann, Jour Chem. Sol. 41 (1980) 569. 

[57] E. E. Anderson, Phys. Rev. 134 (1964) A1581. 

[58] L. Xie, G. Jin, L. He, G. Bauer, J. Backer and K. Xia, Phys. Rev. B 95 (2017) 014423. 

[59] R. Philips and L. White, Phys. Rev. Lett. 16 (1966) 650. 

[60] A. Clark, B. Desavage and W. Coleman, J. Appl. Phys. 34 (1963) 1296. 

[61] S. Mandel, M. Smokotin, A. Petrakovskii and M. Lebed, Phys. Stat. Sol. 30 (1968) K111. 

[62] A. Petrakovskii, M. Smokotin and A. Sablina, Fiz. Tver. Tela 9 (1967) 2324. 

[63] G .Winkler, Magnetic Garnets, F.Vieweg and Sohn, Braunschweig/Weisbaden (1981). 

[64] P. Hansen, Philips Research Reports Suppl. 7 (1970) 1. 

[65] R. Sanches, J. Rivas, P. Vaqeiro, M. Lopez-Quintela, D. Caeiro, Jour. Magn. Magn. Mater. 247 (2002) 92. 

[66] T. Nguyet, N. Duong, T. Satoh, L. Anh and Th. Hien, Jour. Allows and Comp. 541 (2012) 18. 

[67] P. Guardia, R. Corado, L. Lartigie, C. Wilhelm, A. Espinosa, M. Garsia-Hernandes, F. Gazeau, T. Pelligrino, ACS 

Nano 6 (2012) 3080. 

[68] A. Hiromichi, Jour. Chem. Soc. Jpn. 122 (2014) 237. 

[69] G. Barrera, P. Allia, and P. Tiderto, Nanoscale 12 (2020) 6360. 

 

 

 

 

 

https://iarjset.com/

