

International Advanced Research Journal in Science, Engineering and Technology

DOI: 10.17148/IARJSET.2022.9445

# DESIGN AND ANALYSIS OF REINFORCEMENT PAD OF NOZZLE JUNCTION IN PRESSURE VESSEL

## Sundara Ramam Rapeta<sup>1</sup>, Ajay Teja Denduluri<sup>2</sup>, Sivasai Varunraj Dunna<sup>3</sup>,

## Harsha Chandan Prasada<sup>4</sup>, Sai Chandu Kuncha<sup>5</sup>

Department of Mechanical Engineering, Vignan's Institute of Information Technology,

## Visakhapatnam, India<sup>1-5</sup>

Abstract: The goal is to gain a better understanding of how a geometric gap between a cylindrical or spherical shell and a reinforcing pad affects the stress intensity at the nozzle penetration while the pressure vessel is under internal pressure. Nozzles are used as intake and outlet for process fluid and cooling fluid in a variety of tanks, pressure vessels, heat exchangers, and other applications. The shell strength may be reduced to establish the Nozzle hole to shell. A reinforcement pad is utilized at the nozzle junction to improve strength and reduce failure. So, the nozzle to shell junction is analyzed, and whether or not a pad is required, is determined by taking into account a variety of elements that influence the strength of a junction. If a pad is required, the thickness and diameter are calculated according to ASME guidelines. In addition, a finite element analysis (FEA) of the junction is performed to calculate the stress generated at the junction. As a result, the magnitudes and distributions of the local stresses caused by the geometric discontinuity and internal pressure loading are unknown. Perfect contact between the shell and the pad cannot be maintained for a variety of reasons, resulting in a gap. Both designers and manufacturers are interested in the influence of the gap on the stresses in the nozzle reinforcement region.

Keywords: Shell, Nozzle Junction, Pressure Vessel, Reinforcement Pad, Meshing, Finite Element Analysis

## I. INTRODUCTION

In terms of structural design, pressure vessels, pipe tees, boilers, and reactors are typical examples of applications where safe and economical design requirements must be employed. In many technical applications, nozzle connections subjected to internal pressure and external loads are the most typical types. One of the issues with nozzle connection design is the application of appropriate stressrelieving reinforcements. Different types of connections are utilised to assure the safety of nozzle connections. Welded pad reinforcement, self-reinforced nozzles, and internally protruded connections and toros transitions are examples of these connections. Because of the importance of pressure vessels in engineering applications and the risk of safety issues in the event of an accident, a number of studies have been done to assess pressure vessel safety under various loading conditions. There are numerous codes that outline the rules and regulations that must be followed to guarantee that equipment is designed safely. The tensions near nozzle connections have been the subjectof extensive research. Stresses at cylindrical junctions can be accurately assessed to guarantee a safe and cost-effective design. Traditional pressure vessel design codes, such as ASME Section VIII, are unable to cover all design scenarios. External loads on nozzles, for example, are not addressed in the Code. Engineers must step outside of the Code in such instances and use acknowledged design processes such as (FEA) finite element analysis. WRC 107/297 and other simplified calculation methods used in the PVP sector arebased on limited test data and have geometric restrictions. When these geometric constraints are not adhered to, the results become erroneous. Finite element analysis has no restrictions and can deliver accurate results in any situation.

## II. METHODOLOGY

Process of the work:

• The provided Pressure Vessel data sheets are thoroughly examined, and all required standard dimensions, such as WRNF 150, are taken as dimensional references, along with NPS numbers as reference numbers.

• Parts are generated in 2D (line diagrams) using Auto-CAD utilizing standard measurements and data from data sheets, and part drawings are put together to make a full drawing.

• In Siemens NX 11.0, 3D modelling is done on the pieces, and then the parts are linked to complete the assembly.

• Ansys software is used to simulate the pressure vessel analysis, and the results are observed.





International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 7.105 💥 Vol. 9, Issue 4, April 2022

DOI: 10.17148/IARJSET.2022.9445

## **III.DESIGN OF PRESSURE VESSEL**

All of the parts were modelled in NX 11.0 using the same technique with minor adjustments to the design parameters. Pressure Vessel data sheets take into account design parameters and design standards.



Fig3.01: 3D sketch of Shell 1 in NX



Fig3.04: 3D sketch of Dishend 1 in NX in NX



Fig3.02: 3D sketch of Shell 2 in NX



Fig3.05: 3D sketch of Nozzle 1 & 2 in NX



Fig3.03: 3D sketch of Skirt in NX



Fig3.06: 3D sketch of Nozzle 4,5,6,7



Fig3.07: 3D sketch of Nozzle 8 in NX in NX



Fig3.10: 3D sketch of Manhole in NX Blank in NX



Fig3.13: 3D sketch of MH RF Pad



Fig3.08: 3D sketch of Reinforcement Pad 1 &2 in NX



Fig3.11: 3D sketch of Dishend 2 in NX



Fig3.14: 3D sketch of ReinforcementPad 8 in NX



Fig3.09: 3D sketch of Nozzle 3



Fig3.12: 3D sketch of Manhole



Fig3.15: 3D sketch of RF Pad 1 in NX



## International Advanced Research Journal in Science, Engineering and Technology

## 

DOI: 10.17148/IARJSET.2022.9445





**IV.ANALYSIS** 

Following the technique, all of the parts were analyzed using ANSYS 16.0. With Pressure Vessel data sheets, the analysis parameters are compared to design specifications.



Fig4.01: Meshing of total assembly

| Define By | Normal To         |  |  |
|-----------|-------------------|--|--|
| Magnitude | 13789 Pa (ramped) |  |  |

### Fig4.04: Pressure



Static Structural Fig4.08: Total Deformation



Fig4.11: Total Heat Flux (Steady State Thermal)



Fig4.05: Hydrostatic Pressure

Fig4.09: Equivalent Elastic Strain



Fig4.12: Directional Heat Flux (Steady State Thermal)



Fig4.03: Standard Earth Gravity



Fig4.07: Fixed Support

| 343.3 °C |
|----------|
| 343.3 *C |
|          |

Fig4.10: Temperature



Fig4.13: Total Heat Flux (Transient Thermal)

302

# TOTAL ASSEMBLY - ANALYSIS

| Statistics    |        |
|---------------|--------|
| Bodies        | 26     |
| Active Bodies | 26     |
| Nodes         | 376354 |
| Elements      | 182514 |

Fig4.0 2: Nodes and elements

A SUBBER



## International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 7.105 💥 Vol. 9, Issue 4, April 2022

DOI: 10.17148/IARJSET.2022.9445



Fig4.14: Directional Heat Flux ( Transient Thermal )



Fig4.15: Design Temperature

| Definition |                   |
|------------|-------------------|
| Туре       | Temperature       |
| Magnitude  | 343.3 °C (ramped) |

Fig4.16: Design Temperature

Static Structural

**REINFORCEMENT PAD – ANALYSIS** 







### International Advanced Research Journal in Science, Engineering and Technology

## DOI: 10.17148/IARJSET.2022.9445

|            |                   | MESH         | IING      |                    | TOTA<br>DEFORM     | AL<br>ATION | DIREC<br>DEFOR     | TIONAL<br>MATION    | EQUIVALE           | NT STRESS           | EQUIVALE             | NT ELASTIC<br>AIN    |
|------------|-------------------|--------------|-----------|--------------------|--------------------|-------------|--------------------|---------------------|--------------------|---------------------|----------------------|----------------------|
| RF<br>PADS | MESHING<br>TYPE   | ELEM<br>ENTS | NODE<br>S | DESIGN<br>PRESSURE | MAXIMU<br>M        | MINIM<br>UM | MAXIMU<br>M        | MINIMUM             | MAXIMU<br>M        | MINIMUM             | MAXIMUM              | MINIMUM              |
|            |                   |              |           |                    |                    |             |                    |                     |                    |                     |                      |                      |
| K1 &<br>N8 | QUADRILATE<br>RAL | 94           | 858       | 345 KPa            | 1.4105e-<br>008 mm | 0. mm       | 0. mm              | -1.1893e-<br>008 mm | 3.2489e-004<br>MPa | 1.2785e-<br>004 MPa | 1.6245e-009<br>mm/mm | 6.7759e-010<br>mm/mm |
|            |                   |              |           |                    |                    |             |                    |                     |                    |                     |                      |                      |
| MH         | QUADRILATE<br>RAL | 62           | 624       | 345 KPa            | 2.5939e-<br>007 mm | 0. mm       | 2.3089e-<br>007 mm | -1.2586e-<br>007 mm | 2.9766c-004<br>MPa | 1.2016e-<br>004 MPa | 1.5723e-009<br>mm/mm | 6.8324e-010<br>mm/mm |
|            |                   |              |           |                    |                    |             |                    |                     |                    |                     |                      |                      |
| Nl         | QUADRILATE<br>RAL | 88           | 816       | 345 KPa            | 2.0008e-<br>008 mm | 0. mm       | 5.9495e-<br>009 mm | -1.6671e-<br>008 mm | 2.9522e-004<br>MPa | 1.2461e-<br>004 MPa | 1.4761e-009<br>mm/mm | б.2347e-010<br>mm/mm |
|            |                   |              |           |                    |                    |             |                    |                     |                    |                     |                      |                      |
| N2         | QUADRILATE<br>RAL | 680          | 1720      | 345 KPa            | 2.7177e-<br>008 mm | 0. mm       | 2.268e-008<br>mm   | -2.2681e-<br>008 mm | 4.4978e-004<br>MPa | 1.2021e-<br>004 MPa | 2.2489e-009<br>mm/mm | 6.148e-010<br>mm/mm  |

## ANALYSIS OF ALL REINFORCEMENT PADS AND THEIR RESULTS

## RESULTS

### ASSEMBLY - ANALYSIS

Model (A4, B4, C4) > Steady-State Thermal (B5) > Solution (B6) > Results Object Name Total Heat Flux Directional Heat Flux Temperature



| State                  | Solved                                                                                                         |                              |                                                                                                                  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | Scop                                                                                                           | e                            |                                                                                                                  |  |  |  |
| Scoping Method         | Geometry Selection                                                                                             |                              |                                                                                                                  |  |  |  |
| Geometry               |                                                                                                                | All Bodies                   |                                                                                                                  |  |  |  |
|                        | Definit                                                                                                        | ion                          |                                                                                                                  |  |  |  |
| Type                   | Total Heat Flux                                                                                                | Directional Heat Flux        | Temperature                                                                                                      |  |  |  |
| By                     | and and below the second s | Time                         | and the second |  |  |  |
| Display Time           |                                                                                                                | Last                         |                                                                                                                  |  |  |  |
| Calculate Time History |                                                                                                                | Yes                          |                                                                                                                  |  |  |  |
| Identifier             |                                                                                                                |                              |                                                                                                                  |  |  |  |
| Suppressed             |                                                                                                                | No                           |                                                                                                                  |  |  |  |
| Orientation            |                                                                                                                | X Axis                       |                                                                                                                  |  |  |  |
| Coordinate System      |                                                                                                                | Global Coordinate System     |                                                                                                                  |  |  |  |
|                        | Integration Poi                                                                                                | int Results                  |                                                                                                                  |  |  |  |
| Display Option         | A                                                                                                              | Averaged                     |                                                                                                                  |  |  |  |
| Average Across Bodies  | No                                                                                                             |                              |                                                                                                                  |  |  |  |
|                        | Resul                                                                                                          | ts:                          |                                                                                                                  |  |  |  |
| Minimum                | 1.909e-011 W/m <sup>a</sup>                                                                                    | -4.7848e-006 W/m²            | 343.3 °C                                                                                                         |  |  |  |
| Maximum                | 4.8107e-006 W/m <sup>2</sup>                                                                                   | 4.4359e-006 W/m <sup>2</sup> | 343.3 °C                                                                                                         |  |  |  |
| Minimum Occurs On      | Part 21                                                                                                        | Part 24                      | Part 1                                                                                                           |  |  |  |
| Maximum Occurs On      | Part 24                                                                                                        | Part 4                       | Part 1                                                                                                           |  |  |  |
|                        | Informa                                                                                                        | tion                         |                                                                                                                  |  |  |  |
| Time                   | 1.5                                                                                                            |                              |                                                                                                                  |  |  |  |
| Load Step              | 1                                                                                                              |                              |                                                                                                                  |  |  |  |
| Substep                | 1                                                                                                              |                              |                                                                                                                  |  |  |  |
| Iteration Number       |                                                                                                                | 1                            |                                                                                                                  |  |  |  |



|                | Definition     |                |
|----------------|----------------|----------------|
| Type           | Tempe          | rature         |
| Suppressed     | No             |                |
|                | Scope          |                |
| Scoping Method | Głobał Maximum | Global Minimum |
|                | Results        |                |
| Minimum        | 343.3 °C       | -587.63 °C     |
| Maximum        | 540.86 °C      | -140.76 °C     |
|                |                |                |



#### International Advanced Research Journal in Science, Engineering and Technology

#### DOI: 10.17148/IARJSET.2022.9445

### **REINFORCEMENT PAD – ANALYSIS**

#### RF PAD – K1,N8

**Directional Heat Flux** 

X Axis



Equivalent Stress



#### **RF PAD – MH ( MANHOLE )**

b.



#### Model (A4, B4, C4) > Transient Thermal (C5) > Solution (C6) > Results Object Name Temperature Total Heat Flux Directional Heat Flux

| Slate                         | Bolived     |                              |                                 |  |
|-------------------------------|-------------|------------------------------|---------------------------------|--|
|                               |             | Scope                        |                                 |  |
| Scoping Method                |             | Geometry Se                  | ection .                        |  |
| Geometry                      | Al Bodies   |                              |                                 |  |
|                               | 140 MA      | Definition                   |                                 |  |
| Type                          | Temperature | Total Heat Flux              | Directional Heat Flux           |  |
| By                            |             | Time                         |                                 |  |
| Display Time                  |             | Last                         |                                 |  |
| <b>Calculate Time History</b> | -           | Yes                          |                                 |  |
| Identifier                    |             |                              |                                 |  |
| Suppressed                    |             | No                           |                                 |  |
| Orientation                   |             |                              | X Aais                          |  |
| Coordinate System             |             |                              | <b>Global Coordinate System</b> |  |
|                               |             | Results                      |                                 |  |
| Minimum                       | 289 °C      | 1.4224e-007 W/m <sup>2</sup> | -2.2211e+005 W/m*               |  |
| Maximum                       | 343.3 °C    | 2.2481e+006 W/mF             | 2.2211e+006 W/m²                |  |
|                               | Minimum     | Value Over Time              |                                 |  |
| Minimum                       | -596.4 °C   | 1.4224e-007 W/m3             | -2.8327e+007 W/m <sup>2</sup>   |  |
| Maximum                       | 289. 10     | 1.4224e-007 W/m <sup>2</sup> | -2.2211e+006 W/m²               |  |
|                               | Maximum     | n Value Over Time            |                                 |  |
| Minimum                       | 343.3 °C    | 2.2481e+006 W/m <sup>2</sup> | 2.2211e+006 W/m2                |  |
| Maximum                       | 343.3 'C    | 2.8439e+007 W/m²             | 2.832764007 W/m²                |  |
| _                             | ir.         | formation                    |                                 |  |
| Time                          |             | 1.6                          |                                 |  |
| Load Step                     |             | 1                            |                                 |  |
| Substep                       | 13          |                              |                                 |  |
| Iteration Number              |             | 13                           |                                 |  |
|                               | Integrati   | on Point Results             |                                 |  |
| Display Option                | -           | A.                           | weraged                         |  |
| Average Across Bodies         | No.         |                              |                                 |  |

#### Type Total Deformation Directional Deformation Equivalent (von-Mises) Stre Display Tim Las Calculate Time Histor Yes dentif Suppressed Orientation inale System No X Axis Results -010 m Minimu 20.16 P Minimum 0.m Maximum 2.5939e-010 m 2.3089e-010 m 297.66 Pa Time 1.5 Load Step Subslet ration Point Results Display Option rerage Across Bodies Averaged No

del (A4, B4, C4) > Static Structural (A5) > Solution (A6) > Results

Geometry Sele

AI Bo

Name Total Deformation Directional Deformation State

Object Na

Scoping Method

ometr

Model (A4, B4, C4) > Object Name 7 State

### RF PAD - N1

| Steady-State | Thermal (B5) > S | olution (B6) > Results | Model (A4, B4, 0 |
|--------------|------------------|------------------------|------------------|
| emperature   | Total Heat Flux  | Directional Heat Flux  | Object Nam       |
|              | Solved           |                        | Stat             |
|              | Scope            |                        | Scoping Metho    |
|              |                  | -                      | Contrate         |

|                        |             | Scope                        |                              |  |
|------------------------|-------------|------------------------------|------------------------------|--|
| Scoping Method         |             | Geometry Se                  | ection                       |  |
| Geometry               | All Bodies  |                              |                              |  |
|                        | 1           | efinition                    |                              |  |
| Туре                   | Temperature | Total Heat Flux              | Directional Heat Flux        |  |
| By                     |             | Time                         |                              |  |
| Display Time           |             | Lasi                         |                              |  |
| Calculate Time History |             | Yes                          |                              |  |
| Identifier             |             |                              |                              |  |
| Suppressed             |             | No                           |                              |  |
| Orientation            | X Axis      |                              |                              |  |
| Coordinate System      |             |                              | Global Coordinate System     |  |
|                        |             | Results                      |                              |  |
| Minimum                | 343.3 °C    | 1.5039e-008 W/m <sup>2</sup> | -1.496e-006 W/m2             |  |
| Maximum                | 343.3 °C    | 1.6267e-006 W/m <sup>2</sup> | 1.4946e-006 W/m <sup>2</sup> |  |
|                        | In          | formation                    |                              |  |
| Time                   | e           | 1. s.                        |                              |  |
| Load Step              | 1           |                              |                              |  |
| Substep                | 1           |                              |                              |  |
| Iteration Number       | 1           |                              |                              |  |
|                        | Integratio  | on Point Results             |                              |  |
| Display Option         |             | 1                            | Averaged                     |  |
| Average Across Bodies  |             |                              | No                           |  |



## Model (A4, B4, C4) > Transient Thermal (C5) > Solution (C6) > Temperature

| 1 me s  | Minimum | Maximum [C] |
|---------|---------|-------------|
| 1.e+002 | -254.81 |             |
| 2.e-002 | -238.44 |             |
| 5.e-002 | ·193.14 |             |
| 0.14    | 84.688  |             |
| 0.24    | 9.3477  |             |
| 0.34    | 82.73   | 343,3       |
| 0.44    | 139.99  |             |
| 0.54    | 184.67  |             |
| 0.64    | 219.54  |             |
| 0.74    | 246.74  |             |
| 0.84    | 267.97  |             |



## International Advanced Research Journal in Science, Engineering and Technology

## Impact Factor 7.105 💥 Vol. 9, Issue 4, April 2022

## DOI: 10.17148/IARJSET.2022.9445

## RF PAD – N2



#### **FUTURE SCOPE**

Global Pressure Vessels Market 2020 by Manufacturers, Regions, Type, and Application, Forecast to 2025 is the most recent credible market research study that provides a deep analysis of the global market situation, providing several benefits and enhancing absorption adoption among several industrial users. A market overview, study objectives, product definition, and market concentration are all included in the report. Depending on the quantity of data and information presented, the report is beautifully characterised by the use of several charts, graphs, and tables. For the forecast period, the report includes critical data on market share, market size, and growth rate. It sheds light on global Pressure Vessels industry information, helping organisations to better understand the market and make critical business decisions.

### CONCLUSIONS

These results can be followed as:

1) The internal design pressure, design temperature, and component dimension of a pressure vessel are all designed in compliance with ASME boiler and pressurevessel standards.

2) The examination of the blind flange, shell flange, eye boil, drain pipe, drain pipeflange, and junction region of the pressure vessel was carried out using FEA and ASME methods under the various loads.

3) The allowed stress of the material is less than the stress equivalent and stress classification lines of pressure vessel components.

4) The findings of the analysis for the usual operating condition were within acceptable limits. As a result, the present blind flange, shell flange, and eye bolt designs are strongenough to withstand the intended load circumstances.

5) The pressure vessels are designed to be safe. The level of safety that we consider acceptable and by which we judge the design to be safe. The bursting pressure is below the design's permissible stress, ensuring that it does not fail. And because the analysis is so near to the analytical design, both the data and the design are regarded safe. In addition, no pressure vessel failures have occurred.

#### REFERENCES

(1) "Buckling Design of Confined Steel Cylinders under External Pressure," JOPVT, Volume 133, Issue 1,February 2011."Buckling Design of Confined Steel Cylinders under External Pressure," Daniel Vasilikis and Spyros A Karamanos, JOPVT, Volume 133, Issue 1, February 2011.



International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 7.105 ∺ Vol. 9, Issue 4, April 2022

## DOI: 10.17148/IARJSET.2022.9445

(2) Journal of Pressure Vessel Technology, Volume 133, Issue 1, February 2011, "Buckling of Thin-Walled Long Steel Cylinders Subjected to Bending," says the author. "Buckling of Thin-Walled Long Steel Cylinders Bending," says the author. Sotiria Houliara is a writer who lives in Athens, Greece.

(3) "An Integrated Approach to Pressure Vessel Design Using Shape Optimization," Volume 88 of the IJPVP Issue 5, May 2011. R.C. Carbonari, Pablo Munoz-Rojas, "Design of Pressure Vessels Using Shape Optimization: An Integrated Approach," IJPVP, Volume 88, Issue 5, May 2011.

(4) "Design and Analytical Calculation of Reactor Pressure Vessel," IJSR, Volume 8, Issue 5, May 2019. Patel Nikunj, Ashwin Bhabhor, "Design and Analytical Calculation of Reactor Pressure Vessel," IJSR, Volume 8, Issue 5, May 2019.

(5) Hardik B nayak, R R trivedi, "Stress Analysis of Reactor Nozzle to Head Junction", IRJET, Volume 2, Issue 5, August 2015.

(6) "Stress Distributions in A Horizontal Pressure Vessel and the Saddle Supports," IJPVP, Volume 87, Issue 5, May 2010. Shafique M.A. Khan, "Stress Distributions in A Horizontal Pressure Vessel and the Saddle Supports," IJPVP, Volume 87, Issue 5, May 2010.

(7) "A Review of the Effects of Quench Nozzles on Pressure Vessel Design," IRJET, Volume 2, Issue 3, June 2015, Jayashri Wagh, Girish Pawar, Ajit Mane, and Yuvraj Ballal.