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Abstract: The vibration and buckling characteristics of rectangular plates subjected to non-conservative follower load 

are studied using finite element analysis. The first order shear deformation theory is used to model the plate.  

In the present work, a numerical has been carried out through finite element method.  

The problem under investigation has been formulated using energy concepts and Hamilton’s principle.  

The effects of load bandwidth, boundary condition are considered for the stability behavior of the plate. The results 

show that the position of intermediate load and load bandwidth has a significant effect on the vibration and buckling of 

the plate. 
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I. INTRODUCTION 

 

The follower load is a typical example of non-conservative load. The buckling and vibration  of  beams, plates 

subjected to conservative loading has its great importance of the design of aerospace, mechanical and civil engineering 

structures. When a structure is under follower force whose direction changes according to the deformation of the 

structure, it may undergo static instability (divergence) or dynamic instability (flutter) depending on system parameters, 

giving rise to unbounded deformation or growth of vibration without bound. There is a considerable number of papers 

available on non-conservative instability of beams and columns subjected to follower forces. Though many researchers 

have given importance to study stability characteristics of plates subjected to uniform edge follower forces, it is worth 

to mention here that such loads are not very common in practice. Many practical situations demand the behavioral 

aspects of such structural elements under the action of discontinuous/partial edge follower forces with different non-

conservative parameters and acting at any intermediate position.   

The origin of follower force can be found in an end rocket thrust applied to flexible  

missiles and aircraft. The first review of this branch of applied mechanics has been made in book form by Bolotin(1963). 

A lot of interesting results on the effect of follower forces have been drawn on which the results were brought are 

greatly and sometimes unduly simplified in Sugiyama, (1976).  Bolotin (1963) has extensively studied the non-

conservative problems of elastic stability. One  of  the  interesting  topics  in  nonconservative  stability  problems  has  

been  the destabilizing effect of damping (Bolotin, 1963).However, investigations on the stability characteristics of the 

plates under follower loading are relatively few. Follower force is not only caused by jet or rocket thrust. The onset of 

brake squeal is completely equivalent to the passage through the stability boundary in Beck’s column (Nishiwaki, 1993, 

Mottershead and Chan, 1996).During manufacture/during the service life of thin structural components, it is almost 

impossible to avoid the existence of microscopic/macroscopic defects. This eventually affects both the static and dynamic 

behaviour of such components. In the present work, a numerical has been carried out through finite element  

route to study the buckling, vibration and instability behaviour of plate subjected to non-conservative loads. The problem 

under investigation has been formulated using energy concepts and Hamilton’s principle.  The vibration and stability 

problems basically consist of a set of homogeneous equations leading to Eigen value problems. The geometric stiffness 

matrix is highly affected by the presence of flaws and the type of loading and hence affects the flutter instability 

behaviour.  In the present investigation an attempt has been made to study stability characteristics of the plates 

subjected to uniform intermediate follower edge load having direction control. The effects of intermediate load position 

and structural damping on instability behaviour have also been considered.   

 

II. MATHEMATICAL FORMULATION 

 

Eight nodded curved isoparametric quadratic element is used to model the plate in the present analysis with five degrees 

of freedom u, v, w, θ
x 
and θ

y 
per node. First order shear deformation theory (FSDT) is used.  

If the loading is non-conservative, the loss of stability may not show up by the system going  

into another equilibrium state but by going into unbounded motion. To encompass this  

possibility one must consider the dynamic behaviour of the system because stability is  

essentially a dynamic concept. The instability behaviour can be determined by investigating  
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the motion of a system that occurs due to some initial perturbation which turns out the subsequent motion due to the 

initial perturbation consists of oscillations of increasing amplitude, or is a rapidly  increasing departure from the 

equilibrium state, the equilibrium is unstable; otherwise it is  stable. 

The strain relation consists of two parts: (1) linear strain terms used in the derivation of elastic stiffness matrix and (ii) 

non-linear strain for geometrical stiffness matrix. 

     NLL  +=                                                                                  (1) 

Large deflection effects are taken into account by including first order non-inearities in the strain- displacement 

relations (followings von karman theory) as given below: 
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Where 𝜀𝑥, 𝜀𝑦  and 𝜀𝑥𝑦  are the strain components in the x-y plane and 𝛾𝑥𝑦 is the engineering shear strain. The analogous 

non- linear effects are including in the beam by using an equation like the first of equations.  

The finite element equations are obtained via the principle of virtual work.  

Using the standard finite element procedure, the expressions for energies can be written in finite form as: 

Strain Energy Ut associated with bending and transverse shear is given by 
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And the work done by the initial in-plane stresses and non-linear strain 

    dvU ln

T

=  02
2

1
                                  (7) 

     qKqU G

T

2

1
2 =                                                                                 (8)   21 UUU +=                      

                                  (  

The Kinetic energy T of the plate can be expressed as       
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The extended Hamilton principle has been used to formulate the governing equations, considering the non-conservative 

(follower) forces. The extended Hamilton principle can be expressed as: 

𝛿 ∫ (𝑇 − 𝑈)𝑑𝑡 +  ∫ 𝛿𝑊𝑛𝑐𝑑𝑡
𝑡2
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cnw = Variation of the work done by the non-conservative forces, which consists of the two parts: follower forces 

and damping forces. 

DFcn WWW  +=                                 (13)                                                                    

Where WD and WF are the work done by the damping force and follower force respectively. 

( )nyn

N

n
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                                   (14)

                    

where Pn, wn and yn are the force, deflection and rotation about y axis at the node n, N is the total number of nodes.                       

       

The follower force matrix  NCK  in equation (13) is given by       d
T

cn NPNK =  

Substituting energy expression in the equation (1), the following equilibrium equation for the plate is obtained. 
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                 0=+−++ qKKPqKqCqM CNG
                          (15)  

In equation (15) [M] is mass matrix, [C] is damping matrix, [K] is elastic stiffness matrix, [KG] is geometric stiffness 

matrix, [KNC} is the non-conservative loading matrix, {q} is nodal displacement vector and P is the magnitude of the 

applied load. The matrix [KG] takes into account all the in-plane forces, including the in-plane (conservative) 

component of the applied load, while the matrix [KNC] takes into account the non-conservative component of the 

follower load that is in the direction perpendicular to the unreformed mid plane of the plate. The load width (c) is the 

physical region over which the load is applied. 

The modal transformation is performed by means of the first few normal modes of vibration as follows.  

𝜔2[𝑀]{𝑞0} + [𝐾]{𝑞0} = 0                                                 (16) 

Where ω is the angular natural frequency of vibration and corresponds to the mode shape of free vibration. Equation 

(12) is solved for the first few modes of vibration by means of a subspace iteration method. The orders of the finite 

element matrices are very large and the solution of this equation in its original form may be obtained, particularly for 

determination of the buckling load subjected to follower load. Hence a modal transformation is applied to equation (16) 

to reduce its size and to retain only the most dominant modes of vibration. Using the modal transformation technique 

the numbers of equations have been reduced without significant loss of accuracy.  

Equation (10) is an eigenvalue problem with eigen values which are the squares of the natural frequencies of free 

vibration under follower load P. Equation (16) can be solved by using standard eigenvalue routine for a complex 

general matrix. The imaginary part of ω corresponds to the exponential increment or decrement of the amplitude of 

vibration. The system is unstable when any of the value ω of equation (10) has a negative imaginary part. Further, if 

during the transition from stability to instability of the real part of ω is zero then instability occurs due to divergence. 

Otherwise instability occurs due to flutter. 

 

III. RESULTS AND DISCUSSIONS 

 

To check the validity of the present model, the follower/flutter loads and follower/flutter frequencies are compared with 

Adali (1982) and Deolasi (1996) for a plate with C-F-S-S case and subjected to uniformly distributed follower force 

(c/b=1) at the free edge as shown in table 1. The ratio of breadth to thickness (b/t) is 100, poisson’s ratio ν of 0.3 and 

aspect ratio (a/b) 1 and 0.5 are considered. In the discussion, load width ratio (c/b) and position of load (q/a) are used 

where γ and λ are non-dimensional load and frequency parameters respectively.  

 

Table 1 Comparison of non-dimensional flutter loads γ
cr 

and non-dimensional  

flutter frequencies λ
cr  

for an isotropic C-F-S-S plate c/b=1.0 and ν = 0.3
 

 

Aspect ratio Flutter load γ
cr
 Flutter frequency λ

cr 
 

a/b Present Adali 

(1982) 

Deolasi 

(1996) 

Present Adali 

(1982) 

Deolasi 

(1996) 

1.0 51.23 51.968 52.06 16.92 16.67 16.33 

0.5 27.04 27.11 27.20 49.32 49.58 49.30 

   

Tables 2 and 3 show numerical results for C-F-F-F and C-F-S-S square plates having b/t=100, subjected to an 

intermediate follower edge load with different load positions and load width ratios (c/b) and aspect ratios  

 

Table 2 Non-dimensional critical flutter load for C-F-F-F square plate  at different intermediate positions for α =1.0 

 

Load width 

ratio(c/b) 

Non-dimensional critical flutter load (γ
cr

) 

 

 q/a = 1 q/a=0.8 q/a=0.6 q/a=0.5 q/a=0.4 q/a=0.3 

0.2 20.85 20.8572 24.32 32.03 28.56 29.98 

0.4 20.75 20.31 24.47 32.89 31.15 32.56 

0.6 19.75 19.77 24.64 33.85 35.81 36.82 

 

Table 2 shows the variation of frequency with load for direction control parameter α = 0.8 on rectangular plate having 

an aspect ratio (a/b) of 2 for different load positions. From the figure it is observed that the minimum flutter load occurs 

at q/a = 0.6 and it the increases as the load position approaches the fixed edge. It shows that the flutter load significantly 

changes with the aspect ratio and load direction control parameter. From Table 2 it is observed that the critical load 

(flutter) gradually decreases with load width ratio up to q/a=0.8 and then increases as the load position approaches the 
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fixed edge for C-F-F-F boundary condition.  From the table it is observed that the minimum flutter load is observed at 

q/a = 0.8.  From Table  it is noticed that the for C-F-S-S boundary condition, the critical load increases with c/b ratio for 

all the load positions. It can be concluded that the critical flutter load vary significantly with load positions.  

 
IV. CONCLUSION 

 

The follower loading on the plate may lead to flutter type of instability which can be observed due to coalescence of the 

frequencies of two modes into a complex conjugate pair. Flutter is observed to be more common than divergence under 

follower loading.  The load bandwidth, intermediate load position and load direction control parameter are observed to 

have significant influence on free vibration, flutter characteristics of the plate having different boundary conditions.  
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