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Abstract: The Internet and computer networks are exposed to an increasing number of security threats. With new types 

of attacks appearing continually, developing flexible and adaptive security oriented approaches is a severe challenge. In 

this context, anomaly-based network intrusion detection techniques are a valuable technology to protect target systems 

and networks against malicious activities. However, despite the variety of such methods described in the literature in recent 

years, security tools incorporating anomaly detection functionalities are just starting to appear, and several important 

problems remain to be solved. This paper explored the back ground, taxonomy and review of benchmarking anomaly 

based intrusion detection. Further the paper is concluded possible research issues, challenges and constraints in anomaly-

based intrusion detection. 
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I. INTRODUCTION 

 

Increasing Internet traffic obliges the backbone operators and large end users to deploy high-speed network links to match 

the bandwidth demands. The increase of bandwidth is apparent not only on backbone links, but the consumer hosts are 

more and more connected with bandwidth capacity that was available only for enterprise clients few years ago. However, 

besides all beneficial effects, this new high-bandwidth infrastructure presents novel challenges in the domain of security 

and robustness, as the manual oversight of such high traffic volumes is nearly impossible and only the events of 

extraordinary scale are typically reported [1]. 
 

A network intrusion detection system (NIDS) is the software tool that automates the network intrusion detection process. 

From an architectural point of view a NIDS can be analyzed from several angles (i.e. traffic capture process, system 

location, appropriate measures selection, among others). However, from a more simplified point of view, intrusion 

detection can be seen just as a classification problem in which a given network traffic event is assigned as normal or 

intrusive. 
 

In the past 20 years, several techniques have been proposed to address the embedded classification problem inside NIDS. 

Perhaps the most successful approach has been the one based on pattern signatures describing known attacks behavior [1]. 

Under this approach, a malicious event is detected when some monitored event matches against a signature pattern. 

Despite signature-based NIDS are considered the de facto standard, they face the problem of needing a new set of 

signature patterns each time a new attack emerges. In addition, signatures describing such attacks have to be written by 

experts, which are not always available. In other words, the signature-based approach has failed in providing the level of 

automation required by security staff members. 
 

Alternatively, techniques including statistical methods, machine learning and data mining methods have been proposed 

as a way of dealing with some of the issues regarding signature based- approaches. Such techniques aim at facilitating the 

work of the network security staff, providing a higher automation in the intrusion detection process along with good 

detection capabilities. Despite the success in obtaining high accuracy levels, most of these techniques have actually not 

been deployed in real-life scenarios. This situation suggests that accuracy is not the only goal in the pursuit of automatic 

intrusion detection. 
 

The present work reviews the most relevant network intrusion detection techniques for wired networks, putting special 

emphasis on the embedded classification problem. However, in opposition to previous surveys on this field, analysis is 
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performed considering not only accuracy results but also other features required for implementing the discussed 

techniques in real-life scenarios. 

 

II. THE NETWORK INTRUSION DETECTION SYSTEM 

 

Before discussing the most relevant approaches to NIDS, we proceed to describe the fundamental elements inside the 

intrusion detection problem. 

 

2.1 Attack definition and classification 
 

A computer attack can be defined as the intelligence of evading or evading attempt of computer security policies, 

acceptable use policies, or standard security practices. In the security research community, the terms attack and intrusion 

are often used with the same meaning. 
 

In the past years, there have been several attempts to build taxonomies aimed at classifying attacks. One of the most 

accepted taxonomy is the one proposed by Kendall [2], in which attacks can be classified into four categories: 
 

Probing: Attacks oriented to gather information about the system, for further intrusion. These attacks include network 

traffic sniffing and port/address scanning. 
 

Denial of Service (DoS): Attacks attempting to diminish or totally interrupt the use of a system or a service to their 

legitimate users. 
 

User to Root (U2R): Attacks that aim to gain superuser access to the system by means of exploiting vulnerabilities in 

operating systems or software applications. The attacker has a valid account in the system. 
 

Remote to Local (R2L): Attacks oriented to gain local access from outside the network. 

 

A broad attack taxonomy is presented by Lazarevic et al. in [3], in which a new category is added for programs that 

replicate on host machines or propagate through the network. This new category includes programs such as viruses, worms 

and trojan horses. 
 

2.2 The architecture 
 

In general, from an architectonic point of view, a NIDS is based on the following modules: Traffic Data Acquisition: This 

module is used in the data collection phase. In the case of a NIDS, the source of the data are raw network frames or 

information from upper protocol layers (i.e. IP or UDP protocols). Traffic Features Generator: This module is responsible 

for extracting a set of selected traffic features from captured traffic. 
 

Network traffic features can be classified in low-level features and high-level features. A low-level feature can be directly 

extracted from captured traffic (e.g. IP header). Whereas a high- level feature consists of traffic information deduced from 

captured traffic by a subsequent process. Features can be also classified according to the network traffic source used for 

generating them. Packet features are those directly obtained from network raw packets headers. Flow refers to features 

containing aggregated information related to network connections. Finally, Payload stands for those features obtained 

from packet payload. 
 

Incident Detector: This module processes the data generated by the Traffic Features Generator module to identify 

intrusive activities. Traditionally, network intrusion detection methodologies have been classified into two broad 

categories [4]: misuse detection (matches the input data against a definition of an attack) and anomaly detection (based on 

a definition of normal behavior of the target system). No matter the detection methodology implemented by the Incident 

Detector, once a malicious event has been detected, an alert will be raised and sent to the Response Management module. 

Traffic Model Generator: This module contains the reference data used by the Incident Detector to compare with. The 

source of information of the Traffic Model Generator could come from human knowledge or from some automatic 

knowledge acquisition procedures. 
 

Response Management: Once an alert is received, this module has the responsibility to initiate actions in response of a 

possible intrusion. 

 

2.3 The taxonomy 
 

Researchers have proposed several taxonomies for NIDS. Here, we summarize the elements of a taxonomy commonly 

accepted in the intrusion detection research community [3]. 
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Detection method: The two broad methods for detection are considered: anomaly-based and misuse-based. Model  
 

acquisition: Traffic model is based on human knowledge or generated by some automatic generation process. 
 

Usage frequency: Detection can be performed in real-time (continuous monitoring) or by batch (periodic analysis). 
 

Architecture: Data collection and processing can be done only from a single monitored point of the network (centralized) 

or from multiple points of the network (distributed). Finally, we summarize the four more relevant measures when 

considering true deployment feasibility.  
 

Prediction accuracy: Measures how good is a NIDS in detecting intrusion. Processing time: Considers the rate at which 

events are processed. A NIDS should be able to perform detection as soon as possible. 
 

Adaptability: Indicates the NIDS capability to deal with new attacks techniques. A NIDS should be able to re-adapt 

itself in the presence of new threats. Resource consumption: Measures how much memory and storage resources are 

required by the system. 

 

III. NOMENCLATURE ANOMALY BASED INTRUSION DETECTION 

 

The anomaly detection method is based on the analysis of the profiles that represent normal traffic behavior. First, an 

anomaly detector creates a baseline profile of the normal legitimate traffic activity. Thereafter, any new activity that 

deviates from the normal model is considered an anomaly. This methodology has the major benefit of potentially 

recognizing unforeseen attacks. However, its major drawback is a potentially high false alarm rate. Among the most 

commonly used techniques for anomaly detection we can find statistical methods, machine learning and data mining 

techniques. 
 

3.1 Statistical methods 
 

The idea behind statistical methods consists of maintaining two profiles during the anomaly detection process: the 

currently observed profile and the previously stored statistical profile. As a new network event is observed the current 

profile is updated and compared with the stored profile. These profiles are based on measures of certain variables over 

the time. 
 

The EMERALD IDS [7] is one of earliest NIDS based on statistical anomaly detection. The statistical module inside 

EMERALD is focused on providing real-time surveillance of TCP/IP-based networks for malicious or exceptional 

network traffic.SPICE (Stealthy Port scan and Intrusion Correlation Engine) [35] is another statistical-based approach 

focused on detecting stealthy scans in real-time. The architecture of SPICE consists of an anomaly sensor and a correlator. 

The sensor monitors the network and assigns an anomaly score to each event. The anomaly score for a packet is based 

on a frequency-based mechanism. The fewer times a packet is observed the higher its anomaly score will be. 
 

Other interesting statistical approaches have been proposed as a way to deal with the non-stationary property of network 

traffic. Lakhina et al. [36] focused on backbone network traffic characterization by means of an exploratory PCA. 

Whereas Gu et al. [37] use some information-theoretic measures as a way to distinguish anomalies that change the traffic 

either abruptly or slowly. 

 

3.2 Machine learning techniques 
 

The use of Machine Learning (ML) techniques for anomaly detection are focused on building a model that improves and 

adapts its performance based on previous results. One of the most remarkable efforts in the study of anomaly detection 

is the work of Mahoney and Chan [38]. They have proposed several anomaly detection models based on ML techniques 

[38–40]. 
 

One of the first approaches proposed is the PHAD system (Packet Header Anomaly Detector) [39]. PHAD performs 

anomaly detection using previous information from packet headers. PHAD Traffic Features Generator module considers 

33 low-level features based on fields from the Ethernet, IP and transport layers. The anomaly score for each feature is 

calculated only considering the recent novel events and discarding the rest. 
 

ALAD (Application Layer Anomaly Detection) is another approach proposed by Mahoney and Chan [38], which instead 

of analyzing single packets, it considers incoming server TCP connections.  

 

The Features Generation module considers low- level features from TCP connections, as well as information from payload. 

LERAD (LEarning Rules for Anomaly Detection) [41] is similar to the ALAD approach, but instead of using a fixed set 

of probabilistic rules, LERAD learns these rules using previously acquired network traffic data. 
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3.3 Data mining techniques 
 

Data mining techniques have also been used for anomaly detection. Lee and Stolfo [8] propose the use of inductive rule 

generation algorithms. These algorithms combine the application of association rules with frequent episode patterns to 

classify network traffic. The Feature Generation module described in [8] considers low-level features based on packet 

information as well as high-level connection features. Then, using the RIPPER [42] algorithm for rules induction, the 

model is generated from attack- free network traffic data. Finally, during the Incident Detection stage, any new event not 

matching against any of the learned rules is considered an anomaly. 
 

Alternatively, to avoid the need of attack-free data, some authors have proposed the use of unsupervised learning 

techniques. For instance, Portnoy et al. [43] propose an unsupervised approach that uses clustering techniques applied to 

the intrusion detection problem. Clustering techniques consist of grouping data into clusters according to some distance 

or similarity measure. The Features Extraction module uses features similar to the ones used by many of the previously 

discussed works. The Traffic Model generation follows a single-linkage [44] clustering approach. During the construction 

model stage, traffic events are labeled following the assumption that the number of normal events exceeds the number of 

intrusions. 
 

Then, during the Incident Detection stage, any new traffic event is classified according to the label of its closest cluster. 

Other authors [45–47] have followed the ideas of Portnoy et al. but using different strategies for computing cluster 

membership. 
 

SVM is another technique applied to unsupervised anomaly detection. In [48,49] different authors have proposed the use 

of the SVM variant for anomaly detection. SVM techniques for anomaly detection are well known for their capability 

for handling data with not only normal traffic but also anomalies. 
 

Finally, it is worth mentioning that multiple classifiers approaches have also been applied for anomaly detection. In the 

work of Giacinto et al. [50], the authors proposed an unsupervised Multiple Classifier System (MCS). Each unsupervised 

classifier is used for modeling a particular group of similar protocols or network services. The use of a modular MCS allows 

the security staff to choose a different traffic model and decision threshold for different groups of network services. The 

work of 

Rehak et al. [51] is another relevant approach that applies multiple classifiers. In this case five well-known anomaly 

detection algorithms are combined by means of a trust modeling framework [52] used to assign proper trustworthiness 

and reputation to each traffic model. 

 

for detecting new kind of intrusions. Instead adaptability refers to the required adjustments in the normal traffic model 

each time the network traffic behavior changes. Such adjustments are done using attack-free network traffic data. 

Statistical-based approaches assume that network traffic responds to a quasi- stationary process. A situation that is not 

always realistic [57]. This incorrect assumption is perhaps the major drawback regarding the adaptability of statistical-

based approaches and one of the causes behind the high false alarm rate reached by these methods. 
 

On the other hand, the use of ML and data mining techniques in the intrusion detection field has been beneficial due to 

their potential adaptability to changes as new information is acquired. For instance, the approach proposed by Mahoney 

and Chan [58] has the major advantage that no distribution assumption is made during the traffic model generation, a 

situation that facilitates the automatic adaptation process. 
 

Despite their potential improvements, data mining (and also ML) approaches for anomaly detection share some of the 

issues of misuse-based data mining techniques. First, since they have a computational intensive model generation process, 

these techniques have been considered mostly for batch detection. Second, they need a large amount of network traffic 

data labeled as normal for the model generation process. However, there is a subtle difference regarding labeled traffic 

requirements. Misuse- based data mining techniques assume the availability of fully labeled data, whereas anomaly-based 

just require attack-free data. This last approach is usually referred as supervised anomaly detection [44]. At first glance 

this could look as a improvement over misuse approaches. In practice, however, it is difficult to obtain attack-free data to 

implement these approaches. Verifying that no attacks are present in the training data can be an extremely demanding 

task, and for large samples this is simply infeasible. On the other hand, if the data containing attacks is treated as clean, 

intrusions similar to the ones present Approaches 
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Table 1: Gist of Anomaly based Intrusion detection 
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3.4 Observations 
 

Table describes those approaches based on anomaly detection. The interest of NIDS relying on anomaly-based Incident 

Detection modules has increased considerably in the recent years, mostly because their ability to detect forms of 

intrusions never seen before. Statistical-based approaches [35,36, 56] have the benefits of not requiring prior knowledge 

of attacks for their model generation process. Most of the statistical-based approaches have proved to be suitable for real-

time detection. In this regard, approaches proposed by Porras and Valdes [56] and Staniford et al. [35] have been tested 

and have shown an acceptable performance in real traffic situations. The work of Lakhina et al. [36] has not been fully 

implemented. However, in their work, the authors provides experiment details that seem to prove the validity of the 

approach for real-time detection. 
 

Like in all the anomaly detection approaches, in the case of statistical-based, adaptability does not mean to adjust the 

model in the training data will be accepted as normal patterns, resulting in a increment in the number of misdetections. 

Unsupervised anomaly detection approaches [43,46,45,49] arise as a way to deal with the supervised anomaly detection 

limitations regarding labeled traffic requirements. Portnoy et al. 
 

[43] propose the use of unsupervised clustering techniques that seem to be efficient in terms of frequency usage as long 

as the number of features used for Model generation remains low. On the other hand, Eskin et al. [49] suggest the use of 

SVM for anomaly detection. SVM are well prepared for dealing with high dimensional data at the expense of a higher 

computational cost that might be not suitable for real-time detection.As mentioned by Portnoy et al. [43], unsupervised 

anomaly detection approaches are suitable to deal with the intrusion detection problem as long as the number of attacks 

remains below the 1.5%. However, in practice this assumption is not always true. There are some situations in which for 

specific periods of time, the presence of intrusions could exceed the number of normal traffic records. For instance, 

when a new vulnerability is discovered and it has been widely announced, it is possible to find attacks exploiting this 

vulnerability encompassing a extremely high percentage of the network traffic. 

 

IV. RESEARCH ISSUES AND CONSTRAINTS 

 

The majority of the previously discussed works focus on the classification problem behind intrusion detection. If we 

considered the extremely precise results obtained by some approaches, we would say that the detection problem is near 

to be solved. Then, we should ask why none beyond pattern signature-based approach it is currently being used by 

network administrators. The fact is that previously analyzed works only cope with a subset of the problems that are 

essential to truly achieving intrusion detection, while not addressing the others. Issues like the still high level of human 

interaction and the lack of model adjustment information are critical to the detection process, specially if we consider 

that the ultimate goal of intrusion detection is to make security staff’s life easier. In addition, a proper traffic features 

identification and the lack of resource consumption information are two other issues that should certainly be considered 

for an appropriate deployment on real networks. Finally, the lack of public network traffic data for proper evaluation of the 

different approaches is another issue that should be addressed by any further research made on this topic. 

 

4.1. High level of human interaction 
 

All current approaches still need a high degree of human interaction during the model construction process. SNORT [1] 

requires expert knowledge for writing signature patterns. Similar is the case of P-BEST, for which the writing of a set of 

implication rules could demand a considerable human effort. 
 

On the other hand, most of the current approaches aiming at automatically generating network traffic models still need a 

high level of human preprocessing of the input data. For instance, data mining and machine learning misuse-based 

approaches require network traffic data labeled as normal or intrusive, whereas anomaly-based approaches require traffic 

records labeled as normal, in other words attack-free traffic data. Even unsupervised approaches, yet to a lesser extent, 

require input data remains under some specific distribution, a situation that can only be guarantee by human experts. This 

need of human preprocessing is perhaps one of the major drawbacks in the deployment of those approaches aiming at 

automatically generating traffic models.The intrusion detection research community have started to react to this issue 

providing the so-called hybrid approaches [62,63]. Hybrid approaches usually combine well-established NIDS like 

SNORT with automatically generated traffic models techniques. Such combinations make the deployment of 

automatically generated models techniques more feasible. In addition, they seem to help reduce the required human 

preprocessing.  

 
 

4.2. Lack of model adjustment information 
 

Most of the discussed approaches using automatic traffic models seem to be aware of the high network variability and 

provide methods for adapting themselves as needed. However, the appropriate time for performing such adjustments 
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seems not to be analyzed enough. Approaches should be able to transfer their results into information that allow the 

network security staff to easily evaluate their possible course of actions for further system adjustment. In addition, more 

methods focused on determining when the traffic model is no longer representative of current network traffic might help 

the acceptance of these automatic approaches. 

 

4.3 Proper traffic feature identification 
 

The majority of the current approaches address the detection problem from a broad point of view. These approaches rely 

on a large set of features to recognize several types of intrusion or, in some other cases, every possible type of intrusion. 

Unfortunately, using such broad strategies could complicate the already difficult problem of intrusion detection. 
 

Alternatively, it seems more appropriate to focus on a per-attack detection strategy (i.e. specific to the kind of attack) and 

then analyze the adequate set of features capable of detecting it. Clearly, there is a relation between the kind of intrusion 

and the type of feature used for detecting such intrusion type. For instance, let’s consider the Botnets detection problem. 

A major difference between Botnets and other detection problems consists of the use of a Command and Control 

communication channel (CC) for coordinating bots activities. We can infer that a proper identification of CC flows could 

eventually lead to detect infected machines on the network. In that case, the problem will be reduced to find just a concise 

set of features for proper CC flow characterization. In particular, this Botnet detection approach is currently being 

explored by members of the intrusion detection community [64]. 
 

This per-attack detection strategy however, brings about a new and important issue regarding the proper and efficient 

interaction between each one of these per-attack approaches. Possibly, the application of multi classifiers approaches and 

information fusion could provide some insights into this subject [65]. 
 

In addition, the size of the network and their associated security policies also have consequences when selecting network 

traffic features. As suggested by Garcia-Teodoro et al. [66], aspects like the behavior of a feature over the time or the source 

of traffic features can vary according to network size. On the other hand, when considering network security policies, 

there could be certain activities considered normal in some environments but not in others. Recently, researchers have 

started to analyze the consequences of applying some of the reviewed techniques under different network sizes and 

network authorities [67]. In summary, for a better addressing of the problem, current approaches should select their 

features according to a set of attacks sharing similar behavior, considering local policies and explicitly defining the 

appropriate network size. 
 

4.4 Lack of resources consumption information  
 

Determining the proper usage frequency for a given detection approach is crucial for analyzing its potential deployment 

on real networks. However, despite being a subject always present in surveys on intrusion detection, it is still difficult 

to establish the true usage frequency for many of the proposed approaches. 

The problem is that only a few of the previously discussed intrusion detection approaches have analyzed the performance 

in terms of the computational resources required for generating the model as well as for evaluating a set of new network 

traffic records. As a result, it is difficult to establish the proper usage frequency of those approaches performing batch 

and real-time detection. 
 

For instance, a batch detection approach could be able to perform detection every 5 min while another could be able to do 

it only every 12 h. Since no measure is provided, it is difficult to establish the proper network conditions in which such 

approaches will be adequate. Even worse is the case of those approaches claiming ability to perform real-time detection. 

In many cases such claims have proved to be valid only under certain network conditions (bandwidth, throughput, etc.). 

Moreover, as stated in Section 3.3.3 some of those approaches claiming real-time detection are actually performing batch 

detection. 
 

This lack of resource consumption information could be one of the reasons why (with the exception of signature-based 

approaches) none of these approaches have been successfully deployed on real networks. Consequently, a better analysis 

about the needed computational resources could help in establishing the adequate usage frequency and therefore 

facilitating the deployment on real networks 

 

4.5 Lack of public network traffic data 
 

Finally, another significant issue regarding intrusion detection is the lack of appropriate public data sets for evaluating the 

different approaches. Nowadays, the most commonly used data sets used for evaluation [68,69] are almost 12 years old, 

which make them practically obsolete if we consider the fast evolution of the network security field. Current data sets 

should contain information on automatic attacks (e.g. Botnets), Peer-to-Peer traffic and distributed DoS attacks, among 

others. 
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Moreover, since IPv6 based network have become a reality [70], security threats and attack types that can affect such kind 

of network should also be included. There have been some efforts for providing a framework for dataset generation in a 

proper and replicable way [71,72]. 
 

However, in many cases, the research community continues evaluating its intrusion detection approaches using their own 

data without providing information about data set generation. A situation that seriously affects the principle of replicability 

of experiments required for scientific research. 

 

V. CONCLUSION 
 

This paper discussed the foundations of the Anomaly based Network Intrusion Detection Systems, together with their 

general operational architecture, and provides a classification for them according to the type of processing related to the 

‘‘behavioral’’ model for the target system. Another valuable aspect of this study is that it describes, in a concise way, the 

main features of several currently available IDS systems/ platforms. Finally, the most significant open issues regarding 

Anomaly based Network Intrusion Detection are identified, among which that of assessment is given particular emphasis. 

The information presented constitutes an important starting point for addressing R&D in the field of IDS. Faster and more 

effective countermeasures are needed to cope with the ever-growing number of detected attacks. 
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