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Abstract: Big data frameworks which include Spark and Hadoop are broadly followed to run analytics jobs in each study 

and industry. Cloud gives low priced compute sources that are less complicated to manage. Hence, many businesses are 

transferring in the direction of a cloud deployment in their huge facts computing clusters. However, activity scheduling 

is a complicated trouble withinside the presence of diverse Service Level Agreement (SLA) goals which include 

economic fee reduction, and activity overall performance improvement. Most of the prevailing studies does now no 

longer cope with a couple of goals collectively and fail to seize the inherent cluster and workload traits. In this article, 

we formulate the activity scheduling trouble of a cloud-deployed Spark cluster and endorse a unique Reinforcement 

Learning (RL) version to deal with the SLA goals. We expand the RL cluster surroundings and enforcement Deep 

Reinforce Learning (DRL) primarily based totally schedulers in TF-Agent’s framework. The proposed DRL-primarily 

based totally scheduling retailers’ paintings at a fine-grained stage to area the executors of jobs at the same time as 

leveraging the pricing version of cloud VM instances. In addition, the DRL-primarily based totally retailers also can 

analyze the inherent traits of various forms of jobs to discover a right placement to lessen each the whole cluster VM 

utilization fee and the common activity duration. The consequences display that the proposed DRL-primarily based 

totally algorithms can lessen the VM utilization fee as much as feasible. 
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I. INTRODUCTION 

 

Big records processing frameworks which includes Hadoop [1], Spark [2], Storm1 have become extraordinarily famous 

because of their use in the records analytics area in lots of good sized regions which includes science, business, and 

research. These frameworks may be deployed in each on-premise bodily assets or at the cloud. However, cloud service 

providers (CSPs) provide flexible, scalable, and low cost computing assets on a pay-as-you-go-model. Furthermore, 

cloud assets are clean to manage and installation than bodily assets.  

 

Thus, many organizations are shifting in the direction of the deployment of large records analytics clusters at the cloud 

to keep away from the problem of managing bodily assets. Service Level Agreement (SLA) is an agreed provider phrases 

among clients and provider providers, which incorporates diverse Quality of Service (QoS) necessities of the users. In 

the activity scheduling trouble of a large records computing cluster, the maximum critical goal is the overall performance 

development of the roles. However, whilst the cluster is deployed at the cloud, activity scheduling will become greater 

complex withinside the presence of different important SLA objectives which includes the economic fee reduction.  

 

In this work, we awareness at the SLA-primarily based totally activity scheduling trouble for a cloud-deployed Apache 

Spark cluster. We have selected Apache Spark as it's miles one of the maximum prominent frameworks for large records 

processing. Spark shops intermediate consequences in reminiscence to hurry up processing. Moreover, it's miles greater 

scalable than different systems and appropriate for running a whole lot of complicated analytics jobs. Spark applications 

may be carried out in lots of high-stage programming languages, and it additionally helps unique records resets which 

includes HDFS [3], Hbase [4], Cassandra [5], Amazon S3.2 The records abstraction of Spark is referred to as Resilient 

Distributed Dataset (RDD) [6], which via way of means of layout is fault-tolerant. When a Spark cluster is deployed, it 

is able to be used to run one or greater jobs.  
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Generally, whilst a activity is submitted for execution, the framework scheduler is chargeable for allocating chunks of 

assets (e.g., CPU, reminiscence), which can be referred to as executors. An activity can run one or greater duties in 

parallel with those executors. The default Spark scheduler can create the executors of a activity in a disbursed style 

withinside the employee nodes. This technique lets in balanced use of the cluster and consequences in overall 

performance enhancements to the compute-extensive workloads as interference among co-placed executors are avoided. 

Also, the executors of the roles may be packed in fewer nodes. Although packed placement places greater pressure at the 

employee nodes, it is able to enhance the overall performance of the network-extensive jobs as communique among the 

executors from the identical activity will become intra-node. In the Spark framework scheduler, handiest a static placing 

may be selected wherein the person has to pick out among the 2 options (spread, or consolidate). However, for unique 

activity types, unique placement strategies could be appropriate that the default scheduler is unable help if those jobs run 

withinside the cluster on the identical time. 

 

II. RELARED WORK 

 

Recently, Reinforcement Learning (RL) primarily based totally approaches are used to remedy complicated actual-

international problems. RL primarily based totally sellers may be skilled to discover a first-class balance among a couple 

of targets. RL sellers can seize numerous inherent cluster and workload traits, and additionally adapt to modifications 

automatically. RL sellers do now no longer have any prior know-how of the surroundings. Instead, they have interaction 

with the actual surroundings, discover exceptional situations, and gather rewards primarily based totally on actions. These 

reports are utilized by the sellers to construct a coverage which maximizes the general praise. The praise is not anything 

however a version of the preferred targets. Due to those blessings stated above, on this paper, we propose an RL version 

to remedy the scheduling trouble. Our goal is to analyze the best executor placement techniques for exceptional jobs with 

various cluster and aid constraints and dynamics, even as optimizing one or extra targets.  

 

Thus, we layout the RL praise in this sort of manner that it can mirror the goal SLA targets along with financial price and 

common task length reductions. We run different sorts of Spark jobs in a actual cloud-deployed Apache Mesos [3] cluster 

and seize the task and cluster statistics. Then we utilize the actual task profiling statistics to broaden a simulation 

surroundings which showcases the same traits as the actual cluster. When an RL-primarily based totally agent interacts 

with the scheduling surroundings, it receives a praise relying on the selected motion. The scheduling simulation 

surroundings utilizes the actual workload effects with our RL praise version to generate rewards. Thus, an agent is 

impartial of praise generation, and simplest observes numerous machine states and rewards totally primarily based totally 

on it’s selected actions. In our proposed RL version for the scheduling trouble, an motion is a selection of a employee 

node (VM) for the introduction of an executor of a particular task. We additionally enforce a Q-Learning-primarily based 

totally agent (Deep QLearning or DQN), and a coverage gradient-primarily based totally agent (REINFORCE) withinside 

the scheduling surroundings. These DRL based scheduling sellers can engage with the simulation surroundings to study 

the fundamentals of scheduling, along with pleasant the aid ability constraints of the VMs, and the aid call for constraints 

of the jobs. Besides, we additionally teach the sellers to limit each the financial price of VM utilization and the common 

task length. Both the scheduling surroundings and the sellers are advanced on pinnacle of TensorFlow (TF) Agents.  

 

In summary, the contributions of this paintings are as follows: 

 

• We offer an RL version of the Spark task scheduling trouble in cloud computing environments. We additionally 

formulate the rewards to teach DRL-primarily based totally sellers to fulfill aid constraints, optimize price-efficiency, 

and decrease common task length of a cluster. 

 

• We broaden a prototype of the RL version in a python surroundings and plug it to the TF-Agents framework.  

 

• The simulation surroundings show cases similar traits as a actual cloud deployed cluster, and may generate rewards 

for the DRL-primarily based totally agent through utilizing the RL version and actual cluster lines.  

 

• We enforce  DRL-primarily based totally sellers, DQN and REINFORCE, and teach them as scheduling sellers in 

the TF-agent framework. 

 

• We conduct extensive experiments with real-world workload traces to evaluate the performance of the DRL-based 

scheduling agents and compare them with the baseline schedulers. 

 

Scheduling tasks in cloud VMs and scheduling VM creations in Data centers are well-studied problems. PARIS [4] 

modelled the performance of various workloads in different VM types to identify the trade-offs between performance 
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and cost-saving. Thus, this model can be used to choose the best VM for both cost and performance to run a particular 

workload in cloud hosted VMs. In this paper, we address the big data cluster scheduling problem which is different than 

scheduling tasks in cloud VMs or VM provisioning in Data centers. The variance is due to the nature of the Spark jobs, 

and the in-memory architectural paradigm. In addition, the executors from a Spark job may not be fitted into a single 

VM, and the scheduler should select a mix of different types of VMs while creating the executors to satisfy resource 

constraints. In addition, the workload performance also varies depending on the placement strategy (spread, or 

consolidate), which we aim to train the scheduler without providing any prior knowledge on the workload and cluster 

dynamics, and performance models. 

 

III. DEEP REINFORCEMENT LEARNING (DRL) 

 

The application of Deep Reinforcement Learning (DRL) for job scheduling is relatively new. There are a few works 

which tried to address different SLA objectives of scheduling cloud-based applications.  

 

Liu et al. [8] developed a hierarchical framework for cloud resource allocation while reducing energy consumption and 

latency degradation. The global tier uses Q-learning for VM resource allocation. In contrast, the local tier uses an LSTM-

based workload predictor and a model-free RL based power manager for local servers. Wei et al. [29] proposed a QoS-

aware job scheduling algorithm for applications in a cloud deployment. They used DQN with target network and 

experience replay to improve the stability of the algorithm.  

 
 

Fig. 1. The proposed RL model for the job scheduling 

 

The main objective was to improve the average job response time while maximizing VM resource utilization. DeepRM 

[14] used REINFORCE, a policy gradient DeepRL algorithm for multi-resource packing in cluster scheduling. The main 

objective was to minimize the average job slowdowns. However, as all the cluster resources are considered as a big chunk 

of CPU and memory in the state space, the cluster is assumed to be homogeneous. Decima [10] also uses a policy gradient 

agent and has a similar objective as DeepRM. Here, both the agent and the environment was designed to tackle the DAG 

scheduling problems within each job in Spark, while considering interdependent tasks. Li et al. [3] considered an Actor 

Critic-based algorithm to deal with the processing of unbounded streams of continuous data with high scalability in 

Apache Storm. The scheduling problem was to assign workloads to particular worker nodes, while the objective was to 

reduce the average end-to-end tuple processing time. This work also assumes the cluster setup to be homogeneous and 

does not consider cost-efficiency. 

 

Reinforcement learning (RL) is a general framework where an agent can be trained to complete a task through interacting 

with an environment. Generally, in RL, the learning algorithm is called the agent, whereas the problem to be solved can 

be represented as the environment. The agent can continuously interact with the environment and vice versa. 
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In this paper, the learning agent is a job scheduler which tries to schedule jobs in a Spark cluster while satisfying resource 

demand constraints of the jobs, and the resource capacity constraints of the VMs. The reward it gets from the environment 

is directly associated with the key scheduling objectives such as cost-efficiency, and the reduction of average job duration. 

Therefore, by maximizing the reward, the agent learns the policy which can optimize the target objectives. 

 

Fig. 1 shows the proposed RL framework of our job scheduling problem. We treat all the components as part of the 

cluster environment (highlighted with the big dashed rectangle), except the scheduler. The cluster manager monitors the 

state of the cluster. It also controls the worker nodes (or cloud VMs) to place executor(s) for any job. In each time-step, 

the scheduling agent gets an observation from the environment, which includes both the current job’s resource 

requirement, and also the current resource availability of the cluster (exposed by the cluster monitor metrics from the 

cluster manager). An action is the selection of a specific VM to create a job’s executor. When the agent takes an action, 

it is carried out in the cluster by the cluster manager. After that, the reward generator calculates a reward by evaluating 

the action on the basis of the predefined target objectives. Note that, in RL environment, the reward given to agent is 

always external to the agent. However, the RL algorithms can have their internal reward (or parameter) calculations 

which they continuously update to find a better policy. 

 

The design choice of a fixed immediate reward simplifies an RL model. In fact, many RL models for real problems are 

designed to be this way. For example, for a maze solver robot, a huge episodic reward is awarded at the end of an 

successful episode, and fixed smaller incentives are awarded for training risk-free moves during the traversal of the maze. 

Similarly, in our RL model, the environment assigns an immediate small positive reward for the placement of each 

successful executor of the current Spark job. Furthermore, the environment also assigns an immediate small negative 

reward if the agent chooses to wait without placing any executors (Action 0). These positive/negative instant rewards are 

fixed and does not depend on the VM cost or job performance. Instead, we set these fixed rewards to help the agents 

learn on how to satisfy resource capacity constraints of the VMs, and the resource demand constraints of the jobs. After 

the initial training episodes, the agents should be able to learn the resource constraints automatically, as failure to satisfy 

job or VM constraints will terminate the episode and a fixed huge negative reward will be used as the episodic reward. 

 

Thus it gives us the maximum cost that can be incurred by a scheduler in an episode as  
 

 
Therefore, if we find the episodic VM usage Cost total incurred by an agent (as shown in above), the normalized episodic 

cost can be defined as 

 
Therefore, if we find the episodic average job completion time for an agent, the normalized episodic average job 

completion time can be defined as Depending on the priority of the cost objective, the b parameter can be used to find 

the episodic cost as 

 

 
 

To solve the job scheduling problem in the proposed RL environment, we use two DRL-based algorithms. The first one 

is Deep Q-Learning (DQN), which is a Q-Learning based approach. The other one is a policy gradient algorithm which 

is called REINFORCE. We have chosen these algorithms as they work with RL environments which have discrete state 

and action spaces. Also, the working procedure of these two algorithms are different, where DQN optimizes state-action 
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values, but REINFORCE directly updates the policy. From the Spark job scheduling context, the RL environment will 

provide job specifications which is similar to the traces we ran for the real workloads. In addition, the cluster resources 

are also same, so the VM resource availability will also be used and updated as part of the state space. Each time a DRL 

agent takes an action (placement of an executor), an instant reward will be provided. The next state will also depend on 

the previous state as the VM and job specifications will be updated after each placement. Eventually, the DRL agents 

should be able to learn the resource availability and demand constraints, and complete scheduling all the executors from 

all the jobs to complete the episode to receive the episodic reward. 

 

 
 

REINFORCE Algorithm 

 

IV. IMPLEMNTATION APPROACH 

 

We have developed a simulation environment in Python to represent a cloud-deployed Spark cluster. The environment 

holds the state of the cluster, and an agent can interact with it by observing states, and taking any action. Whenever an 

action is taken, the immediate reward can be observed, but the episodic reward can only be observed after the completion 

of an episode. The episodic reward may be positive or negative depending on whether an episode was completed 

successfully or terminated early following a bad action  taken by the agent. The features of our developed environment 

are summarized as follows: 
 

1) The environment exposes the state (comprised of the latest cluster resource statistics and the next job), to the agent 

in each time step. 

2) After an action is taken by an agent, the environment can detect valid/invalid placements and assign positive/ 

negative rewards accordingly. 

3) Based on the agent’s performance in an episode, the environment can award the episodic reward (the environment 

acts as a reward generator). Therefore, for a simulated cluster with a workload trace, the environment can derive the 

cost and time values which are required to find the episodic reward. 

4) The environment considers the impact of the job execution time on placing executors on different VMs due to locality 

and contention in the public cloud, as the job duration used by the simulation environment is collected from job 

profiles by running real jobs in an experimental cluster. 

5) The environment can also vary the job duration from the goodness of an agent’s executor placement, and assigns the 

rewards to agents accordingly. As mentioned before, instead of representing fixed intervals of real-time; the time-

steps refer to arbitrary progressive stages of decision-making and acting. We have incorporated TF-agents API calls 

to return the transition or termination signals after each time step. Fig. 1 shows the workflow of the environment 

during the agent training process. The red and green circles indicate the events which trigger negative and positive 

rewards, respectively, from the environment. 

 

In this section, we first discuss the experimental settings which include the cluster resource details, workload generation, 

and baseline schedulers. Then, we present the evaluation and comparison of the DRL agents with the baseline scheduling 

algorithms. 

 

Cluster Resources. We have chosen different VM instance types with various pricing models so that we can train and 

evaluate an agent to optimize cost while the cluster is deployed on public cloud. The cluster resource details are 

summarized in Table 4. Note that, the pricing model of the VM instances is similar to theAWS EC2 instance pricing (in 

Australia). Workload. We have used the BigDataBench [40] benchmark suite and took 3 different applications from it as 

jobs in the cluster which are: WordCount (CPU-intensive), PageRank (Network or IO intensive) and Sort (memory-

intensive). We have used uniform distribution to generate the job requirements within a range of 1-6 (for CPU cores), 1-

10 (for memory in GB), and 1-8 (for total executors). Job Arrival Times. Job arrival rates of 24 hours is extracted from 

the Facebook Hadoop Workload Trace5 to be used as the job arrival times in the simulation. We have chosen job arrival 

patterns: normal (50 jobs arriving in a 1-hour time period), and burst (100 jobs arriving in only 10 minutes). Job Profiles. 
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We ran real jobs in an experimental cluster of Virtual Machines (VM) in the Nectar Research Cloud.6 These VMs were 

controlled by the Apache Mesos cluster manager. We used our chosen workload applications with the generated job 

requirements and the job arrival patterns from the Facebook trace to collect the job profiles. Then the real job profiling 

information was used with the simulation environment built in Python to calculate the AvgTmin and AvgTmax.  

 

In addition, AvgT and Costmax were calculated dynamically according to the chosen actions from the agents. Note that, 

in the real cluster, the maximum and minimum execution times should be artificially set to be very high (to represent the 

maximum runtime of the largest job), and very low (to present the minimum runtime of the shortest job), respectively as 

these values cannot be calculated beforehand without any prior knowledge or job profiling information. To simulate the 

latency and locality issues due to bad placement decisions, the simulation environment increases the job duration by 30% 

automatically if an agent does not utilize the proper executor placement strategy (e.g., spread or consolidate) for a 

particular job type. Note that, the real experimental cluster also has the same cluster resources as the simulation 

environment. TensorFlow Cluster Details. We have used 4 VMs (each with 16 CPU cores and 64GB of memory) from 

the Nectar Research Cloud to train the DRL agents. The TensorFlow version 2.0, and TF-Agent version 0.5.0 were 

installed along with python 3.7 in each of the VMs. 
 

Hyperparameters. Hyperparameter settings for both DQN and REINFORCE agents, along with other environment 

parameters are listed. The valid action reward will be provided to the agent if it makes a successful executor placement 

(+1 reward), or decides to wait (-1 reward). In both of these cases, no constraints are violated so the agent can proceed 

further. As a 0 or a positive reward while waiting (action 0) might cause the agent to wait infinitely to accumulate positive 

rewards, we have assigned a fixed negative reward of -1 to motivate the agent to start placing executors 

when enough cluster resources are available. 
 

 
 

Fig 3. Normal job arriaval 

 
 

Fig 3. Burst job arrival 
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 The agents can learn to handle both normal or burst job arrival patterns. When the cluster is fully loaded with many jobs, 

the cluster may not have enough resources to place any executor. In these situations, when an agent tries to place any 

executor, the resource capacity constraints of the VMs will be violated and the agent will receive a huge negative reward 

with an early episode termination. Thus, the scheduling agents learn to wait by continuously choosing Action 0 in these 

situations. Eventually, when one or more jobs finish execution, cluster resources become free and the agents can choose 

non-zero actions to continue executor placements. Note that, Action 0 is awarded with a slight negative reward which is 

better than episode termination, so the agent decides to wait instead of violating any constraints. In our experimental 

study, we have found that a positive or 0 reward cause an infinite wait as the agent wants to keep getting positive rewards 

by waiting forever. Thus, a slight negative reward encourages the agent to place executors when resources are free, and 

avoids ambiguity in the trained policies. 

 

V. CONCLUSIONS 

 

Job scheduling for big data programs withinside the cloud surroundings is a hard trouble because of the various inherent 

VM and workload traits. Traditional framework schedulers, LP-primarily based totally optimization, and heuristic-

primarily based totally procedures in particular attention on a selected goal and can now no longer be generalized to 

optimize more than one targets at the same time as shooting or gaining knowledge of the underlying aid or workload 

traits. In this paper, we've got brought an RL version for the trouble of Spark activity scheduling withinside the cloud 

surroundings. We have evolved a prototype RL surroundings in TF-marketers which may be applied to teach DRL-

primarily based totally marketers to optimize one or more than one targets. In addition, we've got used our prototype RL 

surroundings to teach two DRL-primarily based totally marketers, specifically DQN and REINFORCE.  

 

We have designed state-of-the-art praise alerts which assist the DRL marketers to research aid constraints, activity overall 

performance variability, and cluster VM utilization price. The marketers can research to optimize the goal targets with 

none previous information approximately the roles or the cluster, however most effective from observing the instant and 

episodic rewards at the same time as interacting with the cluster surroundings. We have proven that our proposed 

marketers outperform the baseline algorithms at the same time as optimizing each price and time targets, and additionally 

exhibit a balanced overall performance at the same time as optimizing each targets.  

 

We have additionally mentioned a few key techniques observed through the DRL marketers for powerful praise 

maximization. In our destiny work, we can discover how co-location goodness of various jobs have an effect on the 

activity length. We will additionally check out state-of-the-art praise fashions which can accommodate price and activity 

length with the instant praise. In this way, the marketers will carry out greater efficiently, and lengthy strolling batch jobs 

also can be supported.  

 

We additionally plan to extract the skilled guidelines for use in a actual large-scale cluster to teach the marketers further. 

This will simplify the education procedure and the marketers will now no longer start from the scratch while they're 

deployed withinside the real cluster. This permits us to research whether or not the RL marketers are capable of research 

any new adjustments or traits of the cluster dynamics to optimize the targets greater efficiently.  
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