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Abstract: Multivariate calculus is a fancy method of briefing the topic in calculus that requires a bit more thought and work. It is 

just the application of some basic multivariable principles like differentiation, integration, rate of change, etc. Vector space, linear 

transformation, and matrices are some important areas of multivariable calculus. It majorly deals with three-dimensional objects or 

higher dimensions. The typical operations involved in the multivariable calculus are: Limits and Continuity, Partial Differentiation, 

Multiple Integration etc. It provides us with the tools to build an accurate predictive model [1]. Moreover, multivariate calculus can 

explain the change in our target variable in relation to the rate of change in the input variables. 

 

Machine learning is the latest in a long line of attempts to distil human knowledge and reasoning into a form that is suitable for 

constructing machines and engineering automated systems. As machine learning becomes more ubiquitous and its software packages 

become easier to use, it is natural and desirable that the low-level technical details are abstracted away and hidden from the 

practitioner [2]. However, this brings with it the danger that a practitioner becomes unaware of the design decisions and, hence, the 

limits of machine learning algorithms. 

 

For historical reasons, courses in machine learning tend to be taught in the computer science department, where students are often 

trained in the first two areas of knowledge, but not so much in mathematics and statistics. 

 

Machine learning builds upon the language of mathematics to express concepts that seem intuitively obvious but that are surprisingly 

difficult to formalize. Once formalized properly, we can gain insights into the task we want to solve. One common complaint of 

students of mathematics around the globe is that the topics covered seem to have little relevance to practical problems. We believe 

that machine learning is an obvious and direct motivation for people to learn mathematics. 
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I. INTRODUCTION 

 

Machine learning is the latest in a long line of attempts to distil human knowledge and reasoning into a form that is suitable for 

constructing machines and engineering automated systems. As machine learning becomes more ubiquitous and its software packages 

become easier to use, it is natural and desirable that the low-level technical details are abstracted away and hidden from the 

practitioner. However, this brings with it the danger that a practitioner becomes unaware of the design decisions and, hence, the 

limits of machine learning algorithms.  

 

A challenge we face regularly in machine learning is that concepts and words are slippery, and a particular component of the machine 

learning system can be abstracted to different mathematical concepts. 

 

While not all data is numerical, it is often useful to consider data in a number format. Here, we assume that data has already been 

appropriately converted into a numerical representation suitable for reading into a computer program. Therefore, we think of data 

as vectors. As another illustration of how subtle words are, there are (at least) three different ways to think about vectors: a vector 

as an array of numbers (a computer science view), a vector as an arrow with a direction and magnitude (a physics view), and a 

vector as an object that obeys addition and scaling (a mathematical view). 

 

A model is typically used to describe a process for generating data, similar to the dataset at hand. Therefore, good models can also 

be thought of as simplified versions of the real (unknown) data-generating process, capturing aspects that are relevant for modelling 

the data and extracting hidden patterns from it. A good model can then be used to predict what would happen in the real world 

without performing real-world experiments. 
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If we summarize the overall concepts of machine learning that we take under consideration: 
 

• Represent data as vectors.  

• Choose an appropriate model, either using the probabilistic or optimization view.  

• Learn from available data by using numerical optimization methods with the aim that the model performs well on data not 

used for training. 

 

II. A SOFT DISCUSSION TO MULTIVARIATE CALCULUS 
 

Many algorithms in machine learning optimize an objective function with respect to a set of desired model parameters that control 

how well a model explains the data: Finding good parameters can be phrased as an optimization problem [3]. Examples include: (i) 

linear regression, where we look at curve-fitting problems and optimize linear weight parameters to maximize the likelihood; (ii) 

neural-network auto-encoders for dimensionality reduction and data compression, where the parameters are the weights and biases 

of each layer, and where we minimize a reconstruction error by repeated application of the chain rule; and (iii) Gaussian mixture 

models for modelling data distributions, where we optimize the location and shape parameters of each mixture component to 

maximize the likelihood of the model [4]. A function f is a quantity that relates two quantities to each other. In this paper, these 

quantities are typically inputting𝑥 ∈  ℝ𝐷 and targets (function values) 𝑓(𝑥), which we assume are real-valued if not stated otherwise. 

Here ℝ𝐷 is the domain of 𝑓, and the function values 𝑓(𝑥) are the image/codomain of 𝑓. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Multivariate calculus 

 

 

 

 

 

 

 

 

                            

 

 

 

 

 

 

 

 

 

                                   Fig. 2(a) Regression problem                        Fig. 2(b) Density estimation with a Gaussian mixture model 

 

Let us take an example, 

The dot product as a special case of an inner product.  The function 𝑓(𝑥)  =   𝑥𝑇𝑥, 𝑥∈𝑅2, would be specified as, 

 𝑓: ℝ2  →  ℝ ……………………………………………………………………… (1) 

𝑥 →  𝑥1
2 + 𝑥2

2………………………………………………………… (2) 

Here, equation (1) specifies that 𝑓 is a mapping from ℝ2  →  ℝand equation (2) specifies the explicit assignment of an input 𝑥 to a 

function value 𝑓(𝑥). A function 𝑓 assigns every input 𝑥 exactly one function value 𝑓(𝑥).  
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Fig. 3 Differentiation of Univariate Functions 

 

The average incline of a function 𝑓 between 𝑥0 and 𝑥0 + 𝛿𝑥 is the incline of the secant (blue) through 𝑓(𝑥0) and 𝑓(𝑥0 + 𝛿𝑥) and 

given by 𝛿𝑦/𝛿𝑥. 
 

1. (Difference Quotient). The difference quotient  

 

𝛿𝑦/ 𝛿𝑥 ∶=  [𝑓(𝑥 +  𝛿𝑥)  −  𝑓(𝑥)] /𝛿𝑥 

 

computes the slope of the secant line through two points on the graph of 𝑓. In Figure A, these are the points with 𝑥 −co-ordinates 

𝑥0 and 𝑥0 + 𝛿𝑥.  

 

2. (Derivative). More formally, for ℎ >  0 the derivative of 𝑓 at 𝑥 is defined as the limit 

 

𝑑𝑓 = lim
ℎ→0

𝑓(𝑥 +  ℎ)  −  𝑓(𝑥)

𝑑𝑥
 , 

and the secant in Figure 3 becomes a tangent. The derivative of 𝑓 points in the direction of steepest ascent of 𝑓. 

 

3. (Taylor Polynomial). The Taylor polynomial of degree 𝑛 of 𝑓 ∶  ℝ →  ℝ at 𝑥0 is defined as  

 

 

 

 where 𝑓𝑘(𝑥0) is the 𝑘th derivative of 𝑓 at 𝑥0 (which we assume exists) and 𝑓𝑘(𝑥0) /𝑘! are the coefficients of the polynomial. 

4: (Taylor Series). For a smooth function 𝑓 ∈ 𝐶∞, 𝑓 ∶  ℝ →  ℝ, the Taylor series of 𝑓 at 𝑥0 is defined as 

 

 

 

 

 

For 𝑥0 = 0, we obtain the Maclaurin series as a special instance of the Taylor series. If 𝑓(𝑥)  =  𝑇∞(𝑥), then 𝑓 is called analytic. 

 

. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Taylor polynomial 

 

Example (Taylor Series) Consider the function in above Figure given by 
 

𝑓(𝑥)  =  𝑠𝑖𝑛(𝑥)  +  𝑐𝑜𝑠(𝑥)  ∈  𝐶∞. 

 

 

Fig. 4 Taylor 

polynomials 
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We seek a Taylor series expansion of 𝑓 at𝑥0 = 0, which is the Maclaurin series expansion of 𝑓. We obtain the following derivatives:  
 

𝑓(0)  =  𝑠𝑖𝑛(0)  +  𝑐𝑜𝑠(0)  =  1  
𝑓′(0)  =  𝑐𝑜𝑠(0)  −  𝑠𝑖𝑛(0)  =  1  

𝑓′′(0)  =  − 𝑠𝑖𝑛(0)  −  𝑐𝑜𝑠(0)  =  −1  
 𝑓′′′(0)  =  − 𝑐𝑜𝑠(0)  +  𝑠𝑖𝑛(0)  =  −1  

𝑓𝑖𝑣(0)  =  𝑠𝑖𝑛(0)  +  𝑐𝑜𝑠(0)  =  𝑓(0)  =  1  . .. 
 

 We can see a pattern here: The coefficients in our Taylor series are only±1 (since 𝑠𝑖𝑛(0)  =  0), each of which occurs twice before 

switching to the other one. Furthermore, 𝑓𝑘+4(0)  =  𝑓𝑘(0).  

Therefore, the full Taylor series expansion of 𝑓 at 𝑥0 = 0 is given by 

 

 

 

 

 

 

 

 

 

 

 

 

We often consider data to be noisy observations of some true underlying signal. We hope that by applying machine learning we can 

identify the signal from the noise. This requires us to have a language for quantifying what “noise” means. We often would also like 

to have predictors that allow us to express some sort of uncertainty, e.g., to quantify the confidence we have about the value of the 

prediction at a particular test data point. Quantification of uncertainty is the realm of probability theory. To train machine learning 

models, we typically find parameters that maximize some performance measure. Many optimization techniques require the concept 

of a gradient, which tells us the direction in which to search for a solution. The three components of machine learning are data, 

models, and parameter estimation in a mathematical fashion. In addition, we provide some guidelines for building experimental set-

ups that guard against overly optimistic evaluations of machine learning systems. Recall that the goal is to build a predictor that 

performs well on unseen data [5-8].  

 

we will have a close look at linear regression, where our linear regression objective is to find functions that map inputs 𝑥 ∈  ℝ𝐷 to 

corresponding observed function values 𝑦 ∈ ℝ, which we can interpret as the labels of their respective inputs. We will discuss 

classical model fitting (parameter estimation) via maximum likelihood and maximum estimation, as well as Bayesian linear 

regression, where we integrate the parameters out instead of optimizing them. The key objective of dimensionality reduction is to 

find a compact, lower-dimensional representation of high-dimensional data 𝑥 ∈  ℝ𝐷, which is often easier to analyse than the 

original data. Unlike regression, dimensionality reduction is only concerned about modelling the data – there are no labels associated 

with a data point 𝑥.  The density estimation objective of density estimation is to find a probability distribution that describes a given 

dataset. We will focus on Gaussian mixture models for this purpose, and we will discuss an iterative scheme to find the parameters 

of this model. As in dimensionality reduction, there are no labels associated with the data points𝑥 ∈  ℝ𝐷. However, we do not seek 

a low-dimensional representation of the data. Instead, we are interested in a density model that describes the data. At last, we 

conclude with an in-depth discussion of the fourth pillar: classification. We will discuss classification in the context of support 

vector machines. Similar to regression, we have inputs x and corresponding labels 𝑦. However, unlike regression, where the labels 

were real-valued, the labels in classification are integers, which requires special care. 

 

III. DIMENSIONALITY REDUCTION WITH PRINCIPAL COMPONENT ANALYSIS 

 

Working directly with high-dimensional data, such as images, comes with some difficulties: It is hard to analyse, interpretation is 

difficult, visualization is nearly impossible, and (from a practical point of view) storage of the data vectors can be expensive. 

However, high-dimensional data often has properties that we can exploit. For example, high-dimensional data is often overcomplete, 

i.e., many dimensions are redundant and can be explained by a combination of other dimensions. Furthermore, dimensions in high-

dimensional data are often correlated so that the data possesses an intrinsic lower-dimensional structure. Dimensionality reduction 

exploit structure and correlation and allows us to work with a more compact representation of the data, ideally without losing 

information [9]. We can think of dimensionality reduction as a compression technique, similar to jpeg or mp3, which are 

compression algorithms for images and music [10]. 
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Here we will discuss principal component analysis (PCA), an algorithm for linear dimensionality reduction. It is also used for the 

identification of simple patterns, latent factors, and structures of high-dimensional data. 

 

• Problem Setting 
 

In PCA, we are interested in finding projections �̃�𝑛 of data points 𝑥𝑛 that are as similar to the original data points as possible, but 

which have a significantly lower intrinsic dimensionality. Figure below gives an illustration of what this could look like.  

 

 

 

 

 

 

 

 

 

Fig. 5 Dimensionality reduction-1 

 

More concretely, we consider adataset 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑁}, 𝑥𝑛  ∈  ℝ𝐷, with mean 0 that possesses the data covariance matrix  

𝑆 =
1

𝑁
∑ 𝑥𝑛𝑥𝑛

𝑇

𝑁

𝑛=1

 

Furthermore, we assume there exists a low-dimensional compressed representation (code)  

𝑧𝑛 = 𝐵𝑇𝑥𝑛 ∈ ℝ𝑀 

of 𝑥𝑛, where we define the projection matrix 

𝑩 ∶=  [𝑏1, . . . , 𝑏𝑀] ∈  𝑅𝐷×𝑀. 

We will find low-dimensional representations that retain as much information as possible and minimize the compression loss. An 

alternative derivation of PCA is given where we will be looking at minimizing the squared reconstruction error ‖𝑥𝑛 − �̃�𝑛‖2between 

the original data and its projection.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Dimensionality reduction-2 

 

Figure above illustrates the setting we consider in PCA, where 𝑧 represents the lower-dimensional representation of the compressed 

data �̃� and plays the role of a bottleneck, which controls how much information can flow between 𝑥and �̃�. In PCA, we consider a 

linear relationship between the original data x and its low-dimensional code 𝑧 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑧 = 𝐵𝑇  𝑥 𝑎𝑛𝑑 �̃�  =  𝐵𝑧 for a suitable matrix 

𝐵. Based on the motivation of thinking of PCA as a data compression technique, we can interpret the arrows in. As a pair of 

operations representing encoders and decoders. The linear mapping represented by 𝐵 can be thought of as a decoder, which maps 

the low-dimensional code 𝑧 ∈ ℝ𝑀 back into the original data space. Similarly, 𝐵𝑇can be thought of an encoder, which encodes the 

original data 𝑥 as a low-dimensional (compressed) code 𝑧. 
 

• Projection Perspective 

In the following, we will derive PCA as an algorithm that directly minimizes the average reconstruction error. This perspective 

allows us to interpret PCA as implementing an optimal linear auto-encoder. 
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Fig. 7 PCA algorithm 

 

We derived PCA by maximizing the variance in the projected space to retain as much information as possible. In the following, we 

will look at the difference vectors between the original data 𝑥𝑛 and their reconstruction �̃�𝑛 and minimize this distance so that 𝑥𝑛 

and�̃�𝑛 are as close as possible.  

 

• Setting and Objective 

We are interested in finding vectors �̃� ∈  ℝ𝐷, which live in lowerdimensional subspace𝑈 ⊆  ℝ𝐷, 𝑑𝑖𝑚(𝑈) = 𝑀, so that is as similar 

to 𝑥 as possible. Note that at this point we need to assume that the coordinates 𝑧𝑚of�̃�  and 𝜁𝑚 of 𝑥 are not identical. 

In the following, we use exactly this kind of representation of �̃� to find optimal coordinates 𝑧 and basis vectors 𝑏1, 𝑏2, . . . , 𝑏𝑀such 

that �̃� is as similar to the original data point 𝑥 as possible, i.e., we aim to minimize the (Euclidean) distance‖𝑥𝑛 − �̃�𝑛‖. 

Figureillustrates this setting.  

 

Without loss of generality, we assume that the dataset 𝑋 =  {𝑥1, 𝑥2 . . . , 𝑥𝑁 }, 𝑥𝑛 ∈ ℝ𝐷, is centered at 0, i.e., 𝐸[𝑋 ] = 0. Without the 

zero-mean assumption, we would arrive at exactly the same solution, but the notation would be substantially more cluttered. We are 

interested in finding the best linear projection of 𝑋 onto a lowerdimensional subspace 𝑈 of ℝ𝐷 with 𝑑𝑖𝑚(𝑈) = 𝑀 and orthonormal 

basis vectors 𝑏1, 𝑏2, . . . , 𝑏𝑀. We will call this subspace 𝑈 the principal subspace. The projections of the data points are denoted by  

where 𝑍𝑛 ∶=  [𝑧1𝑛 , 𝑧2𝑛 . . . , 𝑧𝑀𝑛]  ∈ ℝ𝑀 is the coordinate vector of �̃�𝑛 with respect to the basis (𝑏1, 𝑏2, . . . , 𝑏𝑀). More specifically, 

we are interested in having �̃�𝑛the as similar to 𝑥𝑛as possible. The similarity measure we use in the following is the squared distance 

(Euclidean norm) ‖𝑥 − �̃�‖2 between 𝑥 and�̃�. We therefore define our objective as minimizing the average squared Euclidean 

distance (reconstruction error) where we make it explicit that the dimension of the subspace onto which we project the data is 𝑀. In 

order to find this optimal linear projection, we need to find the orthonormal basis of the principal subspace and the coordinates 𝑧𝑛 ∈
ℝ𝑀 of the projections with respect to this basis. To find the coordinates 𝑧𝑛 and the ONB of the principal subspace, we follow a two-

step approach. First, we optimize the coordinates 𝑧𝑛 for a given ONB (𝑏1, 𝑏2, . . . , 𝑏𝑀); second, we find the optimal ONB. 

 

• PCA Using Low-Rank Matrix Approximations 
 

To maximize the variance of the projected data (or minimize the average squared reconstruction error), PCA chooses the columns 

of 𝑈 in to be the eigenvectors that are associated with the 𝑀 largest eigenvalues of the data covariance matrix S so that we identify𝑈 

as the projection matrix 𝐵, which projects the original data onto subspace of dimension 𝑀. The Eckart-Young theorem offers a 

direct way to estimate the low-dimensional representation. Consider the best rank-M approximation 
 

 
 

of 𝑋, where ‖. ‖2 is the spectral norm. The Eckart-Young theorem states that �̃�𝑀 is given by truncating the SVD at the top-𝑀 singular 

value. In other words, we obtain 
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with orthogonal matrices 𝑈𝑀 ∶=  [𝑢1, 𝑢2 . . . , 𝑢𝑀]  ∈ ℝ𝐷×𝑀 and 𝑉𝑀 ∶=  [𝑣1, 𝑣2 . . . , 𝑣𝑀]  ∈ ℝ𝑁×𝑀and a diagonal matrix ∑ ∈𝑀

ℝ𝑀×𝑀whose diagonal entries are the 𝑀 largest singular values of 𝑋. 

 

• Key Steps of PCA in Practice 
 

In the following, we will go through the individual steps of PCA using a running example, which is summarized in Figure. We are 

given a two-dimensional dataset, and we want to use PCA to project it onto a one-dimensional subspace. 

 

1. Mean subtraction: We start by centring the data by computing the mean µ of the dataset and subtracting it from every 

single data point. This ensures that the dataset has mean 0. Mean subtraction is not strictly necessary but reduces the risk of numerical 

problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Standardization: Divide the data points by the standard deviation 𝜎𝑑 of the dataset for every dimension 𝑑 =  1, . . . , 𝐷. Now the 

data is unit free, and it has variance 1 along each axis, which is indicated by the two arrows in the following figure. This step 

completes the standardization of the data. 

 

3. Eigen decompositionof the covariance matrix: Compute the data covariance matrix and its eigenvalues and corresponding 

eigenvectors. Since the covariance matrix is symmetric, the spectral theorem states that we can find an ONB of eigenvectors. In the 

following figure, the eigenvectors are scaled by the magnitude of the corresponding eigenvalue. The longer vector spans the principal 

subspace, which we denote by 𝑈. The data covariance matrix is represented by the ellipse. 

 

4. Projection: We can project any data point𝑥∗ ∈ ℝ𝐷 onto the principal subspace: To get this right, we need to standardize 𝑥∗using 

the mean 𝜇𝑑 and standard deviation 𝜎𝑑 of the training data in the dth dimension, respectively, so that where 𝑥∗
𝑑 is the dth component 

of 𝑥∗. We obtain the projection as  

 

with coordinates 

 

 

 

 

 

with respect to the basis of the principal subspace. Here, B is the matrix that contains the eigenvectors that are associated with the 

largest eigenvalues of the data covariance matrix as columns. PCA returns the coordinates, not the projections 𝑥∗. 
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Having standardized our dataset, only yields the projections in the context of the standardized dataset. To obtain our projection in 

the original data space (i.e., before standardization), we need to undo the standardization and multiply by the standard deviation 

before adding the mean so that we obtain 

 

 

 

 

Above figure above illustrates the projection in the original data space. 

 

IV. CONCLUSION 

 

Here we have discussed a close relation between an important branch in Mathematics (Multivariate Calculus) and machine learning 

and tried to give some guidelines for building experimental set-ups that guard against overly optimistic evaluations of machine 

learning systems. We have also focused on dimensionality reduction, an essential pillar of machine learning, using principal 

component analysis. The key objective of dimensionality reduction is to find a compact, lower-dimensional representation of high-

dimensional data 𝑥 ∈ ℝ𝐷, which is often easier to analyze than the original data. Unlike regression, dimensionality reduction is only 

concerned about modelling the data – there are no labels associated with a data point.  
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