IARJSET

124

Performance analysis of Electric Vehicles with battery and Asynchronous machine using MATLAB Simulink Model

Vishal Chaudhary¹, Mahendra Lalwani²

¹Research Scholar (Power System), UD, Rajasthan Technical University, Kota, India

²Associate Professor (Electrical Engineering), UD, Rajasthan Technical University, Kota, India

Abstract: As the world's oil reserves are running out, there is a problem with air pollution brought on by diesel and gasoline cars, many researchers are driven to find alternate energy sources to power automobiles. Making an electric car by swapping out the combustion engine for an electric motor is one of the finest alternative approaches. The very first step in this research is to model the power flow in the energy system of an electric vehicle in hopes of determining its characteristics. As electric vehicles mainly rely on the limited electrical energy provided by a battery, the efficiency of power flow is crucial. This paper presented the simulation of battery with an electric motor and analysis the waveform from the output for electric vehicles.

Keywords Electric Vehicle (EV), Battery, Fuel, and State of charge (SoC), Hybrid electric vehicle (HEV)

INTRODUCTION

Electric automobiles are being developed as part of a worldwide effort to decrease reliance on fossil fuels and pollution. EVs play a vital role globally in the transportation system in terms of the availability of fossil fuel, pollution, and cost of fuel [1]. EVs are primarily made up of batteries and electric motors. An essential part of an electric vehicle is an electric motor, which uses switching devices to adapt the electrical energy source to the varying needs of the vehicle. On the other hand, electric vehicles commonly use batteries as their main energy source. In figure 1 types of EVs are described. However, the batteries in electric vehicles have the disadvantage of having a limited capacity and service life, which makes charging the batteries challenging. On EV charging, various researchers are presently engaged. Researchers mainly studied wireless charging methods and charging time in terms of charging. There are several researchers currently working on the charging of EVs. In terms of charging, researchers mainly focused on charging time and wireless charging systems.

In electric vehicles, the performance of EVs is an important aspect for any researcher. So, in order to improve the performance of the electric vehicle, analyze the harmonics and try to reduce the harmonics. EVs are more efficient than traditional vehicles. However, the overall well to wheel (WTW) efficiency will also depend on the power plant efficiency. For instance, total WTW efficiency of gasoline vehicles ranges from 11% to 27%, whereas diesel vehicles range from 25% to 37% [2]. By contrast, EVs fed by a natural gas power plant show a WTW efficiency that ranges from 13% to 31%, whereas EVs fed by renewable energy show an overall efficiency up to 70% [3].

So, this paper discussed EVs performance with battery and asynchronous machine in MATLAB Simulink model.

Figure 1. Classification of electric vehicles

Instead of using conventional fuel while the car is accelerating, flywheel energy may be used. The energy gained from regenerative braking and the battery's residual charge are both stored in this flywheel. A dynamic model of an entirely electric car, including controllers, inverters, traction motors, batteries, and brakes, has also been built. The modelwas constructed using Matlab/Simulink (Mathworks). There are various types of EVs. Battery electric vehicles (BEVs), Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), and Fuel cell electric vehicles (FCEVs).

Table 1. Types of E vs with arting component and key feature [1]				
EV Type	Driving component	Energy source and	Key feature	
		infrastructure		
BEV	Electric motor	Battery and Ultra-	Zero emission, short range, crude oil	
[5-6]		capacitor	independent, and commercially available	
HEV	Electric motor and	Battery, Ultra-	Very low emission, long driving range, Oil	
[7-14]	ICE	capacitor and ICE	dependent	
PHEV	Electric motor and	Battery and gasoline or	Some emission present, and long driving range	
[15-18]	ICE	diesel		
FCEV	Electric motor	Fuel cell	Ultra low emission, High energy efficiency, and	
[19]			independent to the supply of electricity	

Table 1. Types of EVs with driving component and key feature [4]

Batteries use in EVs

A battery is an electrochemical device that converts and stores chemical energy into electricity. It is categorized into two types non-rechargeable primary batteries and rechargeable secondary batteries. A secondary battery is rechargeable and ideal for vehicular applications.

The storage of electrical energy is a major purpose that batteries perform. Lithium-ion batteries were adopted by the great majority of hybrid and electric vehicle manufacturers. This storage device is commonly necessary for all sorts of electric automobiles, including hybrid electric vehicles, plug-in hybrid electric vehicles, and regular electric vehicles. The majority of car manufacturers now utilize rechargeable batteries as a consequence of developments in technology.

LARISET

International Advanced Research Journal in Science, Engineering and Technology

IARJSET

ISO 3297:2007 Certified $\,\,symp \,$ Impact Factor 8.066 $\,\,symp \,$ Vol. 10, Issue 3, March 2023

DOI: 10.17148/IARJSET.2023.10320

Table 2. Battery type and their characteristic [20-26]

Battery type (\rightarrow)	Pb-	Ni-Cd	Ni-MH	Zn-	Na-NiCl	Na-S	Li-Ion
Characteristics (\downarrow)	PbO ₂			Br ₂			
Working Temperature	-20-45	0-50	0-50	20-40	300-350	300-600	-20-60
(°C)							
Specific Energy	30-60	60-80	60-120	75-	160	130	100-275
(Wh/kg)				140			
Energy Density (Wh/L)	60-100	60-150	100-300	60-70	110-120	120-130	200-735
Specific Power (W/kg)	75-100	120-	250-1000	80-	150-200	150-290	350-3000
		150		100			
Cell Voltage (V)	2.1	1.35	1.35	1.79	2.58	2.08	3.6
Cycle Durability	500-	2000	500	>2000	1500-	2500-4500	400-3000
· · · ·	800				2000		

In following Table 3 various parameters of battery estimation for different types of batteries with machine learning algorithms are summarized.

Table 3. Batteries with extracted	parameters using different	machine learning algorithms [27]
ruore et Butterres with endueted	parameters asing annerene	

Estimated Battery	Type of Battery	Implemented Machine Learning
Parameter		Algorithm
State of Charge	Lithium Iron Manganese Phosphate	Support Vector Machine
	(LiFeMnPO ₄) battery	
	High Power Ni-MH rechargeable	Adaptive Neuro-Fuzzy Inference System
	Battery	(ANFIS)
	Lithium iron phosphate (LiFePO ₄)	RBF Neural Network, OLS Algorithm and AGA
	Lithium Iron	Neural Networks and Extended Kalman Filter (NN and EKF)
	Lithium-ion battery U1-12XP	Neural Networks and Extended Kalman Filter (NN and EKF)
	NiMH battery with 1.2 V and 3.4 AH	Neural Networks and Extended Kalman Filter (NN and EKF)
	Li-ion cells with 3.2 V/50 AH	Support Vector Machine Based on
	supplied by Huanyu New Energy	Particle Swarm Optimization
	Technology Company Ltd.	
	Panasonic 18650PF battery cells	Recurrent Neural Network with Gated Recurrent Unit (GRU-RNN)
	Samsung 18650-20R battery cells	Recurrent Neural Network with Gated Recurrent Unit (GRU-RNN)
	A lithium polymer battery	Adaptive Unscented Kalman Filters
	manufactured by KOKAM	(AUKF) and Least-Square Support
	Company	Vector Machines (LSSVM).
State of Health	Two commercial Li-ion batteries with Li	Support Vector Machine
	$(NiCoMn)1/3O_2$ cathode	
	and graphite anode	
	Li-Co batteries	Probabilistic Neural Network
	Lithium Nickel-Manganese-Cobalt Oxide	Advanced Sparse Bayesian Predictive
State of Cl	Lithium inter absorbet: (LiD, DO.)	Modelling (SBPM)
State of Unarge,	Litinum iron phosphate (LiFePO ₄)	Networks (DDPNs)
State of Heath	Lithium iron phosphote (LiEeDO)	Dunamically Driven Becurrent
	Litinum non phosphate (LiFerO4)	Networks (DDPNs)
	Li-ion cells	Feed-Forward Artificial Neural Network

127

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified ∺ Impact Factor 8.066 ∺ Vol. 10, Issue 3, March 2023

IARJSET

DOI: 10.17148/IARJSET.2023.10320

Aging, State of	Lithium iron phosphate (LiFePO ₄)	Input Time-Delayed Neural Networks
Charge, State of		
Heath		
Capacity	Nickel-manganese-cobalt	Random Forest Regression
	(NMC)/Graphite pouch cells	
Capacity and State	Lithium iron phosphate battery cell	Ampere Hour Counting with Correction
of Charge		and Dual Adaptive Extended Kalman
		Filter Algorithm
Capacity and	Lithium-ion battery	Support Vector Machine (SVM)
Resistance		
Charging Current	Lithium Iron Phosphate (LiFePO ₄)	ANN and Backpropagation Algorithm
		Ensemble Learning
Remaining useful	Selected IFP1865140 type batteries were	Feed Forward Neural Network (FFNN)
Life (RUL)	developed by HeFei Guo Xuan High-Tech	
	Power Energy Company Limited of China	
	High-energy 18650 lithium-ion	Long Short-Term Memory (LSTM)
	batteries manufactured by Panasonic,	Recurrent Neural Network (RNN)
	labelled NCR18650PF	

MATLAB Modelling

Figure 2. Matlab Simulink model for Electric vehicle

128

LARISET

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified ∺ Impact Factor 8.066 ∺ Vol. 10, Issue 3, March 2023

IARJSET

DOI: 10.17148/IARJSET.2023.10320

Figure 3. Power flow of electric vehicle

Figure 4. Power flow of electric vehicles charging circuit.

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified ∺ Impact Factor 8.066 ∺ Vol. 10, Issue 3, March 2023 DOI: 10.17148/IARJSET.2023.10320

Simulation Results

Figure 5. Simulation result of electric vehicle system

Figure 6. Simulation result of electric vehicle battery

IARJSET

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified ∺ Impact Factor 8.066 ∺ Vol. 10, Issue 3, March 2023 DOI: 10.17148/IARJSET.2023.10320

Figure 7. Simulation result of electric vehicle system voltage

DISCUSSION AND CONCLUSION

In this research paper, figure 5 shows the final output of the electric motor voltage and current obtained as a sinusoidal wave, which is desired for the system. From the model obtained less harmonics waveform then the performance of EV will increase. Designing electric vehicle equipment makes it very easy and simple to determine many times the recharge to a rechargeable battery for an electric car with a specific need to travel a particular distance. This model may be used and calculate how long an electric car's battery can be utilized. The model may also be used to estimate an electric vehicle's capabilities, such as how quickly it will start or how long it will run at a constant speed.

The collection of regenerative braking energy is one critical area where this approach might be considerably improved. To maximize energy recovery when braking, downshifting switching locations may be fine-tuned.

REFERENCES

[1] V. Chaudhary and M. Lalwani, "Improve Performance of Electric Vehicles with the 5-level Inverter and Energy Efficient Electric Machines," vol. 18, no. 1, pp. 13-25, 2023, doi: 10.9790/1676-1801021325.

[2] A. Albatayneh, M. N. Assaf, D. Alterman, and M. Jaradat, "Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles," Environ. Clim. Technol., vol. 24, no. 1, pp. 669–680, 2020, doi: 10.2478/rtuect-2020-0041.

[3] Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A review on electric vehicles: Technologies and challenges. Smart Cities, 4(1), 372-404, https://doi.org/10.3390/smartcities4010022

[4] D. Kumar, R. K. Nema, and S. Gupta, "A comparative review on power conversion topologies and energy storage system for electric vehicles," Int. J. Energy Res., vol. 44, no. 10, pp. 7863–7885, 2020, doi: 10.1002/er.5353.

[5] W. Li, R. Long, H. Chen, and J. Geng, "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renew. Sustain. Energy Rev., vol. 78, no. April, pp. 318–328, 2017, doi: 10.1016/j.rser.2017.04.076.

[6] A. Schuller, B. Dietz, C. M. Flath, and C. Weinhardt, "Charging strategies for battery electric vehicles: Economic benchmark and V2G potential," IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2014–2222, 2014, doi: 10.1109/TPWRS.2014.2301024.

[7] F. Slah, A. Mansour, M. Hajer, and B. Faouzi, "Analysis, modeling and implementation of an interleaved boost DC-DC converter for fuel cell used in electric vehicle," Int. J. Hydrogen Energy, vol. 42, no. 48, pp. 28852–28864, 2017, doi: 10.1016/j.ijhydene.2017.08.068.

[8] A. Garrigós and F. Sobrino-Manzanares, "Interleaved multi-phase and multi-switch boost converter for fuel cell applications," Int. J. Hydrogen Energy, vol. 40, no. 26, pp. 8419–8432, 2015, doi: 10.1016/j.ijhydene.2015.04.132.

[9] de Lucena SE, Soylu S. "A survey on electric and hybrid electric vehicle technology". Electric Vehicles: The Benefits and Barriers. IntechOpen; 2013.

IARJSET

131

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified $\,\,st\,$ Impact Factor 8.066 $\,\,st\,$ Vol. 10, Issue 3, March 2023

DOI: 10.17148/IARJSET.2023.10320

[10] A. M. Lulhe and T. N. Date, "A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV)," 2015 Int. Conf. Control Instrum. Commun. Comput. Technol. ICCICCT 2015, pp. 632–636, 2016, doi: 10.1109/ICCICCT.2015.7475355.

[11] Z. Yuan, L. Teng, S. Fengchun, and H. Peng, "Comparative study of dynamic programming and pontryagin's minimum principle on energy management for a parallel hybrid electric vehicle," Energies, vol. 6, no. 4, pp. 2305–2318, 2013, doi: 10.3390/en6042305.

[12] https://ackodrive.com/ev-guide/hybrid-electric-vehicles/

[13] A. P. Pourhashemi, S. M. M. A. Movahed, and M. S. Panahi, "Application of the Fuel-Optimal Energy Management in Design Study of a Parallel Hybrid Electric Vehicle," Journal of Fuels vol. 2014, 2014, http://dx.doi.org/10.1155/2014/417172.

[14] Kang, M., C. Kim, and S. M. Bae. "Laser tailor-welded blanks for hot-press-forming steel with arc pretreatment." International Journal of Automotive Technology 16.2 (2015): 279-283, doi: 10.1007/s12239.

[15] Green II, Robert C., Lingfeng Wang, and Mansoor Alam. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook." Renewable and sustainable energy reviews 15.1 (2011): 544-553.

[16] J. L. Torres, R. Gonzalez, A. Gimenez, and J. Lopez, "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Appl. Energy, vol. 113, pp. 816–824, 2014, doi: 10.1016/j.apenergy.2013.08.007.

[17] R. A. Waraich, M. D. Galus, C. Dobler, M. Balmer, G. Andersson, and K. W. Axhausen, "Plug-in hybrid electric vehicles and smart grids: Investigations based on a microsimulation," Transp. Res. Part C Emerg. Technol., vol. 28, pp. 74–86, 2013, doi: 10.1016/j.trc.2012.10.011.

[18] B. Lane, B. Shaffer, and G. S. Samuelsen, "Plug-in fuel cell electric vehicles: A California case study," Int. J. Hydrogen Energy, vol. 42, no. 20, pp. 14294–14300, 2017, doi: 10.1016/j.ijhydene.2017.03.035.

[19] H. El Fadil, F. Giri, J. M. Guerrero, and A. Tahri, "Modeling and nonlinear control of a fuel cell/supercapacitor hybrid energy storage system for electric vehicles," IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3011–3018, 2014, doi: 10.1109/TVT.2014.2323181.

[20] Institute of Transport Economics, Norwegian Centre for Transport Research. Available online: https://www.toi.no/ (accessed on 21 February 2021).

[21] Electric Car Use by Country. Available online: https://en.wikipedia.org/wiki/Electric_car_use_by_country

[22] European Alternative Fuels Observatory. Available online: http://www.eafo.eu/

[23] Electric Car Use by Country. The Electric Vehicles world Sales Database. Available online: http://www.ev-volumes.com/

[24] Statista. Electric Vehicles Worldwide. Available online: https://www.statista.com/study/11578/electric-vehicles-statista-dossier/

[25] Hong Kong Bussiness. EV Dossier. Available online: https://hongkongbusiness.hk/transport-logistics/news/ev-sales-surge-in-2020-analyst

[26] EVAdoption.com. Analyzing Key Factors That Will Drive Mass Adoption of Electric Vehicles. 2019. Available online: https://evadoption.com/ev-market-share/

[27] S. Tamilselvi et al., "A review on battery modelling techniques," Sustain., vol. 13, no. 18, pp. 1–26, 2021, doi: 10.3390/su131810042