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Abstract: We proposed a mathematical model of measles disease dynamics with vaccination by considering the total number of 

recovered individuals either from natural recovery or recovery due to vaccination. We tested for the existence and uniqueness of 

solution for the model using the Lipchitz condition to ascertain the efficacy of the model and proceeded to determine both the disease 

free equilibrium (DFE) and the endemic equilibrium (EE) for the system of the equations and vaccination reproduction number are 

given. In this research article we propose a four dimensional mathematical model with vaccinated class and analysed the model 

analytically. Our analytical result shows that vaccination is capable of reducing the number of exposed and infectious population. 
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I. INTRODUCTION 

 

Measles remains a vital universal public health issue, particularly in developing nations. Measles (also known as rubeola or morbilli) 

represents one of the very highly transmissible diseases triggered by the genus Morbillivirus within the family Paramyxoviridae 

[1,2]. The virus is spread by coughing and sneezing, or direct contact with the infected [3]. The virus first comes in contact with 

host lung tissue, where it infects immune cells and it spreads throughout the body. As the virus travels in the blood, it infects 

capillaries in the skin that causes a rash on the skin [4]. Before the rash appears, measles has an incubation period for about 8-12 

days followed by fever (390-40,50C), cough, coryza, conjunctivitis, and Koplik’s spots [5] (small white spots in the mouth). These 

symptoms are followed by the appearance of a rash that starts on the face and neck and later it will spread to the body [3, 6, 7]. 

Although effective vaccines against measles infection are readily available, yet measles affects the mortality of children below five 

years of age [8], infecting ailing children in tens of millions yearly and resulting in deaths of about a million in number due primarily 

to intricate conditions that are coexistent with the disease examples of which are poor nourishment, diarrhea plus pneumonia [9]. 

 

It continues to remain highly infectious in the air or on the surface for up to two hours. Early symptoms include high-grade sore 

throat, cough, runny nose, blurry vision, and tiny white spots in the mouth; generally, 10–12 days after the infection appears. A later 

rash emerges, spreading downwards from the nose. The cycle of greatest infectiousness (meaning virus shedding) appears four days 

before the onset of rash and 4 days after the onset of rash. The average incubation period is 14 days, varying from 7 to 18 days [5]. 

In the real sense, some individuals who are vaccinated could still be vulnerable when the vaccination failed, or their immunity 

caused by the vaccine waned. Vaccination has reduced significantly global measles deaths by a 73% decrease between 2000 and 

2018.Worldwide, measles is still prevalent in many developing countries, especially parts of Africa and Asia. Over 140,000 people 

died of measles in 2018. Between 2000 and 2018, global measles vaccination resulted in an 85 percent reduction in measles 

mortality, [10,11]. According to the World Health Organization (WHO), about 110,000 people died from measles especially children 

below the age of 6, despite the availability of a safe and efficient vaccine in 2017 [12]. To prevent measles, all health institutions 

recommend children to get the measles vaccine. Measles vaccine can be accepted by children and adults through MMR (Mumps, 

Measles, and Rubella) vaccines, MR (Measles and Rubella) vaccines and MMRV (Mumps, Measles, Rubella, and Varicella) 

vaccines. All of those vaccines consist of two doses. According to Centers for Disease Control and Prevention (CDC), one dose of 

MMR vaccine is 93% effective against measles and two doses of MMR vaccine are 97% effective against measles [7]. 

 

Some mathematical models have been introduced by many authors to describe the spread of measles, such as [13, 14, 15]. Different 

with previous model, we construct a mathematical model of measles that accommodates two-step of vaccination and quarantine in 

this article. The model differentiates individual who already get one time vaccination and two-time vaccination into two different 

compartments. In the other hand, quarantine strategy is also involved into the model to understand how important and crucial the 

quarantine is to control the spread of measles, if it is compared with the vaccination strategy. There has been an increasing interest 

in the use of deterministic compartmental models in recent decades to study the dynamics of measles and find measures to control 

and prevent the outbreak [16]. Bauch examined the implication of vaccination with regards to the effect of reaching herd immunity 

[17]. Mossong and Muller carried out a study on the modelling of measles re-emergence attributable to weakened immunity of 

vaccinated populations [18]. Zhang et al. examined the degree of the epidemic against the policy of discretional vaccination on 

Erdos-Renyi random graphs and Barabasi-Albert scale-free networks [19]. Momoh et al. designed a mathematical model to limit 

the spread of measles [20]. Fred et al. carried out a study on mathematical modelling on how vaccination curbs measles. In [21], the 
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authors found that a wider gap between measles-infected and noninfected individuals is effective to control the spread of the disease. 

The impacts of the role of vaccination in controlling the spread of measles dynamics were investigated in [22, 23]. 

 

Valuable information on transmission and effective control of the measles epidemics as well as appropriate policies are very 

important. In this article, we study and analyze the behavior of solutions of transmission and control of measles infection by 

deterministic mathematical model; analyze the condition that determine the level of the effective prevention of the spread of measles 

using S-I-R-type compartmental model in an open population; analyze the qualitative properties of solutions of our model and give 

sufficient conditions for the model to be stable. For the S-I-R model to be fitting, once a person has recovered from the disease, they 

would acquire permanent immunity. 

 

 
 

Fig. 1 Measles Virus Infection Cycle [24] 

 

II. DEVELOPMENT OF MATHEMATICAL MODEL 

 

We consider that prey population is facing an infectious disease, where the predator feeds on both healthy and infected preys .  

Let  

S = Susceptible Individuals. 

E = Exposed Individuals. 

I = Infected Individuals. 

V = Vaccinated Individuals. 

R = Recovered from disease. 

Here, N=S+I+E. 

 
𝑑𝑠

𝑑𝑡
= (1 − 𝑞) π - 

𝜆𝑆𝐼

𝑁
 – 𝑑1S.          

𝑑𝐸

𝑑𝑡
 = 

𝛽𝑆𝐼

𝑁
 – γ E - 𝑑1E. 

𝑑𝐼

𝑑𝑡
 = γ E – δ I – 𝑑1𝐼 +  

𝜆𝑆𝐼

𝑁
+ 𝜖𝜆𝑉. 

𝑑𝑉

𝑑𝑡
 =   𝜋𝑞 −  𝜔𝑉 − 𝑑1 𝑉. 

𝑑𝑅

𝑑𝑡
 = 𝜎𝐼 +  𝜔𝑉 −  𝑑1𝑅. 

 

Where, 

 

β = Transmission rate of Infection from Infected Individuals to Susceptible Individuals. 

δ = Disease induced Death Rate. 

𝑑1 = Natural Death Rate. 

σ = Recovery rate from Disease. 

λ = Infected class is increased by the contact rate to the Susceptible Class at a rate λ. 

γ = Rate of Infection from Exposed to Infected Class. 
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ω = Rate of Recovered Individuals due to Vaccination. 

π = Birth Rate. 

q = Proportion of those Successfully Vaccinated at Birth. 

ϵ = Rate of infection due to Vaccination 

 

III. EQUILIBRIUM POINTS 

 

There are fourteen equilibrium points of the system, trival equilibrium point is 𝐸0
′ (0,0,0,0,0),𝐸1

′(
(1−𝑞)𝜋

𝑑1
,0,0,0,0), axial equilibrium 

point is 𝐸2
′ (0,0,0,

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,0), planar equilibrium points are𝐸3

′ (
(1−𝑞)𝜋

𝑑1
,0,0, 

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,0), 𝐸4

′ (0,0,
𝜀𝜆𝜋𝑞

(𝛿+𝜎+𝑑1)+(𝜀𝜆+𝜔+𝑑1)
 ,

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,0), 

𝐸5
′ (0,0,0,

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,

𝜔𝜋𝑞

𝑑1(𝜀𝜆+𝜔+𝑑1)
),𝐸6

′ ( S6,E6,I6,0,0) which satisfies the equation :   (1 − 𝑞)𝜋 − 𝑑1𝑆6 − 𝑑1𝐸6 − (𝛿 + 𝜎 + 𝑑1)𝐼6 = 0 , 

𝐸7
′ (S7,0,I7,V7,0) which satisfies the equation : 𝜋 − 𝑑1𝑆7 − 𝑑1𝑉7 − (𝛿 + 𝜎 + 𝑑1)𝐼7 − 𝜔𝑉7 = 0 , 

𝐸8
′ (

(1−𝑞)𝜋

𝑑1
, 0,0,

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,

𝜔𝜋𝑞

𝑑1(𝜀𝜆+𝜔+𝑑1)
), [ Disease Free Equilibrium Point] ,  

𝐸9
′(0,0,

𝜀𝜆𝜋𝑞

(𝛿+𝜎+𝑑1)+(𝜀𝜆+𝜔+𝑑1)
, 

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,

𝜋𝑞

𝜀𝜆+𝜔+𝑑1
,
𝜎𝜀𝜆+ 𝜔(𝛿+𝜎+𝑑1)

(𝛿+𝜎+𝑑1)
) , 𝐸10

′ (  S10, 𝐸10,I10,V10,0 ) which satisfies the equation : 𝜋 − 𝑑1𝑆10 −

𝑑1𝐸10 − (𝛿 + 𝜎 + 𝑑1)𝐼10 − (𝜔 + 𝑑1)𝑉10 = 0, 𝐸11
′ ( S11,0,I11,V11,R11) which satisfies the equation : 

𝜋 −
𝛽𝛽𝑆11𝐼11

𝑆11+𝐼11

− 𝑑1𝑆11 − (𝛿 + 𝑑1)𝐼11 − 𝑑1𝑉11 − 𝑑1𝑅11 = 0 ,  𝐸12
′ (S12,E12,I12,0,R12) which satisfies the Equation : (1 − 𝑞)𝜋 −

𝑑1𝑆12 − 𝑑1𝐸12 − 𝑑1𝑅12 − (𝛿 + 𝑑1)𝐼12 = 0, and the interior equilibrium point is E*( S*,E*,I*,V*,R*) where S*,E*,I*,V*,R* are 

positive and satisfy the given system of equations. 

 

IV.  EXISTENCE AND LOCAL STABILITY ANALYSIS OF THE EQUILIBRIUM POINTS 

 

Lemma 1: The System (1) around E1
’(

(1−𝑞)𝜋

𝑑1
,0, 0,0,0) is locally asymptotically stable . 

Lemma 2: The System (1) around E3
’(

(1−𝑞)𝜋

𝑑1
,0, 0,

𝜋𝑞

(𝜖𝜆+𝜔+𝑑1)
,0) is locally asymptotically stable . 

Lemma 3: The System (1) around E4
’(0,0, 

𝜀𝜆𝜋𝑞

(𝜀𝜆+𝜔+𝑑1)(𝛿+𝜎+𝑑1)
,

𝜋𝑞

(𝜀𝜆+𝜔+𝑑1)
,0) is locally asymptotically stable . 

Lemma 4:  The System (1) around E6
’(𝑆6,𝐸6, 𝐼6,0,0) is locally asymptotically stable . 

Proof: The System (1) around E6
‘(𝑆6,𝐸6, 𝐼6,0,0), is locally asymptotically stable (LAS) if the roots of  the characteristic equation 

A0λ2 + A1λ+ A2=0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2)  

where, 

A0 = 𝑎33 + 𝑎13𝑎31 . 

A1 =-( 𝑎11𝑎33 + 𝑎11𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31). 

A2 = (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎11𝑎12𝑎21𝑎33 + 𝑎11𝑎12𝑎23𝑎31 + 𝑎11𝑎13𝑎21𝑎32 − 𝑎11𝑎13𝑎22𝑎31) 

where,  

𝑎11 = −
𝐼6(𝛽+𝜆)(𝐸6+𝐼6)

(𝑆6+𝐸6+𝐼6)2 , 𝑎12 =
𝛽𝐼6(𝐸6+𝐼6)

(𝑆6+𝐸6+𝐼6)2, 𝑎13 =
𝜆𝐼6(𝐸6+𝐼6)

(𝑆6+𝐸6+𝐼6)2, 𝑎21 =
𝑆6𝐼6(𝛽+𝜆)

(𝑆6+𝐸6+𝐼6)2 

𝑎22 = −(
𝛽𝑆6𝐼6

(𝑆6+𝐸6+𝐼6)2 +  𝛾 +  𝑑1), 𝑎23 = 𝛾 −
𝜆𝑆6𝐼6

(𝑆6+𝐸6+𝐼6)2, 𝑎31 = −
𝑆6(𝛽+𝜆)(𝐸6+𝑆6)

(𝑆6+𝐸6+𝐼6)2  

𝑎32 =
𝛽𝑆6(𝐸6+𝑆6)

(𝑆6+𝐸6+𝐼6)2, 𝑎33 = −(𝛿 + 𝜎 + 𝑑1 −
𝜆𝑆6(𝑆6+𝐸6)

(𝑆6+𝐸6+𝐼6)2) 

 

Where, 

 𝑆6, 𝐸6, 𝐼6 satisfy the Equation 
(1 − 𝑞)𝜋 − 𝑑1𝑆6 − 𝑑1𝐸6 − 𝐼6(𝛿 + 𝜎 + 𝑑1) = 0. 

 

The other two Eigen Values are −(𝜀𝜆 + 𝜔 + 𝑑1)𝑎𝑛𝑑 − 𝑑1 

Therefore, E6
‘  is LAS. 

 

Lemma 5: The System (1) around E7
’(𝑆7,0 , 𝐼7,𝑉7,0) is locally asymptotically stable . 

Proof: The System (1) around E7
’(𝑆7,0 , 𝐼7,𝑉7,0) equation A0λ2 + A1λ+ A2=0 of the Jacobian Matrix satisfy the Routh-Hurwitz 

criteria i.e. Ai>0 (where, i=0,1,2)  

where, 

A0 = 𝑎33 + 𝑎13𝑎31 . 

A1 =-( 𝑎11𝑎33 + 𝑎11𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31). 

A2 = (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎11𝑎12𝑎21𝑎33 + 𝑎11𝑎12𝑎23𝑎31 + 𝑎11𝑎13𝑎21𝑎32 − 𝑎11𝑎13𝑎22𝑎31) 
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where,  

𝑎11 = −
(𝐼7)2(𝛽+𝜆)

(𝑆7+𝐼7)2 , 𝑎12 =
𝛽(𝐼7)2

(𝑆7+𝐼7)2, 𝑎13 =
𝜆(𝐼7)2

(𝑆7+𝐼7)2, 𝑎21 =
𝑆7𝐼7(𝛽+𝜆)

(𝑆7+𝐼7)2 , 𝑎22 = −(
𝛽𝑆7𝐼7

(𝑆7+𝐼7)2 +  𝛾 + 𝑑1) 

𝑎23 = 𝛾 −
𝜆𝑆7𝐼7

(𝑆7+𝐼7)2, 𝑎31 = −
(𝑆7)2(𝛽+𝜆)

(𝑆7+𝐼7)2 , 𝑎32 =
𝛽(𝑆7)2

(𝑆7+𝐼7)2, 𝑎33 = −(𝛿 + 𝜎 + 𝑑1 −
𝜆(𝑆7)2

(𝑆7+𝐼7)2) 

Where, 𝑆7, 𝐼7 satisfy the Equation 

𝜋 − 𝑑1𝑆7 − 𝑑1𝑉7 − 𝐼7(𝛿 + 𝜎 + 𝑑1) − 𝜔𝑉7 = 0. 

The other two Eigen Values are −(𝜀𝜆 + 𝜔 + 𝑑1)𝑎𝑛𝑑 − 𝑑1 

 

Therefore, E7
‘  is LAS. 

 

Lemma 6: The System (1) around E8(
(1−𝑞)𝜋

𝑑1
,0, 0,

𝜋𝑞

(𝜖𝜆+𝜔+𝑑1)
,

𝜋𝑞𝜔

(𝜖𝜆+𝜔+𝑑1)𝑑1
) is locally asymptotically stable . 

Lemma 7: The System (1) around E9
’ (0,0, 

𝜀𝜆𝜋𝑞

(𝜀𝜆+𝜔+𝑑1)(𝛿+𝜎+𝑑1)
,

𝜋𝑞

(𝜀𝜆+𝜔+𝑑1)
,
𝜋𝑞(𝜎𝜖𝜆+𝜔(𝛿+𝜎+𝑑1))

(𝛿+𝜎+𝑑1)
,) is locally asymptotically stable . 

Lemma 8: : The System (1) around E10
’(𝑆10,𝐸10, 𝐼10,𝑉10,0) is locally asymptotically stable . 

Proof: The System (1) around E10
‘(𝑆10,𝐸10, 𝐼10,𝑉10,0), is locally asymptotically stable (LAS) if the roots of  the characteristic 

equation A0λ2 + A1λ+ A2=0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2),  

where, 

A0 = 𝑎33 + 𝑎13𝑎31 . 

A1 =-( 𝑎11𝑎33 + 𝑎11𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31). 

A2 = (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎11𝑎12𝑎21𝑎33 + 𝑎11𝑎12𝑎23𝑎31 + 𝑎11𝑎13𝑎21𝑎32 − 𝑎11𝑎13𝑎22𝑎31) 

where,  

𝑎11 = −
𝐼10(𝛽+𝜆)(𝐸10+𝐼10)

(𝑆10+𝐸10+𝐼10)2 , 𝑎12 =
𝛽𝐼10(𝐸10+𝐼10)

(𝑆10+𝐸10+𝐼10)2, 𝑎13 =
𝜆𝐼10(𝐸10+𝐼10)

(𝑆10+𝐸10+𝐼10)2, 𝑎21 =
𝑆10𝐼10(𝛽+𝜆)

(𝑆10+𝐸10+𝐼10)2 

𝑎22 = −(
𝛽𝑆10𝐼10

(𝑆10+𝐸10+𝐼10)2 +  𝛾 + 𝑑1), 𝑎23 = 𝛾 −
𝜆𝑆10𝐼10

(𝑆10+𝐸10+𝐼10)2, 𝑎31 = −
𝑆10(𝛽+𝜆)(𝐸10+𝑆10)

(𝑆10+𝐸10+𝐼10)2  

𝑎32 =
𝛽𝑆10(𝐸10+𝑆10)

(𝑆10+𝐸10+𝐼10)2, 𝑎33 = −(𝛿 + 𝜎 + 𝑑1 −
𝜆𝑆10(𝑆10+𝐸10)

(𝑆10+𝐸10+𝐼10)2) 

 

Where, 𝑆10, 𝐸10, 𝐼10 satisfy the Equation 

𝜋 − 𝑑1𝑆10 − 𝑑1𝑉10 − 𝐼10(𝛿 + 𝜎 + 𝑑1) − (𝜔 + 𝑑1)𝑉10 = 0 
The other two Eigen Values are −(𝜀𝜆 + 𝜔 + 𝑑1)𝑎𝑛𝑑 − 𝑑1 

Therefore, E10
‘  is LAS. 

 

Lemma 9: The System (1) around E11
’(𝑆11,0 , 𝐼11,𝑉11,𝑅11) is locally asymptotically stable . 

Proof: The System (1) around E11
’(𝑆11,0 , 𝐼11,𝑉11,𝑅11)  

equation A0λ2 + A1λ+ A2=0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2) 

where, 

A0 = 𝑎33 + 𝑎13𝑎31 . 

A1 =-( 𝑎11𝑎33 + 𝑎11𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31). 

A2 = (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎11𝑎12𝑎21𝑎33 + 𝑎11𝑎12𝑎23𝑎31 + 𝑎11𝑎13𝑎21𝑎32 − 𝑎11𝑎13𝑎22𝑎31) 

 

where,  

 

𝑎11 = −
(𝐼11)2(𝛽 + 𝜆)

(𝑆11 + 𝐼11)2
, 𝑎12 =

𝛽(𝐼11)2

(𝑆11 + 𝐼11)2
, 𝑎13 =

𝜆(𝐼11)2

(𝑆11 + 𝐼11)2
, 𝑎21 =

𝑆11𝐼11(𝛽 + 𝜆)

(𝑆11 + 𝐼11)2
 

𝑎22 = −(
𝛽𝑆11𝐼11

(𝑆11+𝐼11)2 +  𝛾 +  𝑑1), 𝑎23 = 𝛾 −
𝜆𝑆11𝐼11

(𝑆11+𝐼11)2, 𝑎31 = −
(𝑆11)2(𝛽+𝜆)

(𝑆11+𝐼11)2 , 𝑎32 =
𝛽(𝑆11)2

(𝑆11+𝐼11)2 

𝑎33 = −(𝛿 + 𝜎 + 𝑑1 −
𝜆(𝑆11)2

(𝑆11+𝐼11)2) 

 

Where,  

𝑆11, 𝐼11 satisfy the Equation 

𝜋 −
𝛽 𝑆11𝐼11

𝑆11+𝐼11

− 𝑑1𝑆11 − 𝐼11(𝛿 + 𝑑1) − 𝑑1𝑉11 − 𝑑1𝑅11 = 0. 

 The other two Eigen Values are −(𝜀𝜆 + 𝜔 + 𝑑1)𝑎𝑛𝑑 − 𝑑1 

Therefore, E11
‘  is LAS. 

 

Lemma 10: The System (1) around E12
’(𝑆12,𝐸12, 𝐼12,0,𝑅12) is locally asymptotically stable. 
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Proof: The System (1) around E12
’(𝑆12,𝐸12, 𝐼12,0,𝑅12), is locally asymptotically stable (LAS) if the roots of  the characteristic 

equation A0λ2 + A1λ+ A2=0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2)  

where, 

A0 = 𝑎33 + 𝑎13𝑎31 . 

A1 =-( 𝑎11𝑎33 + 𝑎11𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31). 

A2 = (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎11𝑎12𝑎21𝑎33 + 𝑎11𝑎12𝑎23𝑎31 + 𝑎11𝑎13𝑎21𝑎32 − 𝑎11𝑎13𝑎22𝑎31) 

where,  

𝑎11 = −
𝐼12(𝛽+𝜆)(𝐸12+𝐼12)

(𝑆12+𝐸12+𝐼12)2 , 𝑎12 =
𝛽𝐼12(𝐸12+𝐼12)

(𝑆12+𝐸12+𝐼12)2, 𝑎13 =
𝜆𝐼12(𝐸12+𝐼12)

(𝑆12+𝐸12+𝐼12)2, 𝑎21 =
𝑆12𝐼12(𝛽+𝜆)

(𝑆12+𝐸12+𝐼12)2 

𝑎22 = −(
𝛽𝑆12𝐼12

(𝑆12+𝐸12+𝐼12)2 +  𝛾 + 𝑑1), 𝑎23 = 𝛾 −
𝜆𝑆12𝐼12

(𝑆12+𝐸12+𝐼12)2, 𝑎31 = −
𝑆12(𝛽+𝜆)(𝐸12+𝑆12)

(𝑆12+𝐸12+𝐼12)2  

𝑎32 =
𝛽𝑆12(𝐸12+𝑆12)

(𝑆12+𝐸12+𝐼12)2, 𝑎33 = −(𝛿 + 𝜎 + 𝑑1 −
𝜆𝑆12(𝑆12+𝐸12)

(𝑆12+𝐸12+𝐼12)2) 

 

Where, 

𝑆12, 𝐸12, 𝐼12 satisfy the Equation 
(1 − 𝑞)𝜋 − 𝑑1𝑆12 − 𝑑1𝐸12 − 𝑑1𝑅12 − 𝐼12(𝛿 + 𝑑1) = 0. 

The other two Eigen Values are −(𝜀𝜆 + 𝜔 + 𝑑1)𝑎𝑛𝑑 − 𝑑1 

Therefore, E12
‘  is LAS. 

 

Lemma 11:  The System (1) around 𝐸′∗
(𝑆∗, 𝐸∗, 𝐼∗, 𝑉∗, 𝑅∗) is locally asymptotically stable. 

  

Proof: The System (1) around 𝐸′∗
(𝑆∗, 𝐸∗, 𝐼∗, 𝑉∗, 𝑅∗)  is locally asymptotically stable (LAS) if the roots of  the characteristic 

equation A0λ2 + A1λ+ A2=0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2) 

 where, 

A0 = 𝑎33 + 𝑎13𝑎31 . 

A1 =-( 𝑎11𝑎33 + 𝑎11𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31). 

A2 = (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎11𝑎12𝑎21𝑎33 + 𝑎11𝑎12𝑎23𝑎31 + 𝑎11𝑎13𝑎21𝑎32 − 𝑎11𝑎13𝑎22𝑎31) 

where,  

𝑎11 = −
𝐼∗(𝛽+𝜆)(𝐸∗+𝐼∗)

(𝑆∗+𝐸∗+𝐼∗)2 , 𝑎12 =
𝛽𝐼∗(𝐸∗+𝐼∗)

(𝑆∗+𝐸∗+𝐼∗)2, 𝑎13 =
𝜆𝐼10(𝐸∗+𝐼∗)

(𝑆∗+𝐸∗+𝐼∗)2, 𝑎21 =
𝑆∗𝐼∗(𝛽+𝜆)

(𝑆∗+𝐸∗+𝐼∗)2 

𝑎22 = −(
𝛽𝑆∗𝐼∗

(𝑆∗+𝐸∗+𝐼∗)2 +  𝛾 +  𝑑1), 𝑎23 = 𝛾 −
𝜆𝑆∗𝐼∗

(𝑆∗+𝐸∗+𝐼∗)2, 𝑎31 = −
𝑆∗(𝛽+𝜆)(𝐸∗+𝑆∗)

(𝑆∗+𝐸∗+𝐼∗)2  

𝑎32 =
𝛽𝑆∗(𝐸∗+𝑆∗)

(𝑆∗+𝐸∗+𝐼∗)2, 𝑎33 = −(𝛿 + 𝜎 + 𝑑1 −
𝜆𝑆∗(𝐸∗+𝑆∗)

(𝑆∗+𝐸∗+𝐼∗)2) 

Where, 

𝑆∗, 𝐸∗, 𝐼∗satisfy the Equation 

𝜋−𝑑1𝑆∗ − 𝑑1𝐸∗ − 𝑑1𝑉∗−𝑑1𝑅∗ − 𝐼∗(𝛿 + 𝑑1) = 0. 

The other two Eigen Values are −(𝜀𝜆 + 𝜔 + 𝑑1)𝑎𝑛𝑑 − 𝑑1 

Therefore, 𝐸′∗
is LAS. 

 
V.  CONCLUSION AND DISCUSSION 

 

Measles, an acute viral respiratory illness, presents with a prodrome featuring high fever (up to 105°F), malaise, cough, coryza, and 

conjunctivitis. Typically, the rash emerges approximately 14 days following exposure, starting from the head and extending to the 

trunk and lower extremities. This childhood infection, caused by a virus, was previously widespread but can now be effectively 

prevented through vaccination. Also known as rubeola, measles is highly contagious, particularly dangerous for young children, 

and can lead to severe complications, even fatalities. In this research article we examine the dynamics of measles by using a 

mathematical model with five compartments: susceptible, exposed, infected, vaccinated, and recovered. The boundary of solutions 

is proved, the basic reproduction number is calculated. Here we ten biologically feasible equilibrium point. We find the existence 

condition and check stability condition of each equilibrium point. This research article suggest that an increase in vaccination of 

population can reduce the total infected population in measles. Vaccination policy can reduce the fatality of the disease. As a result 

we can suggest that vaccination policy can be adopted to control the disease measles. 
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