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Abstract: Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious 

health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at 

risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread 

in tropical and subtropical environments, mostly found in urban and semiurban areas. In this research article, a mathematical model 

of dengue is proposed and analysed. Here a four dimensional mathematical model is considered. The dynamical behaviour of the 

system is studied analytically. Existence condition and stability analysis are performed. Our aim is to control the disease dengue by 

using control therapeutic approach. 
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I. INTRODUCTION 

 
Dengue fever (DF) and Dengue Haemorrhagic Fever (DHF) are increasingly important public health problems in the tropic and 

subtropics areas. Dengue has been recognized in over 100 countries and 2.5 billion people live in areas where dengue is endemic 

[1]. Dengue is a viral disease transmitted by the bite of an Aedes mosquito infected with one of the four dengue virus serotypes 

(DEN-1, DEN-2, DEN-3 and DEN-4) [2,3]. Dengue can affect almost all age groups (infant to adult), and symptoms appear 3–14 

days after the infected mosquito bite [3]. A person recovers from one of the dengue serotype having life-long immunity to that 

serotype but prone to infection from other three serotypes.  

 

About 12 weeks’ time the person becomes more susceptible to develop dengue hemorrhagic fever or dengue shock syndrome [4]. 

In recent decades, the burden of dengue increases rapidly and according to WHO there may be 50–100 million dengue cases occur 

each year worldwide [2]. To understand the dengue transmission dynamics fully, it is of utmost importance to realize the blood 

feeding behavior of Aedes mosquito. Recent entomological studies on Aedes aegypti revealed that mosquito did not feed randomly 

on host blood, but they use their prior experience about a host location and a host defensiveness to select a host to feed on 

[5,6,7,8,9,10,11]. Furthermore, on human population also, the memory plays a key role in dengue transmission. In epidemic and 

endemic area’s awareness about dengue will lessen the contact rate between host and mosquitoes [12,13]. Thus, in dengue 

transmission, a future state depends upon the full history of the transmission process [14]. 

 

Different mathematical models have been proposed and analyzed to understand the transmission dynamics of infectious diseases.  

In recent years, modeling has become a valuable tool in the analysis of dengue disease transmission dynamics and to determine the 

factors that influence the spread of disease to support control measures. Many researchers have proposed SIR epidemic model to 

study the transmission dynamics of dengue disease [15, 16,17,18,19,20,21,22]. Incubation periods in hosts and vectors have a 

significant influence in transmission dynamics of dengue disease. So, different mathematical studies [23,24,25] of dengue disease 

have been made to study dengue disease transmission dynamics with incubation periods.  

 

The original model used by Esteva and Vargas [26], did not include the intrinsic and extrinsic incubation periods of dengue virus in 

human and vector populations. Their model considered the transmission between the human and vector populations. The human 

population is separated into susceptible, infectious and recovered classes. The vector population is divided into susceptible and 

infectious classes. In our study, the length of time during the dengue virus circulating in the blood of human and vector populations 

are considered. The infected human and infected vector classes are included into the model. There is the difference between infected 

and infectious classes for the human and vector populations. The infected classes cannot transmit dengue virus until they become 

to be infectious class. 
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Fig.1 A schematic illustration of the interaction between the virus and target cells [27]. 

 

II.  DEVELOPMENT OF MATHEMATICAL MODEL 

 

We consider that prey population is facing an infectious disease, where the predator feeds on both healthy and infected preys. Let, 

𝑆H is the susceptible human population, 𝐼H is the infected human population, 𝑆V is the susceptible vector population, 𝐼V is the infected 

vector population, HV is the Human Vaccinated. 
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where, 𝜆H is Birth rate of human population, d1 is nature death rate(mosquito)of susceptible infected human population, d2 is death 

rate of vector population, d3 is death rate of human after vaccinated,   is death rate due to infection, 𝜆V is constant recruitment rate 

of population, 𝛽H is transmission rate of dengue virus from vector to human, 𝛽V is transmission rate of dengue virus from human to 

vector, HV is transmission rate of dengue virus from vector to human after vaccination, VH is transmission rate of dengue virus 

from infected human to vector after vaccination. 
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III. EXISTENCE AND LOCAL STABILITY ANALYSIS OF THE EQUILIBRIUM POINTS 

 

There are four equilibrium points of the aggregated system, trivial equilibrium point 𝐸0(0,0,0,0,0,0) , planer equilibrium points   
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Lemma 1: The equilibrium point 𝐸0(0,0,0,0,0,0) is always unstable. 

Lemma 2: The System (1) around E1(
(1−𝑟)𝜆𝐻

𝑑1
,0,

2d

V
,0,0), is locally asymptotically stable  (LAS). 

Proof : The eigen values of the corresponding Jacobian matrix are -d1, -d2, -d3 and the other two eigen values satisfy the equation 

  λ2- (a22+a24) λ+(a22a24-a24a42) = 0,  

 i.e., if  
−γ

𝑑1+𝑑2
 < 0 and 

𝑑2 𝛾+𝑑1 𝑑2

𝛽𝐻𝛽𝑉
 > 0. 

Therefore, the E1 is LAS. 

Lemma 3: The System around E2(
(1−𝑟)𝜆𝐻

𝑑1
,0,

2d

V
, 0, 

𝑟𝜆𝐻

𝑑3
), is locally asymptotically stable  (LAS).  

Proof : The eigen values of the corresponding Jacobian matrix are -d1, -d2, -d3 and the other two eigen values satisfy the equation: 

  λ2- (a22+a24) λ+(a22a24-a24a42) = 0,  

 

 i.e., if 
−γ

𝑑1+𝑑2
 < 0 and 

𝑑2 𝛾+𝑑1 𝑑2

𝛽𝐻𝛽𝑉
 > 0. 

Therefore, the E2  is LAS. 

Lemma 4: The System around E3 ( 1

1)()1(

d
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, HI , 2
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d

Id VV −

, VI ,0) is locally asymptotically stable (LAS). 

Proof : The roots of  the characteristic equation  

 

 A0λ4 + A1λ3 + A2λ2 + A3λ +A4 =0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2,3,4),  

A1A2 – A0A3 >0 ,   

 A1A2A3 – A1
2A4 – A0A3

2 >0. 

where,  A0= 1 

 A1= ϒ + 2d1 + 2d2 

 A2= ϒd1 +2ϒd2 + 4d1d2 + d1
2  + d2

2 – βHβV 

 A3= 2ϒd1d2 + 2d1
2d2 + d1d2

2 + ϒd2
2 – d1βHβV + d2βHβV  

And A4= ϒd1d2
2 + d1

2d2
2 – d1d2βHβV 

the fifth value of λ is -d3. 

 Therefore, the E3 is conditionally LAS. 

 

Lemma 5: The System around the interior equilibrium point E*(SH
*,IH

*,SV
*,IV

*,HV
*) is locally asymptotically stable(LAS). 

Proof : The roots of  the characteristic equation  

 

 A0λ4 + A1λ3 + A2λ2 + A3λ +A4 =0 of the Jacobian Matrix satisfy the Routh-Hurwitz criteria i.e. Ai>0 (where, i=0,1,2,3,4),  

A1A2 – A0A3 >0 ,   

 A1A2A3 – A1
2A4 – A0A3

2 >0. 

where,  A0= 1 

 A1= ϒ + 2d1 + 2d2 

 A2= ϒd1 +2ϒd2 + 4d1d2 + d1
2  + d2

2 – βHβV 

 A3= 2ϒd1d2 + 2d1
2d2 + d1d2

2 + ϒd2
2 – d1βHβV + d2βHβV  

And A4= ϒd1d2
2 + d1

2d2
2 – d1d2βHβV 

the fifth value of λ is -d3. 

 Therefore, the E* is conditionally LAS. 
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IV. CONCLUSION 

 

The last two years have been really challenging the COVID-19 pandemic changed so much about the way we lived and worked. 

Now, just as we’re starting to ease back into regular life, we’re hearing media stories about dengue as an emerging threat. It’s spread 

through the infected mosquitoes during day time. The best way to protect yourself is using mosquito nets if sleeping during the day 

and use coils. So far one vaccine (Dengvaxia) has been approved and licensed in some countries.  

 

A deterministic mathematical model was developed for the transmission dynamics of Dengue virus. It was shown that the model is 

mathematically and epidemiologically well posed. Environment and vaccination strategies are discussed especially in the case of 

the succession of two epidemics with two different viruses. The equilibrium of the model equation was obtained and analysed 

analytically. 
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