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Abstract: In the advancing field of rehabilitation technology and human-machine interfaces, surface electromyography 

(sEMG) has emerged as a critical non-invasive method for interpreting human intentions, particularly in developing 

advanced prosthetics and silent speech recognition systems. However, despite its potential, challenges such as noise 

interference and the necessity for precise electrode placement have constrained its accuracy. This paper explores the 

application of advanced deep learning (DL) models, including Long Short-Term Memory (LSTM), Bidirectional 

LSTM (Bi-LSTM), Deep Neural Networks (DNN), and Convolutional Neural Networks (CNNs) in both 1-dimensional 

(1D) and 2-dimensional (2D) formats to improve the interpretability of sEMG signals for silent speech recognition. The 

proposed setup utilized a multithreading queuing (MTQ) based novel three-channel low-cost sEMG data acquisition 

system for English vowel recognition. The two channels are responsible for collecting and extracting data, while the 

third channel helps visualize data in real-time. It involves data acquisition using disposable electrodes across key facial 

muscles, followed by employing a range of DL models to process and classify the sEMG signals. Our findings suggest 

that advanced DL models, particularly the CNN-2D model, outperformed other state-of-the-art methods by achieving 

90% accuracy in vowel recognition, showcasing the potential of deploying low-cost hardware with new predictive 

paradigms in sEMG analysis. 

 

Keywords: Surface Electromyography (sEMG), Silent Speech Recognition, Deep Learning Models, Rehabilitation 

Technology 

 

I. INTRODUCTION 

 

In the rapidly evolving domain of rehabilitation technology and human-machine interfaces, the use of surface 

electromyography (sEMG) signals emerges as a pivotal approach for interpreting human intentions [1][2]. sEMG, a 

non-invasive method for measuring muscle activity, offers insights into muscle fibers' electrical signals during 

contractions [3], playing a critical role in developing advanced prosthetics and enabling silent speech recognition 

systems [4][5].  

 

Despite its potential, challenges such as noise interference and the need for precise electrode placement hamper signal 

accuracy [6][7][8]. The progression of sEMG data analysis has shifted from understanding muscle activity to applying 

advanced computational models, aiming to improve sEMG signal interpretability. Machine learning classifiers, 

including K-nearest neighbors (KNN), Support vector machines (SVM), and Artificial neural networks (ANN), have 

facilitated low-cost sEMG data acquisition systems' effectiveness in silent speech recognition, comparable to 

commercial setups [7][9][10][11].  

 

Our prior research [7] has been instrumental in developing algorithms for efficient sEMG data collection and 

processing, demonstrating significant accuracies in recognizing English vowels from facial muscle activity. 

Furthermore, we have focused on a novel three-channel multithreading queuing (MTQ) based low-cost sEMG data 

acquisition system that supports real-time signal visualization, highlighting the potential of merging cost-effective 

technology with a new predictive paradigm [10].  

 

The emergence of deep learning (DL) has significantly enhanced computational modeling for sEMG analysis. DL 

models, such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), Deep Neural Networks (DNN), 

and Convolutional Neural Networks (CNNs) in both 1-dimensional and 2-dimensional formats have proven effective in 

various fields, including natural language processing and image recognition. Their ability to learn complex features 

from data makes them ideal for analyzing sEMG signals, capturing essential temporal and spatial patterns.  
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This research aims to further extend our previous work [7][10] by incorporating advanced DL models into the sEMG 

analysis framework, specifically for silent speech recognition. By using the same low-cost hardware and data collection 

methodologies, we seek to assess the effectiveness of LSTM, Bi-LSTM, DNN, CNN-1D, and CNN-2D models in 

identifying sEMG signals' complex patterns.  

 

This approach is anticipated to improve classification accuracy, robustness, and adaptability, marking a significant 

advancement in sEMG analysis. Moreover, the contributions of our study include: 

 

1. Integrating advanced deep learning models to enhance feature learning from raw sEMG data, eliminating 

manual feature engineering. 
 

2. Enabling real-time sEMG signal processing and visualization through a multithreading queuing-based 

algorithm, for applications requiring immediate feedback. 
 

3. Providing a low-cost, high-performance solution that makes sophisticated rehabilitation technologies more 

accessible. 

 
4. We assess the quantifiable effectiveness of the proposed low-cost, high-performance setup by comparing it 

with various state-of-the-art methods. 

 

II. RELATED WORK 

 

This section synthesizes the literature on vowel-based sEMG systems, including insights from our previous studies, to 

highlight the progression toward more accurate and accessible silent speech recognition technologies. Kumar et al. [12] 

were pioneers in applying ANN to sEMG data for speech recognition, achieving an impressive 88% success rate in 

vowel recognition from three facial muscles.  

 

This early work set the foundation for subsequent studies focusing on eliminating auditory clues from speech 

recognition. Arjunan et al. [13][14] extended this line of research by successfully classifying five English vowels with 

up to 86% accuracy using ANN and data collected from four facial muscles, marking a significant step forward in the 

field. Larraz et al. [11] further explored the potential of sEMG in silent speech vowel recognition, achieving over 70% 

accuracy using a raw dataset from eight muscles, demonstrating the diversity of muscle involvement. Mostafa et al. 

[15]  

 
Introduced a novel non-invasive tool for recognizing eleven Bangla vowels, showcasing the versatility of sEMG in 

speech recognition across languages with an overall accuracy of 82.3%. Agnihotri et al. [16] demonstrated the 

robustness of neural networks in classifying three English vowels with an 85% recognition rate. Japanese vowels were 

also explored by Takabatake et al. [17][18], who reported classification accuracies of 33% and 62.33% using KNN and 

SVM classifiers, respectively highlighting the challenges and opportunities in vowel classification. Fraiwan et al. [19] 

and Manabe et al. [20] both developed customized hardware for sEMG data collection, achieving accuracies up to 77% 

in recognizing Arabic vowels and significant identification rates for vowels uttered in Japanese, respectively. 

Chandrashekhar [9] developed a Silent Speech Interface (SSI) using an MWM sensor for English vowel recognition, 

achieving an 80% success rate with the SVM approach, illustrating the effectiveness of specialized hardware. Building 

upon these foundational studies, our previous research [7] and [10] introduced an innovative sEMG data acquisition 

system, showcasing significant improvements in classification accuracy.  

 
The authors in [7] utilized custom machine learning classifiers, achieving nearly 83% accuracy in English vowel 

recognition, emphasizing our contribution to enhancing classification techniques.  These advancements highlight the 

potential of combining low-cost hardware with sophisticated data processing techniques to enhance silent speech 

recognition systems further.  

 
Table 1 offers a comprehensive synopsis of the research papers under discussion, capturing essential elements, 

including the number of classes, number of subjects, number of channels, muscles under observations, employed 

classifiers, and the reported accuracies. This summary provides a quick reference to understand the scope and results of 

each research by making it easier to grasp the evolution of sEMG-based silent speech recognition technologies.  
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TABLE 1   SUMMARY OF RELATED WORK 

 

Ref. Vowel & 

Hardware 

Used 

Classes Subjects Channels Muscles Classifier Accurac

y 

(%) 

[12] English 

(Comm.) 

5 3 3 Mentalis, Messetter, Depressor 

anguli oris 

ANN 88 

[13] English 

(Comm.) 

5 3 4 Zygomaticus major, Mentalis, 

Masseter, Depressor anguli oris 

ANN 80 

[14] English, 

German 

(Comm.) 

3-3 3 4 Zygomaticus major, Mentalis, 

Masseter, Depressor anguli oris 

ANN 86 

[21] English 

(Comm.) 

5 - 4 Zygomaticus major, Mentalis, 

Masseter, Depressor anguli oris 

ANN 60 

[11] Spanish 

(Low Co.) 

30 3 8 Levator labii superioris, Risorius, 

Platysma, Zygomaticus major, 

Orbicularis oris, Depressor anguli 

oris, Depressor labii inferioris, 

Digastric 

DT, 

DT with 

Ada 

Boost 

42, 

62 

[19] Arabic 

(Low Co.) 

3 20 3 Orbicularis Oris, Triangularis, 

Risorius 

RF 82 

[15] Bangla 

(Low Co.) 

11 8 3 Massester, Buccinators, Depressor ANN 82 

[16] English 

(Comm.) 

5 - - Zygomaticus major, Mentalis, 

Masseter, Depressor anguli oris 

ANN 85 

[17] Japanese 5 1 3 Orbicularis Oris, Zygomatic, 

Depressor angle oris 

KNN 33 

[18] Japanese 5 1 3 Orbicularis Oris, Zygomatic, 

Depressor angle oris 

SVM 62 

[9] English 

(Low Co.) 

5 1 - Submental triangle (area under 

neck) 

CNN, 

SVM, 

KNN 

55,  

80, 

67 

[7] English 

(Low Co.) 

5 1 3 Orbiclaris Oris, Masseter, Digastric ANN, 

SVM, 

KNN 

82,  

83, 

84 

 

Comm.: Commercial Hardware, Low Co.: Low-cost/Self-Developed Hardware, DT: Decision Tree, RF: Random 

Forest 
 

III. METHODOLOGY 

 

This section includes the details about data acquisition, muscles under observation, experimental procedure, preparation 

of dataset, and architectural details of each deep learning model, including layers, activation functions, optimization 

techniques, and loss functions used. 

 

A. Data Acquisition 

The choice of the MTQ technique and hardware for data collection is driven by its proven efficiency in previous studies 

[10], aiming to achieve high-quality data while maintaining cost-effectiveness and user convenience. This is employed 

to collect silently spoken data of English vowels A, E, I, O, U, and 'Silence' when the person remains quiet. To 

uniquely identify a category of each recorded instance inside the collection, each class is automatically represented by 

an integer number during recordings and presented in Table 2. Using integer numbers to represent each class simplifies 

the data analysis and allows for easier comparison between different studies. 
 

TABLE 2 VOCABULARY CODES 
 

Syllabus Silence A E I O U 

Syllabus Silence A E I O U 

Unique Number 0 1 2 3 4 5 
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In this study, sEMG signals from facial muscles were recorded using disposable Ag/AgCl electrodes that had a gel 

surface area of 2 cm2 and a sensor area of 0.8 cm2. This electrode configuration is selected to optimize signal quality 

and minimize skin irritation, ensuring participant comfort throughout the data collection process. 

 

B.          Muscles Under Observation 

Researchers have employed distinct facial muscles to obtain sEMG data for the production of silently articulated 

syllables. Identifying the most informative facial muscles for sEMG data collection is crucial for silent speech 

recognition accuracy. This research involved an examination of three specific muscles located in the facial and neck 

region, namely the Orbicularis Oris (M1), Masseter (M2), and Digastric (M3) muscles, as depicted in Figure 1 (a) 

[4][5] and Figure 1 (b) shows actual placement of electrodes on subject's face and neck region. These muscles are 

chosen based on their significant involvement in speech articulation and the potential for clear sEMG signal 

differentiation. 

 

The Orbicularis Oris muscle, also known as M1, is a circular muscle located in the region of the lips. The Masseter 

muscle extends laterally along the mandibular ramus angle and surface from the zygomatic arch. The Digastric muscle 

located in the cervical region can elevate the hyoid bone, thereby facilitating an increased orifice of the oral cavity. The 

utilization of the digastric muscle has been demonstrated to indicate the involvement of the neck in the generation of 

silent speech. The selection of these particular muscles was predicated upon their capacity to furnish precise and 

dependable sEMG information to recognize silent speech. 

 

 

 

(a) (b) 

 

Fig. 1   Facial muscles location: (a) Human face muscles (b) Actual electrode placement 

 

C.         Algorithm Integration with MTQ 
 

The integration of the three-channel MTQ technique with a multi-threading approach underscores our commitment to 

real-time, efficient data processing. This technique ensures efficient data processing, minimizing the risk of erroneous 

data collection.  

 

The MTQ's design allows for a seamless flow of data between collection, processing, and visualization, highlighting its 

utility in handling high-throughput sEMG data. Two successive data structures (queues) are utilized to handle 

temporary data, while data transmission is managed by three independent processes (T1, T2, and T3). T1 receives data, 

T2 transmits data across queues, and T3 changes the visual data structure and creates a real-time graph with recording 

whenever necessary.  

 

The data structure's size can be restricted to a range from 300 to 1000 sample values. Here, for this study, it is set to 

300 for each channel. The system constantly checks the state of the connection, and data processing happens only when 

the hardware is correctly connected and the user interacts with the interface controls.  

 

Data processing includes capturing the signal, transforming, and creating a dataset that includes temporal, 

demographic, and measurement data. When users direct the system to reset or terminate, it performs the appropriate 

cleanup tasks. These methods end the algorithm's execution and show an acknowledgment message. The MTQ system 

is responsible for the initial handling and preprocessing of sEMG signals, making them suitable for input into the DL 

models. The methodological flowchart is presented in the following Figure 2. 
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Fig. 2   Flowchart of methodology 

 

D.          Experimental Procedure 

To ensure verifiability and eliminate the potential influence of individual human characteristics such as age, gender, 

accent, fluency, and the like, the data was consistently gathered from a male subject who was 40 years of age, and in 

good health, with no known speech impairments. The selection of a single subject also aimed to minimize variability in 

the dataset, focusing on the system's ability to recognize silent speech patterns. The individual in question exhibited 

proficient communication skills in the English language. The participant was informed about the methodology and 

procedures involved in the recording process. The data was collected by positioning the participant in a solitary chair in 

front of a computer monitor. The temperature of the room was regulated within the range of 24-26 oC to prevent the 

occurrence of perspiration [10]. 
 

E.          Dataset Preparation 

Getting the dataset ready for a classification task is a key step in making a model that is accurate and reliable. During 

experimental sessions, 50 recordings for each vocabulary content (A, E, I, O, U, Silence) were obtained using [10], 

from three facial muscles. The length of one sEMG recording data value is 900 and all recording is made in a CSV file. 

Here, we are using a ratio of 80% - 20% as our training and testing datasets. 
 

F.          Model Architecture 

To detect potential patterns in collected sEMG data, it is necessary to employ diverse classification algorithms. The 

implementation of these techniques can facilitate comprehension of the fundamental muscle activation patterns 

associated with diverse tasks or movements. This study employed five distinct deep-learning methodologies to 

investigate and capture different aspects of the sEMG data, leveraging the strengths of deep learning in handling time-

series data and extracting complex features. The neural network models under consideration are LSTM, Bi-LSTM, 

DNN, and two variants of CNN. The LSTM networks were developed to solve the vanishing gradients that commonly 

affect conventional recurrent neural networks (RNN). The issue of vanishing gradients arises in the context of 

backpropagation training, wherein the gradients utilized by the algorithm diminish to an extremely small magnitude, 

thereby impeding the comprehension of long-term connections [22]. LSTM networks consist of interconnected cell 

clusters. Every individual cell is equipped with three gates that are responsible for controlling the flow of information 

into and out of the cell, as well as into the memory storage. The input gate regulates the inflow of data into the cell, the 

output gate governs the outflow of data, and the forget gate determines the retention or elimination of data. The data 

flow in question is regulated by gates that employ sigmoid activation functions [22]. The core LSTM unit is defined by 

the following equations: 
 

ft = σ (Wf · [ht−1, xt] + bf ) 

it = σ (Wi · [ht−1, xt] + bi ) 

Čt = tanh (WC · [ht−1, xt] + bC ) 

Ct = ft ∗ Ct−1 + it ∗  Čt 

ot = σ (Wo [ht−1, xt] + bo ) 

ht = ot ∗ tanh (Ct ) 

 

Where σ is the sigmoid function, W and b are weights and biases, and ht, Ct are the hidden state and cell state at time t. 

 

Standard LSTM models are limited in their ability to learn in a unidirectional manner, which hinders their capacity to 

predict novel words. The Bi-LSTM is a type of neural network that addresses the limitations of conventional LSTM 

models. It achieves this by processing input sequences in both forward and backward directions. This approach enables 

the Bi-LSTM to capture complex phrase patterns and context more accurately [23]. The Bi-LSTM architecture employs 
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a pair of LSTMs to handle input sequences bidirectionally, so it can predict the present phrase or label by utilizing both 

preceding and succeeding data. Bi-LSTM combines the forward LSTM ℎ⃗  t and backward LSTM ℎ⃖⃗t as: 

 
 

ht = [ℎ⃗ t, ℎ⃖⃗t] 

 

The increased utilization of DNNs can be attributed to their exceptional proficiency in handling intricate tasks [24]. A 

fundamental characteristic of DNN is the utilization of feedback connections, whereby the outputs of a given layer of 

neurons are subsequently fed as inputs into the subsequent layer of neurons. Due to their multi-layered architecture, 

DNNs can acquire and communicate complex and abstract connections between input and output. The backpropagation 

algorithm is employed in the training of DNN to adjust the synaptic weights connecting neurons based on the 

discrepancy between the anticipated and observed output. Through multiple iterations, the precision of the network 

progressively enhances until it attains the desired threshold [24]. The output of each layer in DNN is given by: 

 

a[l] = g[l] (W [l] · a[l−1] + b[l]) 

 

Where g[l] is the activation function for layer l 

 

CNNs are a type of artificial neural network that has been extensively utilized in various domains, including but not 

limited to image recognition and natural language processing. The fundamental building block of CNN architecture is 

the convolutional layer. In a convolutional layer, the input data undergoes convolution with a fraction of the input at 

each filter. The convolutional layer produces feature maps that accentuate distinct characteristics of the input. 

Subsequently, the feature maps are transmitted to the succeeding layer of the network. CNNs possess a notable edge 

over conventional machine learning algorithms owing to their innate capability to autonomously acquire features from 

unprocessed data, as stated by [25]. The present study employs two distinct forms of CNN, namely CNN-1D and CNN-

2D. The CNN-1D model specializes in processing one-dimensional sequence data, also referred to as Conv-1D. CNN-

1D designed for time-series data, it applies 1D convolution operations, capturing temporal dependencies. The 

convolution operation in CNN-1D is: 

Ct = f (W · Xt:t+k−1 + b) 

 

Where Xt:t+k−1 represents the input segment, W is the filter, b is the bias, and f is the activation function 

 

On the other hand, CNN-2D is capable of accommodating a diverse array of two-dimensional inputs and is also known 

as Conv-2D. CNN-2D is useful for capturing spatial features from multichannel sEMG data. The 2D convolution 

operation is given by: 

𝐶𝑖,𝑗 = 𝑓 (∑∑𝑊𝑚,𝑛 . 𝑋𝑖+𝑚,𝑗+𝑛 + 𝑏

𝑛𝑚

) 

 

Where 𝑊𝑚,𝑛 is the filter applied to the input X at position (i, j) 

 

Both CNN-1D and CNN-2D employ a series of convolutional layers on the input sEMG data to extract features. The 

deployed classifiers' customization information is summarised in Table 3. 

 

TABLE 3 CUSTOMIZATION DETAILS OF EACH TECHNIQUE 

 

Classifier Hyper-parameters 

LSTM units ← 50, input_shape ← (30,30), activation←'softmax', epoch←50, batch_size←8 
  

Bi-LSTM units ← 50, input_shape ← (30,30), activation←'softmax', epoch←50, batch_size←8 
  

DNN filters←32, kernel_size←5, layer activation←'relu', epoch←50, input_shape←(900, 1), 

learning_rate←0.0001, beta_1←0.9, beta_2←0.999, optimizer←Adam, 

loss←'categorical_crossentropy', last layer activation←'softmax', batch_size←8 
  

CNN-1D filters←32, kernel_size←5, layer activation←'relu', epoch←50, input_shape←(900, 1), 

learning_rate←0.0001, beta_1←0.9, beta_2←0.999, optimizer←Adam, 

loss←'categorical_crossentropy', last layer activation←'softmax', batch_size←8 
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CNN-2D filters←32, kernel_size←(5, 5), layer activation←'relu', epoch←50, input_shape←(30, 30, 1), 

learning_rate←0.0001, beta_1←0.9, beta_2←0.999, optimizer←Adam, 

loss←'categorical_crossentropy', last layer activation←'softmax', batch_size←8  

 

G.          Evaluation Metrics 

Evaluation of model performance is conducted by assessing its accuracy. It indicates what proportion of the events in 

the collection has been correctly classified. The percentage of accurate predictions produced by the classifier (including 

TP and TN) over the total number of predictions and denoted by the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Where: 

• TP (True Positive): Number of successfully detected positive instances by the classifier  

• TN (True Negative): Number of negative instances properly detected by the classifier 

• FP (False Positive): Number of negative examples that the classifier wrongly categorized as positive 

• FN (False Negative): Number of positive examples that the classifier mistakenly labeled as negative 

 

It is possible to assess a classifier's efficacy by looking at its accuracy rate. When there is a disparity between classes or 

when misclassifying certain classes is more costly than misclassifying others, this approach may not be the best 

solution. A further assessment measure used is the confusion matrix. A confusion matrix is a tabular representation that 

illustrates the accuracy of a classifier's classification by presenting the accurate and inaccurate classifications for each 

category. It is an appropriate approach for evaluating the performance of a classifier and identifying erroneous 

classifications. 

 

IV. OBSERVATIONS AND RESULTS 

 

This study delves into the comparative analysis of advanced deep learning architectures, including LSTM, Bi-LSTM, 

DNN, and two variants of CNN (CNN-1D, CNN-2D), in the context of silent speech recognition using sEMG data. 

Employing the MTQ method for data acquisition [10], this research aims to elucidate the efficacy of these models in 

discerning silently spoken English vowels, thereby offering insights into their potential advantages and limitations for 

future applications. 

 

A.          Observations 

The initial phase of our investigation involved the visualization of real-time raw sEMG patterns corresponding to each 

vowel across three distinct facial muscles, as facilitated by the MTQ technique. This visualization, illustrated in Figure 

3, revealed that the sEMG patterns for each vowel are uniquely distinguishable, thereby providing a robust foundation 

for the subsequent classification analysis. 

 

   
(a) For muscle M1 (b) For muscle M2 (c) For muscle M3 

 
Fig. 3   Recorded sEMG data for vowel dataset from each muscle 

 

 

B.           Results 

The classification outcomes (refer Figure 4), post 50 epochs of model training, shed light on the performance of each 

deep learning architecture concerning accuracy, loss, and confusion matrix metrics for both training and testing 

datasets. 
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The LSTM model achieved an accuracy of 85% and 78.33% on the training and testing datasets, respectively. The 

corresponding losses were 0.4313 and 0.3668. The findings indicate that the performance of the model on the training 

and testing datasets was nearly identical. From Figure 4 (i) (c), the confusion matrix was employed to evaluate the 

performance of the model. According to the confusion matrix, the model exhibited a relatively lower accuracy level in 

identifying vowels, particularly concerning the vowels 'A' and 'O', in comparison to the remaining vowels.  

It is recommended that additional refinement of the model may enhance its efficacy in discriminating among vowel 

phonemes.  

 

The Bi-LSTM model achieved an accuracy of 85.83% and 80% on the training and testing datasets, respectively, with 

corresponding losses of 0.3837 and 0.6358. The findings suggest that the performance of the model is satisfactory on 

both the training and testing datasets. From Figure 4 (ii) (c), to see how well the model worked. The confusion matrix 

revealed that the model was slightly less accurate in identifying the vowel 'O' than other vowels. It is suggested that 

further fine-tuning of the model could improve its performance in distinguishing between different vowel data.  

 

The DNN model achieved an accuracy of 98.75% and 80% on the training and testing datasets, respectively. The 

corresponding losses were 0.0585 and 0.8665. The results show that the model performs well on the training datasets 

but slightly less on the testing ones. From Figure 4 (iii) (c), the confusion matrix revealed that the model correctly 

predicts the 'E', 'O', and 'U' vowels from the testing dataset while being slightly less accurate in identifying the vowel 

'A' and 'I' than other vowels. This shows that the model's ability to discriminate between distinct vowel data may be 

fine-tuned even more.  

 

The CNN-1D model achieved accuracies of 100% and 83.33% on the training and testing datasets, respectively. The 

corresponding losses were 0.0006 and 0.6363. The findings indicate that the model exhibits satisfactory performance 

on the training datasets, albeit marginally lower on the testing datasets. From Figure 4 (iv) (c), to see how well the 

model worked. The confusion matrix revealed that the model almost correctly predicts all vowels from the testing 

dataset while being slightly less accurate in identifying the vowel 'I' than other vowels.  

 

Remarkably, the CNN-2D model achieved an accuracy of 99.58% and 90% on the training and testing datasets, 

respectively. The corresponding losses were 0.0165 and 0.3233. The findings indicate that the model performs 

satisfactorily on the training and testing datasets. Figure 4 (v) (c), was employed to evaluate the efficacy of the model. 

The confusion matrix analysis indicates that the model demonstrates a high accuracy level in predicting most vowels 

from the testing dataset, with slightly lower accuracy in identifying the vowel 'I' compared to the other vowels.  

 

Further, Table 4 presents the classification outcome achieved after 50 epochs, with respect to the accuracy and loss 

values for both the training and testing datasets. 

 

   

(a) (b) (c) 

 

(i) Using LSTM 
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(a) (b) (c) 

 

(ii) Using Bi-LSTM 

   

(a) (b) (c) 
 

(iii) Using DNN 

 

   

(a) (b) (c) 
 

(iv) Using CNN-1D 

 

  
 

(a) (b) (c) 
 

(v) Using CNN-2D 

 

Fig. 4   Classification result in terms of (a) Accuracy, (b) Loss, (c) Confusion matrix for each deployed classifiers 
 

TABLE 4 Comparison of the result obtained from various DL models 
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Model Training 

Loss 

Training 

Accuracy 

Testing 

Loss 

Testing 

Accuracy 

LSTM 0.4313 85% 0.3668 78.33% 

Bi-LSTM 0.3837 85.83% 0.6358 80% 

DNN 0.0585 98.75% 0.8665 80% 

CNN-1D 0.0006 100% 0.6363 83.33% 

CNN-2D 0.0165 99.58% 0.3233 90% 

 

The comparison results, from Table 4, indicate that the Bi-LSTM model exhibits superior performance compared to the 

LSTM models, achieving an accuracy of 80% and a loss of 0.6358 for the testing dataset. The DNN model exhibits a 

commensurate level of precision, at 80%, when contrasted with the Bi-LSTM model.  

The utilization of both Bi-LSTM and DNN models results in a 2.13% increase in accuracy when compared to the 

LSTM model. The CNN-1D model exhibits favourable outcomes, achieving an accuracy rate of 83.33% and a loss 

value of 0.6363 when applied to the testing dataset. This represents an enhancement of 6.38%, 4.16%, and 4.16% over 

the LSTM, Bi-LSTM, and DNN models, respectively. The CNN-2D model exhibits superior performance compared to 

alternative models, achieving an accuracy of 90% and a loss value of 0.3233. The aforementioned model demonstrates 

an enhancement in precision by 14.89%, 12.5%, 12.5%, and 8% for the LSTM, Bi-LSTM, DNN, and CNN-1D models, 

correspondingly. The graphic representation of the aforementioned Table 4 is presented in Figure 5. 

 

  
(a) (b) 

 
 

Fig. 5   Comparison of (a) Loss, (b) Accuracy, obtained employed classifiers 

 

The findings indicate that the CNN-2D model exhibits the highest level of suitability for the given dataset and may be 

effectively employed in analogous classification endeavors. Additional investigation may be conducted to examine 

alternative methods for maximizing the model and enhancing its efficacy. 

 

C.         Comparison with State-of-the-art Methods 

In this section, we compare the results of this low-cost high-accuracy setup with existing state-of-the-art methods. This 

comparison with previous research elucidates significant advancements in the field of silent speech recognition using 

sEMG signals, particularly emphasizing the efficacy of low-cost hardware solutions. Our proposed method, leveraging 

a self-developed, low-cost hardware setup combined with a CNN in 2-dimensional format (CNN-2D), achieved an 

impressive accuracy of 90%. The comparison results against different methods are tabulated in Table 5.  Starting with 

the findings from Kumar et al. [12], which used commercial hardware paired with Artificial Neural Networks (ANN) to 

achieve an accuracy of 88%, our study demonstrates a 2.27% improvement. This comparison highlights the narrowing 

gap between commercial and low-cost hardware in terms of performance, with our CNN-2D model surpassing the 

established benchmark by a significant margin. Arjunan et al., utilize commercial hardware and ANN, reported 

accuracies of 80% [13] and 86% [14], respectively. The improvements in accuracy achieved in our proposed low-cost 
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high-accuracy setup are 12.5% and 4.65%, emphasizing the advancements in algorithmic efficiency and hardware 

capability over time. 
 

TABLE 5 COMPARE WITH PREVIOUS STUDIES 
 

Ref. Hardware Type Classifier Accuracy 

(%) 

Percentage 

Improvement 

[12] Commercial ANN 88 ↑ 2.27% 

[13] Commercial ANN 80 ↑ 12.5% 

[14] Commercial ANN 86 ↑ 4.65% 

[21] Commercial ANN 60 ↑ 50% 

[16] Commercial ANN 85 ↑ 5.88% 

[9] Low-cost/ 

Self Developed 

CNN 

SVM 

KNN 

55 

80 

67 

↑ 63.6% 

↑ 12.5% 

↑ 34.3% 

[7] Low-cost/ 

Self Developed 

ANN 

SVM 

KNN 

82 

83 

84 

↑ 9.75% 

↑ 8.43% 

↑ 7.14% 

The study by Naik et al. [12], which also employed commercial hardware and ANN, showed a relatively lower 

accuracy of 60%. Our approach marks a substantial 50% improvement, underlining the significant strides made in both 

the understanding of sEMG data and the development of more sophisticated DL models. Umesh et al. [16], with an 

85% accuracy using commercial hardware, observed a 5.88% improvement in our study. This comparison further 

solidifies the argument that low-cost hardware, when coupled with advanced DL techniques, can achieve or even 

surpass the performance of more expensive commercial setups. Chandrashekhar's research [9] is particularly 

noteworthy as it directly compares commercial and self-developed, low-cost hardware. Using a variety of classifiers 

(CNN, SVM, KNN), he achieved accuracies ranging from 55% to 80%. Our study's CNN-2D model outperforms these 

results significantly, with percentage improvements ranging from 63.6% for CNN to 12.5% for SVM, and 34.3% for 

KNN, showcasing the effectiveness of our approach in leveraging low-cost hardware for high-accuracy applications. 

The research by Kachhwaha et al. [7], utilizing self-developed, low-cost hardware with ANN, SVM, and KNN 

classifiers, achieved accuracies of 82%, 83%, and 84%, respectively. Our study presents improvements of 9.75%, 

8.43%, and 7.14% over these results, indicating the superior capability of our CNN-2D model in extracting and 

learning from the complex features of sEMG data. These outcomes of our proposed low-cost high-accuracy setup not 

only demonstrate a significant improvement over existing methodologies but also contribute to the ongoing discourse 

on making technologies more accessible and affordable. The results underscore the viability of CNN-2D models as a 

promising approach for enhancing the accuracy and efficiency of sEMG-based communication systems, paving the way 

for further research and development in this exciting domain. 

 

V. CONCLUSION 

 

In this research focused on the evaluation of a sEMG-based system for speech recognition, specifically targeting 

individuals with speech disabilities. This study utilizes various deep learning models such as LSTM, Bi-LSTM, DNN, 

CNN-1D, CNN-2D, to recognize silently spoken English vowels from three facial muscles. The quantitative results 

revealed a high classification accuracy of 90% for sEMG signals, indicating the promising potential of this technology 

for real-world applications. Notably, the CNN-2D model showcased its efficacy by 14.89%, 12.5%, 12.5%, and 8% for 

the LSTM, Bi-LSTM, DNN, and CNN-1D models, respectively. By leveraging deep learning techniques, this research 

provides a stepping stone toward the practical implementation of sEMG-based speech recognition systems. Further 

research efforts can focus on refining the system's accuracy and expanding its scope to encompass a wider range of 

words and phrases. Ultimately, the integration of sEMG-based speech recognition systems into mainstream assistive 

technologies holds great potential in improving the communication and overall quality of life for those in need. 
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