
IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 297

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Collaborative Code Editor Using Web

Application

N.Jaya Santhi1, D.Sireesha2, E.Vindhya3, D.Naga Jyothi4

M.Tech, Asst.Professor, Computer Science & Engineering, Bapatla women’s Engineering College, Bapatla, India1

B.Tech, Computer Science & Engineering, Bapatla women’s Engineering College, Bapatla, India2-4

Abstract: Code Together is a collaborative code editor facilitating real-time communication among developers through

voice calls and chat. Its whiteboard feature aids in algorithm framing and collaborative planning. Saved code updates are

instantly reflected across collaborators’ screens. Access to relevant articles aids in resolving coding queries. Developed

by a team of remote developers, it caters to Agile teams and troubleshooting sessions alike. It's very good at pair

programming, mob programming, and code review.Unlike traditional screen sharing, When another developer wants to

edit the file, they download and edit the copy locally and send the edited copy to the interested group through a

communication channel. It supports multiple IDEs including Eclipse, IntelliJ, and VS Code. Its versatility spans pair

programming, code review, project design, and more. Code Together streamlines unit testing, education, interviews, and

remote development. With its intuitive interface, it merges functionality and simplicity seamlessly. Whether for

professional projects or educational purposes, Code Together enhances collaborative coding experience.

Keywords: Code Together,real-time communication,Integrated development environment,code editing tools

I. INTRODUCTION

The idea of collaborative editing is the ability for multiple users who are geographically apart to work together on the

same set of files. Users used to send a whole copy of a file via email or other internal communication channels when they

wished to share it. When another user wishes to make changes to the file, they download it, make the necessary changes

locally, and then broadcast the changed version over a communication channel to all interested parties.

A different user may have been working on the prior copy during this procedure; in that case, the user receiving the new

copy must manually identify the changes made by the previous user, fix any collisions, and return the modified copy.

This procedure moves slowly and time-consuming.

This issue can be resolved with collaborative code editing tools, which enable numerous users to view the same file and

make changes that are immediately visible to other users. These days, they are highly well-known due to the apparent

advantages of pair programming. Working on the same application together is possible with pair programming for two

or more developers. This boosts output, enhances the quality of the code, and facilitates simpler problem-solving (many

minds on one subject).

II. BACKGROUND AND RELATED WORK

Past studies on collaborative editing and the tools created for it have used both client-server and peer-to-peer architectures.

Client-server architecture can be understood in terms of numerous clients sharing a file on a server when collaborative

editing is taking place. The server updates its copy whenever a client makes changes to its local copy, and the server then

distributes the updates to the other clients that are still able to access the shared file.

Peer-to-peer networks are typically more dependable because they don't rely on a single party within the network. For

collaborative editing, they are extensively studied, such as COE [8] and MUTE [9]. However, managing a larger network

becomes more challenging, and the system may become unstable.

A. Adaption of Lagoot’s CRDT Algorithm

A modification of the Lagoot [4] framework has been employed. Every character has its own positional identifier, which

makes it easier for us to distinguish between them when combining the modifications. An illustration of a single line of

text encoded in CRDT is as follows:

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 298

ISSN (O) 2393-8021, ISSN (P) 2394-1588

 "abcd" => [['a', [0]], ['b', [1]], ['c', [2]], ['d', [3]]

The position identifier for character an is 0, and for other characters it is as follows. The location ID would be "0.5" if

we wanted to add a character between index 0 and 1.

"a1bcd" implies [['a', [0]], ['1', [0, 5]], ['b', [1]], ['c', [2]], ['d', [3]]]

Even in the absence of a central server for coordination, selecting the positional IDs with the above approach aids in the

successful merging of the updates. In the example below, client 1 inserts a character (e) at index 1, and client 2 inserts a

character (d) at index 2, both clients creating modifications to the CRDT data and sending them to the server. The

deletion process could be classified along the same lines.

"a21bcd" indicates [['a', [0]], ['2', [0, 4]], ['1', [0, 5]], ['b', [1]], ['c', [2]], ['d', [3]]]

B. System Design

Fig1:Revised High-level System

 Process Flow

1. Clients can choose a random roomID from the server URL to start a new editor document. As a result, a new document

would be created and shown to the user.

2. Additional clients must join using the same roomID in order to access the same room or content.

3. Upon successful connection, a client establishes two connections: a WebSocket connection with the edit resolver server

and an HTTPS connection with the session management server.

4. Via WebSockets, clients update the document and send the updates to the server. Using WebSocket, the socket server

broadcasts the update to other clients in the same room by executing the CRDT logic for synchronization.

5.The change at the server side is cached and persisted to MongoDB cloud instance on Atlas using batch processing.

6.Once every client is disconnected, the session is closed, and the document is saved in DB.

III. IMPLEMENTATION

A. Modules Description

1. Node.js: The express framework runs 2 servers: HTTPS server and WebSocket server. HTTPS server is responsible

for handling HTTP get requests and the WebSocket server is responsible for handling socket.

• HTTPS server: Clients are connected to the HTTPS server through HTTP requests and the server continuously

listens to the incoming requests. The requests are handled using the request object and the response from the server is

initiated using the response object. The following HTTP endpoint is exposed to the clients.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 299

ISSN (O) 2393-8021, ISSN (P) 2394-1588

• app.get(‘/:roomID’) :When the server receives the HTTP get request with the URL ending with /<roomId>,

The server retrieves the document from the cache if it is available, else it fetches the document from the MongoDB. If

the document doesn’t exist in the database, we create a new entry for the document in the local cache with document

content ‘// New document - <ID>’ and insert this new entry into the database. It renders the HTML page and sends it as

a response to the client.

• WebSocket server: Continuous message sending between the client and server is made possible by web sockets.

Clients first establish a connection with the server by sending an HTTP request. In this project, as soon as the server

receives an HTTP request, the clients create socket connections with it. Through sockets, the client transmits the

modifications to the server, which broadcasts them to the clients.

Client-side socket events

Event Args Events emitted function

connect None CONNECTED_TO_ROOM Establishes socket

connection with

the server

INITIAL_DOCUMENT crdtData None Receives initial

CRDT data of the

document from

server.

CODE_CHANGED changes None Receive the

changes (made by

other clients) from

the server.

Server-side socket event

Event Args Events emitted function

connect None None Server listens for connections from the

client’s

disconnect None None When a session gets disconnected, the

corresponding user is deleted from the list

of active users.

CONNECTED_TO_ROOM roomID,

userName

INITIAL_DOCUME

NT

Stores the document ID and the username

corresponding to the session. It sends the

CRDT data of the corresponding

documents by

CODE_CHANGED changes CODE_CHANGED Update the changes received from the

client in the local cache and broadcast the

changes to all the clients working on that

document.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 300

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Fig1:HTTPS and Socket events from client

2. MongoDB: The shared files are stored in MongoDB. We used a free-tier MongoDB Atlas cloud cluster that was

set up on AWS in the North Virginia area for the project. The 512MB storage limit of the free version in use allows for

the creation of 500 collections over a maximum of 100 databases.

3. MongoDB Adapter: The class provides methods to interact with MongoDB. For the project, we created a database

‘ice's and collection ‘docs’. It exposes the following methods:

• document Exists(room ID): Check if there is an entry in the docs collection with given room ID.

• addDocumentToDB(room ID, data): Inserts a new document entry to the docs collection.

• document Exists(room ID): Check if there is an entry in the local cache with the given room ID.

• addDocumentToCache(room ID, data): Inserts a new document entry in the local cache.

• getCRDTData(room ID): Fetches the CRDT data of the document from the local cache.

• insertToCRDT(room ID, changes): Insert operation on CRDT data of document in the cache.

• deleteFromCRDT(room ID, changes): Delete operation on CRDT data of document in the cache.

A. Server-Side Events:
 Case1: When the document exists in the cache,

Case 2: When the document does not exist in the cache and is fetched from MongoDB,

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 301

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Case 3: When the document does not exist in the cache as well as MongoDB,

IV. RESULTS AND ANALYSIS

User Interface: HTML, CSS, and JavaScript are the building blocks of the web user interface. The username field

appears when the client tries to view the document at https://localhost:8080/1, as seen in the following figure.

Fig2:create a own room

 Fig3:users join the room

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 302

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Fig4:multi users join the room and code edit

V. CONCLUSION

Our objective for this project was to create a collaborative editor solution that provides users with a smooth code editing

experience. While developing the tool, we looked into a variety of architectures and algorithms that provided a wide view

of current systems, their benefits and drawbacks, design limitations, and trade-offs.

We were able to determine which architecture would work best for our particular application by analyzing a number of

ideas that were offered in research articles. The hardest aspect was creating algorithms that would work for different

users. We made it happen by putting CDRT into practice. If CDRT is implemented successfully, we should be able to

update users more quickly. Despite having simple text editing features, CCE implements them well.

VI. FUTURE WORK

The project will require work in the future to switch from stateful to stateless, construct a global cache, and use a Redis

pub sub-system to alert other servers' sockets to code-change events.

Version control can be incorporated into the program. The ability to generate a branch at any moment would result in the

development of a new child session using the snapshot of the current document. For increased security and improved

user experience, additional features like Chat/Call and user authentication could be included.

REFERENCES

[1]. Nichols, David & Curtis, Pavel & Dixon, Michael & Lamping, John. (1995). High-Latency, Low Bandwidth

Windowing in the Jupiter Collaboration System. 111-120. 10.1145/215585.215706.

[2]. Christopher R. Palmer and Gordon V. Cormack. 1998. Operation transforms for distributed shared readsheet. In

Proceedings of 1998 ACM conference on Computer supported cooperative work (CSCW '98). Association for

Computing Machinery, New York, USA, 69–78.

[3]. C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In J. Cli ord, B. Lindsay, and D. Maier, editors,

Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 399{407, Portland, OR June 1989. ACM SIGMOD

Record, 18:2.

[4]. Stephan Weiss, Pascal Urso, Pascal Molli. Logoot: A Scalable Optimistic Replication Algorithm for Collaborative

Editing on P2P Networks. 29th IEEE International Conference on Distributed Computing Systems - ICDCS 2009,

Jun 2009, Montreal, Canada. pp.404-412 .

[5].“Specification and Complexity of Collaborative Text Editing”,[online]

Available:https://software.imdea.org/~gotsman/papers/editing-podc16.pdf

[6]. Collaborative opportunistic network coding for persistent data stream in disruptive sensor networks

Publisher : IEEE - 2021 Author : Mingsen Xu

[7]. ” MUTE: A Peer-to-Peer Web-based Real-time Collaborative Editor” [online] Available: https://hal.inria.fr/hal-

01655438/document

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 3, March 2024

DOI: 10.17148/IARJSET.2024.11347

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 303

ISSN (O) 2393-8021, ISSN (P) 2394-1588

[8]. “COE: A collaborative ontology editor based on a peer-to-peer framework”, [online] Available:

https://www.sciencedirect.com/science/article/pii/S1474034605000364

[9]. “Shared editing on the web: A classification of developer support libraries”, [online] Available:

https://ieeexplore.ieee.org/abstract/document/6680014

BIOGRAPHY

N.Jaya Santhi, M.tech, Asst.Professor , Dept of

Computer science & Engineering, BWEC, Andhra

Pradesh, India

D.Sireesha [B.Tech],Student, Dept of Computer science

& Engineering, BWEC, Andhra Pradesh, India

E.Vindhya[B.Tech], Student, Dept of Computer science&

Engineering, BWEC, Andhra Pradesh, India

D.Naga Jyothi[B.Tech],Student ,Dept of Computer

science& Engineering, BWEC,Andhra Pradesh, India

https://iarjset.com/
https://iarjset.com/

