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Abstract: This study presents a transient analysis and performance evaluation of a two-class repairable machining 

system incorporating priority repair discipline and shared spare units. The system is modeled using a continuous-time 

Markov chain (CTMC) framework to capture the stochastic nature of machine failures and repairs. Two distinct 

machine classes are considered: Class-1 (high priority) and Class-2 (low priority), where Class-1 failures receive 

preemptive service priority. The model accounts for limited repairmen and a finite pool of spares shared among 

machines, which makes it highly relevant to realistic manufacturing environments. By deriving and solving a set of 

transient state differential equations, important reliability and availability metrics such as expected number of failures, 

system availability, and throughput are obtained through a matrix exponential solution approach. Numerical analysis 

demonstrates that increasing the number of repairmen or spares significantly enhances system performance, while 

higher machine failure rates adversely affect availability. The findings provide valuable insights for designing optimal 

maintenance policies that balance repair capacity, spare provisioning, and operational cost to ensure high system 

reliability and productivity. 
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I. INTRODUCTION 

 

Modern manufacturing systems rely heavily on complex assemblies of machines that are prone to random failures 

during continuous operation. To maintain consistent productivity and minimize downtime, it is crucial to evaluate and 

enhance the reliability and availability of such repairable systems. This research focuses on a two-class machining 

system in which failures and repairs are stochastic and occur under resource constraints. The system consists of two 

types of machines: Class-1, representing critical units, and Class-2, representing noncritical or auxiliary machines. A 

preemptive priority repair policy is implemented, giving Class-1 machines preferential access to repair facilities to 

ensure minimal disruption of critical operations. Additionally, a shared pool of warm spares is included to replace 

failed components immediately, thereby improving operational continuity. The model employs continuous-time 

Markov chain (CTMC) techniques to describe the system dynamics and derive analytical expressions for transient 

probabilities, availability, and expected failures. This approach enables detailed examination of the time-dependent 

behavior of the system, offering valuable guidance for real-world maintenance scheduling and capacity planning in 

manufacturing plants. Through this study, the combined influence of repair priority, spare provisioning, and the number 

of available repairmen is systematically analyzed to support efficient decision-making and improve overall system 

performance. 

 

Neuts (1979) provided the mathematical foundation for analyzing queueing and repairable systems governed by 

Markovian transitions, which later became central to continuous-time Markov chain (CTMC) models used in reliability 

and availability analysis. This early contribution established the analytical tools for modeling systems involving 

multiple failure and repair states, which directly underpins the present study’s transient-state formulation. He and 

Neuts (1998) facilitated detailed tracking of system behavior over time, which is essential in studying two-class 

systems where priority repair and failure differentiation between machine types are critical. The current model benefits 

from this theoretical foundation by incorporating state-dependent repair priorities and shared spare allocation in a 

structured Markovian framework. Zhai et al. (2015) demonstrated how system performance depends on the interaction 

between primary and standby units, which is conceptually similar to the shared spare mechanism considered in this 
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study. By addressing fault level coverage and dependency, their work laid the groundwork for incorporating warm 

spare units to enhance overall system resilience, as done here. Zhang et al. (2017) emphasized the detrimental impact 

of repair interruptions, providing motivation for analyzing priority-based repair allocation, as explored in the present 

two-class model. Cha et al. (2017) examined preventive maintenance under random shocks, establishing how random 

external disturbances accelerate degradation and affect maintenance scheduling an insight that supports the inclusion of 

stochastic failure processes in the current transient framework. Yang et al. (2017) advanced the understanding of multi-

phase degradation, showing that neglecting early signs of system deterioration can lead to rapid performance decline. 

This notion aligns with the transient analysis approach used in this research, where early transient states correspond to 

rapid performance drops before system stabilization. In a related study, Peng et al. (2017) explored the reliability of 

multi-state systems with performance-sharing groups, highlighting how shared resources affect repair rates and system 

performance—conceptually parallel to this study’s shared spare pool model. Yu et al. (2018) reinforced the value of 

Markovian multi-state representations for industrial applications, a technique extensively applied in the present analysis 

of machining systems with multiple repair states and transient probabilities. Acal et al. (2019) applied phase-type 

distributions to model variability in complex systems, demonstrating the flexibility of such distributions in describing 

random repair and failure durations. Their contribution supports the matrix-analytic techniques used in this study, 

particularly in handling the exponential solution of transient-state probability vectors through matrix exponentiation. 

Shekhar et al. (2020) discussed the impact of repairman vacations on reliability in stochastic systems, emphasizing 

how temporary unavailability of maintenance resources significantly affects system uptime. Their findings are relevant 

to the current model’s multi-repairman configuration, which explicitly investigates how increasing the number of 

available repairmen enhances system availability and recovery rate. Similarly, Finkelstein et al. (2020) introduced a 

hybrid preventive maintenance model for partially observable degradation systems, bridging stochastic degradation 

processes and maintenance optimization. Their hybrid approach aligns with the transient analysis method adopted here, 

where gradual degradation and repair are treated as continuous stochastic processes influencing time-dependent 

availability. Shi et al. (2022) proposed a preventive maintenance optimization model that integrates lifecycle safety and 

cost considerations, highlighting the importance of balancing performance improvement with operational expenditure. 

Their focus on maintenance optimization over time resonates with the transient modeling of repairable systems 

developed in this study, which seeks to optimize availability by adjusting parameters such as repair rate and spare 

provisioning. Bruneel and Devos (2024) provided mathematical insights applicable to the priority repair discipline of 

the present two-class system, where concurrent service of multiple failure classes requires careful balance between 

priority allocation and resource sharing. 

 

II. FORMULATION OF THE MODEL 

 

2.1. System Description: 

 

Table 1: Definition of Symbols and Parameters Used in the Model 

Symbol Meaning 

𝑁1, 𝑁2 Number of Class-1 and Class-2 machines in operation. 

𝑐 Number of repairmen (servers). 

𝜆1, 𝜆2 Failure rates per machine of each class. 

𝜇𝑟 Base repair rate per server. 

𝜇𝑠 Spare part replacement rate (shared pool). 

𝑛𝑠 Number of spares in shared pool. 

Priority Class-1 (high) has preemptive priority over Class-2 (low). 

𝑃𝑖,𝑗(𝑡) Probability that 𝑖 Class-1 and 𝑗 Class-2 machines are failed at time ( t ). 

 

2.2. Model Assumptions: 

 Failures: 

Occur independently:  

𝑖 ⟶ 𝑖 + 1 with rate (𝑁1 − 𝑖)𝜆1 

𝑗 ⟶ 𝑗 + 1 with rate (𝑁2 − 𝑗)𝜆2 

 Repairs (service completions): 

Total number of failed machines 𝑛 = 𝑖 + 𝑗. 
Active servers = min⁡(𝑛, 𝑐) 
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Effective service rate per active machine: 

 

𝜇𝑒𝑓𝑓(𝑖, 𝑗) =
𝜇𝑟𝑛𝑠

𝑛𝑠+𝑖+𝑗
+

𝜇𝑠(𝑖+𝑗)

𝑛𝑠+𝑖+𝑗
          (1) 

 

Class-1 gets preemptive priority, i.e. repair service is allocated first to Class-1 failures. 

 

2.3. State Representation: Let 

 

𝑃(𝑡) = [𝑃0,0, 𝑃0,1, 𝑃0,2, 𝑃1,0, 𝑃1,1, 𝑃1,2]
𝑇
  

 

represent a 6-dimensional state vector truncated to at most 1 critical and 2 noncritical failures (for tractable transient 

modeling). 

 

Then: 
𝑑𝑃

𝑑𝑡
= 𝐵(𝑡)𝑃(𝑡) 

 

where 𝐵(𝑡) is a 6×6 block matrix, containing rates for transitions between joint states. 

 

2.4. Two-Dimensional Transient ODE System: Each state evolves as follows (transient Kolmogorov forward 

equations): 

 
𝑑𝑃0,0

𝑑𝑡
= −[𝑁1𝜆1 + 𝑁2𝜆2]𝑃0,0 + 𝜇𝑒𝑓𝑓(1,0)𝑃1,0 + 𝜇𝑒𝑓𝑓(0,1)𝑃0,1       (2) 

 
𝑑𝑃1,0

𝑑𝑡
= 𝑁1𝜆1𝑃0,0 + [(𝑁1 − 1)𝜆1 + 𝑁2𝜆2 + 𝜇𝑒𝑓𝑓(1,0)]𝑃1,0 + 𝜇𝑒𝑓𝑓(1,1)𝑃1,1      (3) 

 
𝑑𝑃0,1

𝑑𝑡
= 𝑁2𝜆2𝑃0,0 − [𝑁1𝜆1 + (𝑁2 − 1)𝜆2 + 𝜇𝑒𝑓𝑓(0,1)]𝑃0,1 + 𝜇𝑒𝑓𝑓(0,2)𝑃0,2 + 𝜇𝑒𝑓𝑓(1,1)𝑃1,1  

(4) 

 
𝑑𝑃1,1

𝑑𝑡
= (𝑁1 − 1)𝜆1𝑃0,1 + (𝑁2 − 1)𝜆2𝑃1,0 − [(𝑁1 − 1)𝜆1 + (𝑁2 − 1)𝜆2 + 𝜇𝑒𝑓𝑓(1,1)]𝑃1,1 + 𝜇𝑒𝑓𝑓(1,2)𝑃1,2   

            (5) 

 
𝑑𝑃0,2

𝑑𝑡
= (𝑁2 − 1)𝜆2𝑃0,1 − [𝑁1𝜆1 + 𝜇𝑒𝑓𝑓(0,2)]𝑃0,2        (6) 

 
𝑑𝑃1,2

𝑑𝑡
= (𝑁1 − 1)𝜆1𝑃0,2 + (𝑁2 − 1)𝜆2𝑃1,1 − 𝜇𝑒𝑓𝑓(1,2)𝑃1,2        (7) 

 

Normalization and Initial Conditions 

 
∑ 𝑃𝑖𝑗(𝑡) = 1, 𝑃0,0𝑖𝑗 (0) = 1, 𝑃𝑖,𝑗(0) = 0⁡𝑓𝑜𝑟⁡(𝑖, 𝑗) ≠ (0,0)       (8) 

 

III. MATRIX BLOCK REPRESENTATION 

 

Define the state vector: 

 

𝑃(𝑡) =

[
 
 
 
 
 
 
𝑃0,0

𝑃0,1

𝑃0,2

𝑃1,0

𝑃1,1

𝑃1,2]
 
 
 
 
 
 

  

Then the system evolves as: 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝐵𝑃(𝑡)        (9) 
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𝐵

=

[
 
 
 
 
 
 
−(𝜆1𝑁1 + 𝜆2𝑁2) 𝜇01 𝜇10 0 0 0

𝜆2𝑁2 −[𝜆1𝑁1 + 𝜆2(𝑁2 − 1) + 𝜇01] 𝜇02 0 𝜇11 0

0 𝜆2(𝑁2 − 1) −(𝜆1𝑁1 + 𝜇02) 0 0 0

𝜆1𝑁1 0 0 −[𝜆1𝑁1 + 𝜆2(𝑁2 − 1) + 𝜇10] 𝜇11 0

0 𝜆1(𝑁1 − 1) 0 𝜆2(𝑁2 − 1) −[𝜆1(𝑁1 − 1) + 𝜆2(𝑁2 − 1) + 𝜇11] 𝜇12

0 0 𝜆1(𝑁1 − 1) 0 𝜆2(𝑁2 − 1) −𝜇12]
 
 
 
 
 
 

 

            (10) 

where 𝜇𝑖𝑗 − 𝜇𝑒𝑓𝑓(𝑖, 𝑗)  for compactness. 

 

For many realistic manufacturing systems, the effective service rate. 𝜇𝑒𝑓𝑓(𝑖, 𝑗) changes slowly compared to failure 

dynamics, so it can be approximated as piecewise constant over short time intervals: 

 

𝜇𝑒𝑓𝑓(𝑖, 𝑗) =
𝜇𝑟𝑛𝑠+𝜇𝑠𝐸[𝑛𝑓]

𝑛𝑠+𝐸[𝑛𝑓]
           (11) 

 

IV. MATRIX EXPONENTIAL SOLUTION APPROACH 

 

Thus, we treat 𝐵(𝑡)⁡as approximately constant ⇒𝐵. 

Then the transient state probabilities are given by 

 

𝑃(𝑡) = 𝑒𝐵𝑡𝑃(0)            (12) 

 

The matrix exponential solution expands as: 𝑒𝐵𝑡 = ∑
(𝐵𝑡)𝑘

𝑘!

∞
𝑘=0  

 

This series converges rapidly because 𝐵 is stable (negative diagonal entries dominate). 

 

So for each state 𝑃𝑖𝑗(𝑡): 𝑃𝑖𝑗(𝑡) = [𝑒𝐵𝑡𝑃(0)]𝑖,𝑗       (13) 

 

For a two-class, 6×6 system, we can explicitly diagonalize 𝐵: 

 

Let 𝐵 = 𝑉Λ𝑉−1           (14) 

 

Where Λ = diag(λ1
∗ , λ2

∗ , … , λ6
∗) 

 

and  𝑉 the eigenvectors. Then 

 

𝑃(𝑡) = 𝑉𝑒Λt𝑉−1𝑃(0)           (15) 

 

This gives closed-form expressions: 𝑃𝑖𝑗(𝑡) = ∑ 𝐶𝑘
(𝑖,𝑗)

𝑒λk
∗ t6

𝑘=1       (16) 

 

where 𝐶𝑘
(𝑖,𝑗)

 depend on eigenvectors and initial probabilities. 

 

V. PERFORMANCE MEASURES 

 

 (i) Expected total failed units:  𝐸[𝑛𝑓(𝑡)] = ∑ (𝑖 + 𝑗)𝑃𝑖,𝑗(𝑡)𝑖𝑗       (17) 

 

(ii) Expected critical failures:⁡𝐸[𝑛1(𝑡)] = ∑ 𝑖𝑃𝑖,𝑗(𝑡)𝑖𝑗        (18) 

 

(iii) System availability:𝐴(𝑡) = 1 −
𝐸[𝑛𝑓(𝑡)]

𝑁1+𝑁2
        (19) 

 

(iv) Transient throughput: 𝑇(𝑡) = [𝑁1 + 𝑁2 − 𝐸{𝑛𝑓(𝑡)}] × Production rate per machine  (20) 

 

 

VI. NUMERICAL ILLUSTRATION 
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Table 2: Numerical Values of Base Parameters 

Parameter Symbol Value Units 

Number of Class-1 machines 𝑁1 3 machines 

Number of Class-2 machines 𝑁2 4 machines 

Number of repairmen 𝑐 2 servers 

Failure rate (Class-1) 𝜆1 0.02 failures/hour 

Failure rate (Class-2) 𝜆2 0.01 failures/hour 

Base repair rate 𝜇𝑟 0.5 repairs/hour 

Spare replacement rate 𝜇𝑠 0.3 replacements/hour 

Number of spares 𝑛𝑠 3 units 

Production rate per machine — 10 units/hour 

 

We will truncate the model to six joint states: 

(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)  

Using the formula (1), we get  

 

𝜇00 = 0.5, 𝜇01 = 0.45, 𝜇02 = 0.42, 𝜇10 = 0.45, 𝜇11 = 0.42, 𝜇12 = 0.40  

 

Transition Matrix 𝐵 

 

𝐵 =

[
 
 
 
 
 
−0.10 0.45 0.45 0 0 0
0.04 −0.54 0.42 0 0.42 0
0 0.03 −0.48 0 0 0

0.06 0 0 −0.54 0.42 0
0 0.04 0 0.03 −0.49 0.40
0 0 0.04 0 0.03 −0.40]

 
 
 
 
 

  

𝑃(0) = [1,0,0,0,0,0]𝑇  

 

𝑃(𝑡) = 𝑒𝐵𝑡𝑃(0)  

 

To approximate manually, use: 𝑃(𝑡 + Δ𝑡) ≈ 𝑃(𝑡) + ∆𝑡⁡𝐵𝑃(𝑡) 

Choose a small time step, say  ∆𝑡 = 1⁡ℎ𝑟.  
 

At 𝑡 = 0, 𝑃(0) = [1,0,0,0,0,0]𝑇  

 

𝑑𝑃

𝑑𝑡
=

[
 
 
 
 
 
−0.10
0.04
0

0.06
0
0 ]

 
 
 
 
 

  

Hence after 1 hour: 𝑃(1) = [0.9,0.04,0.06,0,0]𝑇 

 

(i) Expected Number of Failed Machines:  

𝐸[𝑛𝑓(𝑡)] = ∑(𝑖 + 𝑗)𝑃𝑖,𝑗(𝑡) = 0.10  

 

(ii)System Availability: 𝐴(𝑡) = 1 −
𝐸[𝑛𝑓(𝑡)]

𝑁1+𝑁2
= 0.9857 

 

(iv) Transient Throughput: 𝑻(𝒕) = [𝑁1 + 𝑁2 − 𝐸{𝑛𝑓(𝑡)}] × (production rate per machine) 

 

T(t) = (7 − 0.10) × 10 = 69⁡units/hour  
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VII. RESULTS AND DISCUSSION 

 

The graph (1) illustrates the variation of system availability 𝐴(𝑡) with respect to time 𝑡 for three different repair rates: 

𝜇 = 0.5, 𝜇 = 1 and 𝜇 = 2. The availability 𝐴(𝑡)  represents the probability that the system is operational at time 𝑡. As 

shown, all three curves start from an initial availability of around 0.7 and increase monotonically toward steady-state 

values as time progresses. The rate of increase is faster for higher repair rates, indicating that quicker repairs 

significantly enhance system availability. Specifically, when 𝜇 = 2 (blue dash-dotted line), the system rapidly 

approaches near-perfect availability (close to 1) within a short time span, while for 𝜇 = 0.5 (black dashed line), the 

increase is much slower and stabilizes at a lower level. The curve for 𝜇 = 1 (solid red line) lies between the other two, 

showing moderate improvement. Overall, the graph clearly demonstrates that increasing the repair rate substantially 

improves both the speed and magnitude of system availability over time. 

 

The graph (2) depicts how different transient components contribute to the overall system response 𝛾 as a function of 

time 𝑡. The initial decay (blue dashed line) represents a rapid decline from a high starting value, indicating the system’s 

immediate response following a disturbance. The exponential component (orange dash-dotted line) shows a moderate 

rise to a peak near 𝑡 = 1.5⁡before gradually decreasing, capturing the system’s exponential relaxation behavior over 

time. The algebraic component (green solid line) rises smoothly and decays slowly, signifying long-term effects that 

diminish at a slower, non-exponential rate. The total response (black solid line) combines all three effects, starting from 

a moderate initial value, peaking shortly after 𝑡 = 1, and then gradually decaying toward zero. Overall, the figure 

illustrates how transient behavior in dynamic systems can be decomposed into distinct modes rapid initial decay, 

intermediate exponential relaxation, and slow algebraic decay each influencing the system’s return to steady state. 

 

The graph (3) shows how system availability 𝐴(𝑡) varies with time for different numbers of repairmen (𝑐 = 1,2, 𝑐 = 3)  

. Initially, all configurations start with very high availability close to 1, but a decline occurs as time progresses due to 

system failures and repair delays. The system with one repairman (c = 1), represented by the orange dash-dotted line, 

experiences the steepest drop in availability, reaching the lowest steady-state level, indicating that limited repair 

capacity leads to reduced operational performance. With two repairmen (𝒄 = 𝟐), shown by the blue dotted line, the 

system performs better, maintaining higher availability throughout the observation period. The configuration with three 

repairmen (𝒄 = 𝟑), represented by the green dashed line, consistently exhibits the highest availability, showing only a 

slight decline followed by recovery after about 2 hours, stabilizing near 0.985. Overall, the graph demonstrates that 

increasing the number of repairmen significantly enhances system availability and resilience by reducing downtime and 

improving repair efficiency over time. 

 

The graph (4) illustrates how system availability 𝐴(𝑡) changes over time for different failure rates of Class-1 machines 
(𝜆1 = 0.01,0.02,0.03). Initially, all curves start at full availability [𝐴(𝑡) = 1]  but decrease as time progresses due to 

machine failures. The lowest failure rate  (𝜆1 = 0.01) , shown by the orange dashed line, maintains the highest 

availability throughout, with only a gradual decline followed by stabilization around 0.985. As the failure rate increases 

to 𝜆1 = 0.02 (blue dotted line) and 𝜆1 = 0.03  (green dash-dotted line), the system experiences a sharper initial drop in 

availability, reaching lower steady-state values. Interestingly, after around 6 hours, the higher failure rate curves exhibit 

a slight upward trend, likely due to repair actions restoring some machines to service. Overall, the graph clearly 

demonstrates that higher failure rates lead to reduced system availability, emphasizing the critical impact of Class-1 

machine reliability on overall system performance. 

 

The graph (5) illustrates how system availability 𝐴(𝑡) varies with time for different numbers of spare units (𝑛𝑠 =
2,3,4). Initially, all configurations start with perfect availability [𝐴(𝑡) = 1] but experience a decline as time progresses 

due to equipment failures and repair delays. The system with fewer spares (𝑛𝑠 = 2), represented by the orange dash-

dotted line, shows the steepest decline and lowest steady-state availability, stabilizing near 0.97. As the number of 

spares increases to 𝑛𝑠 = 3 (blue dotted line) and 𝑛𝑠 = 4 (green dashed line), the system maintains higher availability 

levels, with the curve for 𝑛𝑠 = 4⁡showing the best performance and fastest recovery after the initial drop. This 

demonstrates that adding spare units significantly enhances system resilience by reducing downtime and compensating 

for machine failures. Overall, the graph confirms that system availability improves with an increasing number of 

spares, highlighting the importance of adequate spare provisioning in ensuring operational continuity. 

 

The graph (6) illustrates the variation of the expected number of failures  𝐸[𝑓(𝑡)] with time 𝑡 for systems having 

different numbers of repairmen (𝑐 = 1,2,3) . Initially, all configurations show a rapid increase in expected failures as 

machines begin to fail. However, as time progresses, the rate of failures slows down and eventually stabilizes, 

indicating the system reaching a quasi-steady state. The system with one repairman (𝒄 = 𝟏), represented by the orange 

dashed line, exhibits the highest number of expected failures throughout, reflecting longer repair times and accumulated 
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breakdowns. As the number of repairmen increases to two (𝒄 = 𝟐) and three (𝒄 = 𝟑)shown by the blue dotted and 

green dash-dotted lines respectively the expected number of failures decreases significantly due to faster repair rates 

and reduced downtime. Overall, the graph clearly demonstrates that increasing the number of repairmen enhances 

system reliability by minimizing the accumulation of failed machines and maintaining smoother operational 

performance over time 
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Table 3: Transient Availability Results 

Time (hr) 𝐸[nf(t)] 𝐴(𝑡) 

0 0 1 

1 0.1 0.9857 

2 0.1452 0.9793 

3 0.1664 0.9762 

4 0.1755 0.9749 

5 0.178 0.9746 

6 0.1765 0.9748 

7 0.1728 0.9753 

8 0.1677 0.976 

9 0.1618 0.9769 

10 0.1556 0.9778 

 

Table (3) presents the transient behavior of the system in terms of the expected number of failed machines, 𝐸[nf(t)], 
and the corresponding system availability, 𝐴(𝑡), over a time period of 10 hours. Initially, at 𝑡 = 0, all machines are 

operational, hence 𝐸[nf(0)]⁡and the availability is unity [𝐴(0) = 1]. As time progresses, the number of failures 

gradually increases due to stochastic breakdown events, reaching a peak expected value of approximately 0.178 failed 

machines around the fifth hour. This increase in failures leads to a gradual reduction in availability, which decreases 

from 1.0000 at the start to a minimum of about 0.9746 at 𝑡 = 5 hours. Beyond this point, the repair and replacement 

processes begin to balance the rate of new failures, leading to a slight recovery in system performance. Consequently, 

availability stabilizes and exhibits a mild upward trend, reaching 0.9778 at 𝑡 = 10  hours. This transient pattern 

demonstrates that the system initially experiences a deterioration phase followed by a steady-state recovery, indicating 

that the repair resources are sufficient to maintain long-term operational stability. 

 

VIII. CONCLUDING REMARKS 

 

The transient analysis of the proposed two-class repairable machining system reveals that both the number of repairmen 

and the availability of spare units play a decisive role in maintaining high system availability and reliability. Results 

indicate that systems with more repairmen exhibit faster recovery and lower expected failure accumulation, while an 

increase in the number of spares enhances resilience by providing immediate replacements for failed units. Conversely, 

higher machine failure rates particularly for Class-1 machines—reduce system performance, emphasizing the 

importance of preventive maintenance strategies. The transient response shows an initial degradation phase followed by 

a steady-state recovery, confirming that sufficient repair and spare resources can stabilize the system over time. 

Overall, the developed model provides a practical analytical framework for evaluating and optimizing repairable 

manufacturing systems, enabling managers and engineers to balance repair efficiency, spare inventory, and 

maintenance cost while ensuring long-term operational reliability. 
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