

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 ∺ Peer-reviewed & Refereed journal ∺ Vol. 11, Issue 4, April 2024 DOI: 10.17148/IARJSET.2024.11462

Leveraging TensorFlow and Machine Learning for Accurate Scholarship Portal Predictions

Mr. Tapas Desai¹, Ms. Bhumika Dubey², Mr. Dhruv Gal³, Ms. Sonia Behra⁴

Electronics & Telecommunication Engineering, Thakur College of Engineering & Technology, Mumbai, India¹⁻⁴

Abstract: The utilization of machine learning (ML) techniques, particularly Tensor Flow, for predicting scholarship eligibility has become paramount in modern educational landscapes. This study proposes a predictive model leveraging Tensor Flow algorithm to forecast scholarship eligibility based on a comprehensive set of input parameters. These parameters include crucial academic metrics such as GPA, 10th and 12th percentage, alongside qualitative assessments like extracurricular activities, essay quality, and letters of recommendation. Furthermore, the model integrates socio-economic factors such as financial need, family background, and state of residence, along with indicators of leadership, volunteerism, and work experience. Implemented through Python Flask for a user-friendly interface, this system provides a seamless experience for users to input their data and receive predictions regarding their eligibility for scholarships. By harnessing the power of ML, this framework offers educational institutions and students a robust tool to streamline scholarship allocation processes, ensuring efficient and equitable distribution of resources to deserving candidates.

I. INTRODUCTION

Scholarships serve as a critical means for students to access higher education, often alleviating financial burdens and paving the way for academic success. However, the process of determining eligibility for scholarships can be complex and time-consuming for both students and institutions. Leveraging the power of machine learning (ML), particularly through algorithms like Tensor Flow, offers a promising solution to streamline and enhance scholarship prediction processes. Tensor Flow, a powerful ensemble learning technique, is employed to analyse the input data and make predictions regarding scholarship eligibility. By constructing multiple decision trees and combining their outputs, Tensor Flow mitigates overfitting and enhances the accuracy and robustness of predictions. This makes it particularly well-suited for handling the complexity and variability inherent in scholarship selection processes.

Python Flask is utilized to develop a user-friendly graphical interface (GUI) for the system. Flask's simplicity and flexibility make it an ideal choice for building web applications, allowing users to easily input their information and receive real-time feedback regarding their eligibility for various scholarships. The GUI enhances accessibility and usability, enabling students to navigate the prediction process with ease.

Overall, the integration of ML techniques, specifically Tensor Flow, with Python Flask for GUI development represents a novel approach to scholarship prediction. By automating and optimizing the evaluation process, this system facilitates fairer and more efficient distribution of scholarships, ultimately empowering students to pursue their academic aspirations without undue financial barriers.

II. LITERATURE SURVEY

Research papers that implement TensorFlow and machine learning (ML) for scholarship prediction in real-world scholarship portals typically focus on several key aspects: ML algorithms used, data pre-processing techniques, and evaluation metrics employed to assess model performance. One notable study in this domain is the implementation of a scholarship prediction system for a university's financial aid portal. This study utilized TensorFlow to develop a classification model aimed at predicting scholarship eligibility based on various factors such as student GPA, major, and extracurricular activities.

The research paper might detail the specific ML algorithms employed, such as logistic regression, decision trees, random forests, or neural networks implemented using TensorFlow. Each algorithm's suitability for the task and its performance metrics could be discussed. The paper would describe the steps taken to pre-process the data before feeding it into the ML model. This could include data cleaning (handling missing values, outliers), feature engineering (creating new features from existing ones), and feature scaling or normalization. By conducting a comprehensive literature survey on these topics, researchers can gain a deeper understanding of the existing knowledge and approaches in the field.

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 $\,\,st\,$ Peer-reviewed & Refereed journal $\,\,st\,$ Vol. 11, Issue 4, April 2024

DOI: 10.17148/IARJSET.2024.11462

III. EXISTING PROBLEMS

From the literature survey approach, we referred a few papers revolving around the same principle that had the following problems in them.

This consists of literature survey to prediction of scholarship by using Machine Learning and Data Mining technique.

Suma, V., [1] had used decision trees to evaluate student performance. Here an educational data set is considered and entropy and information gain of all the attributes present in the dataset is calculated. The attribute which consists of the highest information gain is considered as the root node of the tree. This classification algorithm is used to identify students with poor performance.

Mitra.Ayushi [2]. had proposed a scrum methodology to track the performance of the student in web-based education. In this methodology, the teacher describes the learning objectives and that teacher is responsible for monitoring the progress. Later evaluation of all the members is done.

Madhav S. Vyas, [3] made use of a decision tree model for academic performance prediction. The continuous values were converted to discrete values and the null values eliminated in the collection and pre-processing phase.

Ratik Fitriana,[4] describe among all technologies, the researcher used to analysis the data such as scholarship recipient prediction is data mining, Author describes the two methods which was used to predict the output such as k nearest neighbours (KNN) and linear regression algorithms. This study compares both methods in solving the scholarship recipient problem. Here the Author uses key parameters such as semester attendance, Grade point average, statement letter of active student, Family Card, Identity Card, Study Result Card.

Angela R. Bielefeldt [5] in her paper explains that differences between the civilization of engineering faculties when compared to scholarship of teaching and learning (SOTL) in engineering sector maintain themselves with all characteristics of faculty who involved in their activities. SOTL compared overall US engineering faculty based on a assistant professors percentage, a full professors percentage, women's percentage, employees percentage who worked at Baccalaureate and Masters institutions.

IV. METHODOLOGY

The proposed methodology aims to develop a Scholarship Prediction system utilizing Machine Learning (ML) techniques, primarily Tensor Flow, to predict scholarship eligibility based on various input parameters. The system will employ Python Flask to create a user-friendly GUI for ease of interaction.

The first step involves data collection and preprocessing. Relevant data points such as Student ID, GPA, 10th and 12th percentage, Extra Curricular Activities, Essay Quality, Letter of Recommendation Submitted, Financial Need, Major, State of Residence, Leadership Experience, Volunteer Work, Work Experience, and Family Background will be collected. This data will then undergo preprocessing, including handling missing values, normalization, and feature engineering to ensure compatibility with the ML model.

Next, the pre-processed data will be divided into training and testing datasets. The training dataset will be used to train the Tensor Flow classifier, while the testing dataset will be reserved for evaluating the model's performance.

The core of the system lies in the implementation of the Tensor Flow algorithm. Tensor Flow is a versatile ML algorithm known for its accuracy and robustness in handling complex datasets with numerous input variables. By leveraging Tensor Flow, the system will be able to effectively analyse the input parameters and predict the scholarship eligibility of a student.

Once the Tensor Flow model is trained, it will be integrated into the Python Flask framework to develop a graphical user interface (GUI). The GUI will provide a user-friendly platform where users can input their details, including GPA, extracurricular activities, essay quality, etc., and receive an immediate prediction regarding their eligibility for a scholarship.

The Flask framework will handle the backend processing, invoking the Tensor Flow model to make predictions based on the provided inputs.

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 😤 Peer-reviewed & Refereed journal 😤 Vol. 11, Issue 4, April 2024

DOI: 10.17148/IARJSET.2024.11462

Furthermore, the system will incorporate mechanisms for result interpretation and feedback. Users will not only receive a binary output indicating their eligibility for a scholarship but also gain insights into the factors influencing the prediction. This feedback mechanism will help students understand areas for improvement and increase transparency in the decision-making process.

In summary, the proposed methodology entails data collection, preprocessing, model training using Tensor Flow, integration with Python Flask for GUI development, and provision of result interpretation and feedback mechanisms. By leveraging ML techniques and a user-friendly interface, the system aims to streamline the scholarship prediction process and enhance accessibility for students.

Here are the steps of overall flow:

1. Data Collection and Preprocessing:

- Gather relevant datasets containing student information, including GPA, percentage in 10th and 12th grades, extracurricular activities, essay quality, letter of recommendation status, financial need, major, state of residence, leadership experience, volunteer work, work experience, and family background.

- Preprocess the data to handle missing values, outliers, and categorical variables, ensuring the data is suitable for training the Tensor Flow model.

2. Feature Engineering:

- Conduct feature engineering to extract meaningful insights and create new features if necessary, such as combining GPA and percentage scores, creating a composite score for extracurricular activities, etc.

3. Model Training and Evaluation:

- Implement a Tensor Flow classifier using Python's scikit-learn library to predict scholarship eligibility based on the input parameters.

- Split the dataset into training and testing sets to train and evaluate the model's performance.

- Employ appropriate evaluation metrics such as accuracy, precision, recall, and F1-score to assess the model's effectiveness in predicting scholarship eligibility.

4. Hyperparameter Tuning:

- Perform hyperparameter tuning to optimize the Tensor Flow model's performance. Experiment with different parameter settings such as the number of trees, maximum depth of trees, and minimum number of samples required to split a node to improve prediction accuracy.

5. Integration with Flask GUI:

- Develop a user-friendly GUI using Python Flask framework to allow users to input student information conveniently.

- Design the GUI to accept input parameters such as student ID, GPA, percentage in 10th and 12th grades, extracurricular activities, essay quality, etc., and display the predicted scholarship eligibility based on the Tensor Flow model's prediction.

6. Testing and Validation:

- Conduct extensive testing of the Flask GUI to ensure proper functionality and user experience across different platforms and devices.

- Validate the predicted scholarship eligibility results by comparing them with actual scholarship outcomes or expert judgment to ensure the model's reliability and accuracy.

7. Deployment and Scalability:

- Deploy the scholarship prediction system on a web server or cloud platform to make it accessible to a wider audience.
- Ensure scalability of the system to handle many user requests efficiently without compromising performance.

8. Documentation and Maintenance:

- Document the entire development process, including data preprocessing steps, model training procedure, GUI implementation, and deployment instructions, to facilitate future maintenance and updates.

- Establish a maintenance plan to address any issues or updates required in the future, such as retraining the model with new data or incorporating additional features based on user feedback.

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 ∺ Peer-reviewed & Refereed journal ∺ Vol. 11, Issue 4, April 2024 DOI: 10.17148/IARJSET.2024.11462

Data Set :

		\times	V .	fe 🛛 🗴	tudenti	D																			
A	U		¢	υ		L.	1	G		1	1.1	К	1.6	м	N	U	P	a	8	5			U	l v	
den/10	GPA	1	a h Perce	1215 PA	nos Latr	anni	Dony Que	tetten of	linenciel 1	Major	State of B	Leadenh	r Volunteer	Work Lap	e Lemily Per	Lamily Inc	scheland	ip -		-			-		
G	7.7340	048 6	6.23719	93.408	37 maa	fium	excellent	weak	Ngh	Arts	Tamil Nod	yes	no	no	low	93053.1	2 Aayog M	atric Schol	arship Sch	eme Upt	o 60,000	perar	anvm		
н	9.003	105 n	2.54557	IIN THIS	64 Iow		good	strong	medium	Medicine	Utter Prer	lan .	line .	na	high	/62/4.96	b Dr. Ambe	dicer Nichol	wship - /h	,000 per a	nnum				
15	3.366.	233 6	8.52477	80.100	34 Ion		excellent	strong	high	Arts	Uttar Prac	ne	105	905	high	101036.4	Tata Ma	ric Schellar	ship for M	finorities	50,000 p	ter ann	NIII		
17	7.647	08 8	2 19160	90.026	65	linn	fair	madevate		Engineeric	Delle	10.0	100		kee.	105847.4	Same V	- baranda	Meril cur	n Means S	- Induced	in 11	10 12 00	10 mm and	_
19	8,474	38 7	3.11819	92.192	44 low		poor	weak	low/	Engineerin	Maharash	ves	ves	00	high	71523.60	AICTE Pr	gati Schola	siship - 50	L000 per a	num				
25	9.775	135	61,6123	85,484	ar low		pare	moderate	nedium	Engineerin	Karala	yes.	yes.	944	kaw	85543.55	Section 1	choleship	- 24,000 (per stimute					
30	9.288	191 7	6.71859	98.182	38 mcc	fium	poor	weak	low	Science	Kerala	yes	yes	5905	medium	29906.60	Santoor:	icholarship	26,000 (per annum					
33	8.7.10	95 8	K2746K	hK.657	bs low		tred lens	wasek	medium	Arb.	Kerneteka	Awa .	line .	80	high	105443.6	b twir and	crowly.Scho	danship - L	ap to MUD	10				
30	8.010	178 7	8.36430	28.79	18 mcc	fium .	excellent	weak	iow.	Medicine	Maharash	no	no	905	medium	52500.71	Post Gra	duate India	a Gandhi S Islain fan N	Scholarship	86,200	o per a	noum		
20	0.012	14 P 2	7 20417	01.123	04 N.B		excellent	enong .	redun	Engineer r	Kameraka	quere .	(we	çue .	han	1222103	Googl Co	nic seniore Inducible	45 000 m	CONTRACTOR -	Solara b	er ant	sim.		
- 41	9,890	172 9	3.68927	67.028	57 mer	tium	mod	moderate	low	Entimeerin	Kamataka	week.	WHS.	100	high	158513.7	Fair and	ovely Scho	lamhin - L	in to 58.0	10				
42	6,403	755 E	0.64122	76.018	63 km		excellent	shorts	nedium	Arb	TamilNad	yua .	100	953	kaw	81520.03	Tata Ma	ric Schelar	ship for M	finerities -	50,000 p		-		
- 49	8,495	771 8	8.50571	89.404	27 Ngh		excellent	weak	low	Business	Uttar Prac	ino	yes	no	high	92097.68	Goon) Sc	- didenship -	15,000 pe	r annum					
50	9,155	436 B	6.01918	88,178	19 ligh		good	moderate	hiah	Busineer	Mahanash	100	yes.	100	high	97837.13	l Kishore V	wigyanik Pr	obahan V	tojana (KVI	rr) telo	wship-	- 5,000 to	7,000 pe	r m
54	9.9683	795 7	7.40842	94.103	77 Ngh		pood	strong	Ngh	Engineerin	Tamil Nod	yes	yes	00	low	153657.5	Bellance	Scholarshi	p - Up to 1	50,000 per	annum				
60	8,174	201 h	4,42125	15.757	34 mer	fram	poor	shong	high	Ingineerin	Kerneteka	no	nn	88	medium	177867.3	I bir and	coverly Serbe	ibership - L	ap to 5000	10				
61	9.789	123 9	0.81051	98.634 No.201	as high	time.	5000	strong	ngn	Engineerin	r amil Nod Delhi	10	00	100	medium	102309.0	 seniance label?" 	actio larshi	p up to : white for the	su,uuti per	annum Namor -				
66	9.744	44 0	0.25020	05.50	62 12-44		en closet	visions.	reduce	Science	Utter Prod	1.00	100	1015	medium	84741 7	Georgia	indurshie	45,000	T OTTOMP		- 401			
68	9.898	774 6	0.72965	92.859	78 km		excellent	weak	low	Medicine	Kerala	00	00	Sec.	medium	178718.5	Reliance	Scholamhi	n - Up to 1	\$0.000 per	annum				
71	2,705	522 8	2.29097	74,400	44 ligh		medlent	Anonia	hish	Medicine	Maharash	112	00	\$503	kw	20688.53	Tata Ma	ric Scholar	hip for M	liner kies -	50,000 p		-		
72	7.50	101 7	1.96714	93.750	65 Ngh		pood	moderate	medium	Arts	Tamil Ned	no	no	595	low	91818.95	Swami V	vekananda	Mertt-cur	m-Means S	cholarsh	ip - U	p to 12,00	0 per an	ium
- 75	8.74.6	577 B	6.45402	81.361	as low		good	Anong	hiah	Medicine	Lamil Not	yes	00	944	medium	284303	Post-Line	duste Indir	a Camilhi S	schenkenhig	- 36,20	o pert la	enum		
74	9.649	198 8	1.09015	98.603	40 maa	fium	poor	strong	medium	Science	Kerala	no	yes	00	low	147070.8	B Reliance	Scholarshi	p - Up to S	50,000 per	annum				
212	8 8.60	17174	72,6893	6 92.5	4972 lu	w	encelier	moderate	e high	Science	Utter Pr	admo	yers	9419	high	111622	17 Feit and	Lovely Sch	olastip	Up to S0,0	.00				
212	9 1 25	6436	85.1179	9 90.5	1628 hi	ich .	excelent	t strong	low	Medicin	e Kerala	no	yes	no	Ngh	178617	7 Tata-M	atric Schole	whip for	Minorities	- 50,000	per ar	101m		
212	0.074	1267	91,7,144	5 67.4	1013 14	uti	fait	strong	high	Atts	Defhi	Ava	yes	9909	high	120422	UI Fait and	Lowely Sci	olarship -	Up to 50/	KOO .				
212	0 0.00	17391	23.0606	0 71.0	1078	earum	exceren	moderati	e medium	Color	in Manaras	d mo	yes	10	kinda .	C1000 1	15 SWame	www.anana	e Meric C	Volume (K)	scholars	sub .	AD 10 12,0	rou per ar	
213	2 0.20	IS.R.MO	74.0367	8 68.0	7750 m	edium	eood	strone	Nich	Rusiness	Delhi	905	wes	105	Nich	193440	1 Fair and	Lovely Sch	clarshie	Up to 50.0	000		Colorado I.	a part p	
213	E RO	LINCH	NZ. 314.2	00.0	4/67 m	etium	escelent	moderate	t low	Medicin	Kerala	00	Long Long	00	medum	20199.5	in Santoo	Scholarshi	n - 74,000	Der annur					
213	6 9.70	1868	75.3846	1 64.9	9086 Io	w	excelent	moderate	a high	Business	Maharas	hine	0.0	505	high	125507	1 Relianc	Scholars	ip Up to	50,000 pc	r arnum				
210	N RM	0776	/1.1/21	1 85.0	2561 In	w	excelent	strong	medium	Inginee	in Maharas	hina	yee:	00	low/	IND/A.	N Votefo	ne Loundet	ion Nebels	eships - D	p to 1,00	000			
213:	3 4.41	0782	95.6461	8 75.1	3537 m	redium	excelent	strong	high	Science	Uttar Pr	ad no	89	00	high	157723	.4 Tata M	atric Schole	inship for i	Minorities	50,000	per ar	0.0		
213	6 9.2	и431	87,2058	3 20.3	6901 la	w	poor	week	high	Business	Maharas	hino	yes	no	low	842483	85 Kishore	Vaigyariki	Protsehen	Yojana (Ki	7PV) Felli	owship	s= 5,000 b	o 7,000 p	err
213	7 4.60	15867	99,1160	4 71.4	5432 lu	w	enceled	strong	hist	Arts	Odhi	110	0.0	903	high	15314.	37 Tala M	atric Schok	inship for t	Minurities	50,000	per an			
213	1 8.90	0024	93,5015	8 82.0	1189 m	eorum	0000	weak	meaum	Engree	in tamit N	so no	no	no	1000	159812	1 Renand	e scholars	sp-Upte	s sojooo pe	r aroum				
213	6 9.83	0763	80 8797	2 81 1	8656 10		excelent	west	medium	Business	Kerala	00	LANK C	00	medium	77305.0	1 States	Scholarshi	b - 24 000	OFF ADDUR		0.0,000	to per more		
213	0 9.15	5252	50,3080	6 85.7	7083 m	edium	encelleri	strong	high	Artix	Melarat	delmo	100	10	medium	174.9	W Vodalin	or foundat	ion Schole	rahios - 13	- In 1.00	000			
213	2 8.30	13769	90.2792	9 78.7	3554 16	w	excelent	strong	Nph	Medicin	e Uttar Pr	zd no	no	no	kow/	80117.4	12 AICTER	ragati Scho	larship - 5	0,000 per	a101m				
213	14 5.61	0155	86,8059	82.8	aven hi	iah 👘	enceller	strong	high	Ilainee	c Delhi -	WAX	00	\$965	high	10101	13 Lebe-M	atric Schole	estip for i	Minurities	- 50,000	per an	0.00		
213	9 8.75	6476	75,7496	5 88.5	7128 10	w	good	weak	medium	Engineer	rin Tamil Na	od yes	no	505	low	195656	S Relianc	e Scholarsi	ip Up to	50,000 pc	r arnum				
2134	0 9.68	6200	N5.7457	2 30.9	1974 In	w	good	moderate	e medium	Ilusineo	к Кетара	m10	Ves	80	high	198505	uh Keliano	 Scholarsi 	tip - Up to	NO/ODO pe	r annum				
213	4 8.18	4588	97.9260	8 82.0	1021 1	igh	excelen	strong	Ngh	Science	Tamil N.	od yes	00	505	low	143818	.7 Tata M	atric Schok	inship for	Minorities	50,000	per ar	0.0		
21.0	3 0.40	1210	21.0040	1 45.0	3340	etium.	Alleria	arong	medium	Science Declarate	Urtar et	•4 80	(Mex.	no	medium	001/57	17 Tata-64	wine sensio	entrip ter	Volume (M)	- 50,000	per w	. 5.000 r		
213	62 0.40 62 6.45	07.04	71.0046	0 91.2	2040 10	edium.	encelen	etenne	inculum Incu	Business	Mahara	to no	110	503	markum	1655.36	7 Tata-M	stric Schole	notsenan mbin fact	Minorities	- 10 000	Converting	5 3,000 0	0,000,0	
213	0 9.20	7532	75.8019	4 71.0	1916 le	w	poor	strong	high	Science	Kamatal	w me	102	110	medium	166525	.5 Fair and	Lowely Sel	olarship	Up to S0.	000	1.1.8			
213	8.852	7085	18.2165	1 70 5	2619 6	i+h	mod	moderate	- Invo	Science	Uttar Pr	ed une	Cone:	1944	low	71516	ACTE P	razati Scho	tershin - 5	a can see	500 m				
409	2 9.6	6472	79.2517	9 97.4	9087 Io	w	Road	PRIMI R	medium	Engineeri	in Karmateki	1403	Ara	April 1	high	101953.1	Fair and I	avely Scho	lanhip U	p to 50,00	2				
499	n 30	OBD5	RL994	5 OL7	nutë ko eter	ev.	good	CORNER CONTRACT	hish	Medicine	Lami Na Kacala	- 1444	10	yes.	1002 Nob	198178.9	delance.	sensiarship de Scholter	- Up to h blo blo ¹¹	ogenerie per i	4100 m				
490	0 10	21070 20052	93,8157	92.8	6783 IO 8742 m		CALCULOUS Gain	seore	intern linner	And and a second	Della	703	-10	100	medue	20201-83	ACTE IN	enti Scheda	ing for M robin - Sti	COO net ve	-e,ote pi	a anni			
199	и 1.0	6241	68,8158	2 36.9	NOL N	th.	excellent	strong	high	Science	Debi	1995	100	00	medum	31431.09	Tata-Mai	ric Scholan	hip for M	inorities - 1	0,000 m	er anni	m		
400	17 9.23	2005	96.8282	2 97.0	3423 m	edium	poor	moderate	low	Business	Kamatak	0.00	110	100	high	30685.04	Kishore V	aigyanik Pr	otsahan W	ojana (KVP	Tifelow	ship	5,000 to 7	7,000 per	me
440	17 8.54	1188	63.0308	83.3	iusz lij	el:	fair	waak	liow	Atla	Kenala	m 11	yes.	yeex	high	47057.05	Senton 2	choheship	- 24,000 p	er annum					
199	1 9.51	99008	90.6369	6 64.2	1014 m	edum	excellent	moterate	high	Business	Tamil No	f no	n0	yes	Ngh	109313	Relance	Scholarshi	- Up to S	0,000 per 1	ann/m				
400	4 5.3	35558	89.7469	6 05.7	3430 hi	shi.	excellent	strong	high	Business	Utter Pro	d yes	10	110	high	160417.1	Tata Mat	ric Scholan	hip for M	inerities 5	i0,000 pt	ar anns	an		
499	5 9.5	e1047	c5.55/R 60.6092	3 78.5	n III m 5193 ks	edum.	ear and	chronia	interes.	Business	Marala	100	10	yes	nigh Nab	1001004.7	Delivery 1	sentrarship Sebalambia	- Up to h	D DOD per l	enritim				
499	8 8 4	12131	96,5694	8 974	2528 m		fair	strong	mailing	Biolines	Kenala	100	-10	140	medues	135292.1	Extrance	autorarship mede Scher	- op to 5 brohin - U	in the SO CO	0				
199	12 9.50	1000	79.9811	4 101.4	OID N	sh.	escellent	voeak	high	Medicine	Kematek	1 100	00	00	high	19290.25	Goonj Nd	alarship -	15,000 per	ARTENTO	- I				
499	73 9.4	3555	78.9492	5 71.0	7799 lo	w	excellent	weak	medium	Arts	Kamatak	a yes	¥05	00	medium	125542.1	Fair and I	ovely Scho	larship - U	p to 50,00	0				
499	75 8.34	4/542	93.080	10.	1731 lo	w	secoloni	weak	high	Mulicine	Ultan Pra	dyn	WD.	ysox	low	13100.58	Shan Ud	ey Apercial S	chalanhip	i Schumu-J	1,500 to	5,000 (per munt?	h.	
499	9 3.1	73752	99.0872	8 20.1	6542 N	¢h .	excellent	strong	medium	Medicine	Maharad	vino.	no	yes	medum	172322.1	Tata-Mst	ric Scholan	hip for M	inorities - 1	30,000 pe	er anni	m		
400	80 9.91	36073	84,7501	5 96.9	5842 lo	w	fair	weak	high	Science	Uttar Iva	dino	¥25	105	medum	84314.11	Dr. Ambo	diar Schok	iship 75	,000 per ar	mum				
449	15 ILX.	044688	/0.2/50	e ellur	101.1 m	eclism	excellent	strong	niah	Medicine	Delhi	-	-	110	niah	150445.0	Tele-Me	nic Schullen	tup for M	monifiee - 2	ndititi pe	er annes	an		
400	9.9	10136	60.2089	5 73.2 6 60 *	0701 kö 2127 ku	•w •••	good Cale	serong	odwi how	science Multi/m	offer Pra	a 1462	100	100	kow l	1006301	-air and I	owery scho	ersnip - U	-p co 50,00	e				
400	0.00	10204	4.2KIN	e 10.4	rung hi	eti .	fair	week	low.	Artience	Kerala			140	low	99929.94	ACIT PO	auto anothing and in Schole	nhin - Nit	000 per an	num				
499	2 9.55	31135	64.1205	3 94.2	9198 m	edum	tak	strong	low:	Medicine	Tamil No	d yes	00	no	medium	100954.1	Reliance	Scholarshi	- Up to 5	0,000 per a	mun				
499	17 9.05	1369	65.4527	8 82.7	8)24 m	ndiam	fair	moderate	molium	Arts	Kenala	-	713	182	medum	78891.77	Santuur 1	cholumbip	- 24,000 p						
	10.00	enco	60.4393	2 60.3	2001 m	edium	poor	strong	medium	Szienze	Kerala	n 0	-	yes.	medum	9829.029	Sentoor/	cholecship	- 24,000 p	er annum					
499																									

V. WORKING

Scholarship Prediction Using Machine Learning leverages advanced algorithms, particularly Tensor Flow, to predict scholarship eligibility based on a comprehensive array of input parameters. These parameters include essential academic metrics such as GPA, 10th and 12th-grade percentages, as well as qualitative factors such as extra-curricular activities, essay quality, and the submission of letters of recommendation. Additionally, the model takes into account socio-economic indicators like financial need, family background, and the state of residence.

Moreover, the system considers the applicant's chosen major and evaluates their involvement in leadership roles, volunteer work, and professional experience. By analyzing these multifaceted inputs, the model provides a nuanced understanding of each candidate's qualifications, ensuring a fair and thorough evaluation process.

Python Flask serves as the backbone for the graphical user interface (GUI), offering a seamless and intuitive experience for users interacting with the system. Through Flask, users can input their relevant information and receive real-time feedback on their scholarship eligibility. The interface is designed to be user-friendly, guiding applicants through the process while also providing transparency regarding the factors influencing their eligibility.

One of the key strengths of this system lies in its utilization of Tensor Flow, a powerful machine learning algorithm known for its ability to handle complex data and produce accurate predictions. By employing Tensor Flow, the model can effectively capture the nonlinear relationships between input variables and scholarship outcomes, resulting in robust and reliable predictions.

Overall, Scholarship Prediction Using Machine Learning with Tensor Flow represents a sophisticated approach to streamlining the scholarship application process. By leveraging cutting-edge technology and a diverse range of input parameters, the system offers a fair and comprehensive assessment of each candidate's eligibility, ultimately facilitating access to educational opportunities for deserving students.

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 $\,\,st\,$ Peer-reviewed & Refereed journal $\,\,st\,$ Vol. 11, Issue 4, April 2024

DOI: 10.17148/IARJSET.2024.11462

VI. RESULT AND DISCUSSION

After carefully reviewing the problems occurring in the referred papers, our model came up with using Tensor Flow as the main algorithm for processing and matchmaking with respect to different data attributes

The accuracy achieved for our model is 90 percent and a single scholarship scheme is displayed in the output as shown in the figure below.

Predict	
redicted Scholarship: Aay Scheme- Up to 60,0	og-Matric Scholarship 00 per annum
Major:	
Engineering	~
State of Residence:	
Maharashtra	~
Yes	
Volunteer Work:	
Yes	~
Work Experience:	
Yes	~
Family Background:	
Low	~
Predict	
ily Background:	
v	
Predict	

VII. FUTURE SCOPE

Integration of Additional Data Sources:

Incorporating diverse data sources can enrich the predictive power of the model and provide a more comprehensive understanding of students' qualifications. For instance:

High school transcripts offer a longitudinal view of academic performance and trends, enabling the model to assess academic consistency and growth. Standardized test scores like SAT/ACT can serve as objective measures of students' aptitude and readiness for higher education, aligning with specific scholarship requirements. External datasets such as college acceptance rates or scholarship award statistics provide contextual information that can inform the model's predictions and recommendations.

Handling Unstructured Data:

Unstructured data, such as student essays or letters of recommendation, presents valuable insights into students' qualitative attributes and personal narratives.

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 $\,\,st\,$ Peer-reviewed & Refereed journal $\,\,st\,$ Vol. 11, Issue 4, April 2024

DOI: 10.17148/IARJSET.2024.11462

Importance of Explainable AI:

Incorporating explainability into the predictive model enhances transparency and fosters user trust by providing clear insights into the decision-making process. Methods such as LIME (Local Interpretable Model-Agnostic Explanations) or

SHAP (SHapley Additive exPlanations) can be utilized to:

Generate localized explanations for individual scholarship recommendations, highlighting the specific features and factors driving each prediction.

Enable students to understand why they are being recommended for certain scholarships, empowering them to make informed decisions about their educational pursuits.

VIII. CONCLUSION

In conclusion, this research paper has examined the implementation of a portal for various scholarships using machine learning algorithms and other web portals. Through the application of machine learning prediction analysis, accurate and reliable predictions can be made regarding the eligibility and suitability of students for specific scholarships. The developed recommended system has demonstrated its capability to generate personalized scholarship recommendations based on user profiles, preferences, and eligibility criteria. This has the potential to significantly streamline the scholarship application process and increase the chances of students receiving relevant scholarships that align with their needs and aspirations.

REFERENCES

- [1]. Pulipaka, G., 2021. A Greater Foundation for Machine Learning Engineering: The Hallmarks of the Great Beyond in Pytorch, R, Tensorflow, and Python. Xlibris Corporation.
- [2]. Khatri, Vishal, et al. "RESEARCH ON THE AWARENESS OF VARIOUS SCHOLARSHIPS AND COURSES AVAILABLE IN INDIA AND DEVELOPMENT OF AN ONLINE COURSES AND SCHOLARSHIPS PORTAL".
- [3]. Singh, Pramod, and Avinash Manure. Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python. Apress, 2019.
- [4]. Urban, G., Magnan, C. N., & Baldi, P. (2022). SSpro/ACCpro 6: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, deep learning and structural similarity. Bioinformatics, 38(7), 2064-2065.
- [5]. Li, Z., Ma, J., Tan, Y., Guo, C., & Li, X. (2023). Combining physical approaches with deep learning techniques for urban building energy modeling: A comprehensive review and future research prospects. Building and Environment, 110960.
- [6]. Babu, M., K. Sandhiya, and V. Preetha. "Design of Alumni Portal with Data Security." 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2021.
- [7]. Bohara, M., Prajapati, N. (Year of publication). "Title of the Paper." International Research Journal of Engineering and Technology (IRJETS) [Online]. Available: https://scholarsure. [11 Nov 2022].
- [8]. Li, Z., Ma, J., Tan, Y., Guo, C., & Li, X. (2023). Combining physical approaches with deep learning techniques for urban building energy modeling: A comprehensive review and future research prospects. Building and Environment, 110960.
- [9]. Al Akasheh, M., Malik, E. F., Hujran, O., & Zaki, N. (2023). A Decade of Research on Data Mining Techniques for Predicting Employee Turnover: A Systematic Literature Review. Expert Systems with Applications, 121794.
- [10]. Ashraf, A. R., Somogyi-Végh, A., Merczel, S., Gyimesi, N., & Fittler, A. (2024). Leveraging code-free deep learning for pill recognition in clinical settings: A multicenter, real-world study of performance across multiple platforms. Artificial Intelligence in Medicine, 150, 102844.