The Recurrence Property for the Projective Curvature Tensor in Finsler Space

Abdalstar A. Saleem ${ }^{1}$, Alaa A. Abdallah ${ }^{* 2}$
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India ${ }^{1,2}$

Abstract

In this paper, we obtain the necessary and sufficient condition for $W_{j k h}^{i}, N_{j k h}^{i}$ and $H_{j k h}^{i}$ to be recurrent and we get a relationship between them. The projection on indicatrix with respect to Cartan connection has been studied.

Keywords: Recurrence property, Projective curvature tensor, Projection on Indicatrix.

I. INTRODUCTION AND PRELIMINARIES

The recurrent Finsler spaces have been studied by Pande and Tiwari [8], Dikihi [4], Qaseem [10], Saleem and Abdallah [12] and Kim and Parw [6]. Also, P. N. Pandey [9] obtained the relation between the normal projective curvature tensor $N_{j k h}^{i}$ and Berwald curvature tenser $H_{j k h}^{i}$. Let F_{n} be an n-dimensional space equipped with the metric function $F(x, y)$ satisfying the request conditions $[1,11]$. The vectors y_{i} and y^{i} satisfy
a) $y_{i} y^{i}=F^{2}$,
b) $\dot{\partial}_{i} y_{j}=\dot{\partial}_{j} y_{i}=g_{i j}$
and
c) $g_{i t} y^{i}=y_{t}$,
(1.2)
where $g_{i t}$ is the metric tensor which homogeneous of degree zero in y^{i} and symmetric in its lower indices. Cartan's covariant derivative of the metric function F, vector y^{i}, unit vector l^{i} and metric tensor $g_{i t}$ vanish identically, i.e.
a) $F_{\mid l}=0$,
b) $y_{l l}^{i}=0$,
c) $l_{\mid l}^{i}=0$
and
d) $g_{j k \mid l}=0$,
where

$$
\begin{equation*}
\text { e) } l^{i}=\frac{y^{i}}{F} \text {. } \tag{1.3}
\end{equation*}
$$

Cartan's covariant derivative of an arbitrary tensor T_{h}^{i} with respect to x^{l} is given by [3]

$$
\begin{equation*}
\dot{\partial}_{j}\left(T_{h \mid l}^{i}\right)-\left(\dot{\partial}_{j} T_{h}^{i}\right)_{\mid l}=T_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{l r}^{* i}\right)-T_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{l j}^{* r}\right)-\left(\dot{\partial}_{r} T_{h}^{i}\right) P_{j l}^{r}, \tag{1.4}
\end{equation*}
$$

where
a) $P_{j l}^{r}=\left(\dot{\partial}_{j} \Gamma_{h l}^{* r}\right) y^{h}$
and
b) $P_{j l}^{i}=g^{i h} P_{h j l}$.

The Berwald curvature tensor $H_{j k h}^{i}$ is positively homogeneous of degree zero in y^{i} and skew-symmetric in its last two lower indices which defined by [11]

$$
H_{j k h}^{i}=\partial_{h} G_{j k}^{i}+G_{j k}^{r} G_{r h}^{i}+G_{r k}^{i} G_{j}^{r}-h / k
$$

And satisfy the following relations
(1.5)
a) $\dot{\partial}_{j} H_{k h}^{i}=H_{j k h}^{i}$,
b) $H_{j k h}^{i} y^{j}=H_{k h}^{i}$,
c) $H_{i j k h}=g_{j r} H_{i k h}^{r}$,
d) $H_{k h}^{i} y^{k}=H_{h}^{i}$,
e) $H_{k h}^{i}=\dot{\partial}_{k} H_{h}^{i}$,
f) $H_{j k}=H_{j k r}^{r}$,
g) $H_{k}=H_{k r}^{r}$
and
h) $H=\frac{1}{n-1} H_{r}^{r}$.

The tensor $H_{j k . h}$ defined by

$$
\begin{equation*}
H_{j k . h}=g_{i k} H_{j h}^{i} . \tag{1.6}
\end{equation*}
$$

The normal projective curvature tensor $N_{j k h}^{i}$ and Berwald curvature tenser $H_{j k h}^{i}$ are connected by [11]

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 泛 Peer-reviewed \& Refereed journal $氵$ Vol. 11, Issue 5, May 2024
 DOI: 10.17148/IARJSET.2024.11544

(1.7) $\quad N_{j k h}^{i}=H_{j k h}^{i}-\frac{1}{n+1} y^{i} \dot{\partial}_{j} H_{r k h}^{r}$
where $N_{j k h}^{i}$ is homogeneous of degree zero in y^{i}.
Contracting the indices i and j in (1.7) and using the fact that the tensor $H_{r k h}^{r}$ is positively homogeneous of degree zero in y^{i}, we get
(1.8) $\quad N_{r k h}^{r}=H_{r k h}^{r}$.

Transvecting (1.7) by y^{j} and using (1.5b), we get
(1.9) $\quad N_{j k h}^{i} y^{j}=H_{k h}^{i}$

The projective curvature tensor $W_{j k h}^{i}$ and normal projective curvature tensor $N_{j k h}^{i}$ are connected by [11]
a) $W_{j k h}^{i}=N_{j k h}^{i}+2\left(\delta_{k}^{i} M_{h j}-M_{k h} \delta_{j}^{i}-k \mid h\right)$,
where
b) $M_{k h}=-\frac{1}{n^{2}-1}\left(n N_{k h}+N_{h k}\right)$
and
c) $N_{j k}=N_{j k r}^{r}$.

The projective curvature tensor $W_{j k h}^{i}$ satisfies the following [11]
a) $W_{j k h}^{i} y^{j}=W_{k h}^{i}$,
b) $W_{k h}^{i} y^{k}=W_{h}^{i}$
and
c) $W_{h}^{i} y^{h}=0$.

Definition 1.1. The projection of any tensor T_{j}^{i} on indicatrix is given by [2,5]

$$
\begin{equation*}
p \cdot T_{j}^{i}=T_{\beta}^{\alpha} h_{\alpha}^{i} h_{j}^{\beta}, \tag{1.12}
\end{equation*}
$$

where the angular metric tensor is defined by

$$
\begin{equation*}
h_{j}^{i}=\delta_{j}^{i}-l^{i} l_{j} \tag{1.13}
\end{equation*}
$$

The projection of the vector y^{i} and unit vector l^{i} on indicatrix are given by [5, 7]
(1.14)
a) $p \cdot y^{i}=0$
and
b) $p \cdot l^{i}=0$.

II. W-RECURRENT FINSLER SPACE

Definition 2.1. A Finsler space F_{n} which the projective curvature satisfies the recurrence property i.e. characterized by (2.1) $\quad W_{j k h \mid l}^{i}=\lambda_{l} W_{j k h}^{i}, \quad W_{j k h}^{i} \neq 0$,
where λ_{l} is non-zero covariant vector field. This space will be called a W-Recurrent Finsler space. And denote it briefly by $W R-F_{n}$.

Let us consider $W R-F_{n}$ characterized by (2.1). Transvecting (2.1) by y^{j}, using (1.11a) and (1.2b), we get
(2.2) $\quad W_{k h \mid l}^{i}=\lambda_{l} W_{k h}^{i}$.

Transvecting (2.2) by y^{k}, using (1.11b) and (1.2b), we get
(2.3) $\quad W_{h \mid l}^{i}=\lambda_{l} W_{h}^{i}$.

Thus, we conclude

Theorem 2.1. In $W R-F_{n}$, the projective torsion tensor $W_{j k}^{i}$ and projective deviation tensor W_{h}^{i} are recurrent.
Differentiating (1.10a) covariantly with respect to x^{l} in sense of Cartan, we get

$$
\begin{equation*}
N_{j k h \mid l}^{i}=W_{j k h \mid l}^{i}+2\left(\delta_{j}^{i} M_{k h \mid l}+\delta_{h}^{i} M_{j k \mid l}\right) . \tag{2.4}
\end{equation*}
$$

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 泛 Peer-reviewed \& Refereed journal $氵$ Vol. 11, Issue 5, May 2024 DOI: 10.17148/IARJSET.2024.11544

Using (2.1) and (1.10a) in (2.4), we get

$$
N_{j k h \mid l}^{i}=\lambda_{l}\left[N_{j k h}^{i}-2\left(\delta_{j}^{i} M_{k h}+\delta_{h}^{i} M_{j k}\right)\right]+2\left(\delta_{j}^{i} M_{k h \mid l}+\delta_{h}^{i} M_{j k \mid l}\right)
$$

Contracting i and h in above equation and using (1.10c) and the skew -symmetric property for $M_{j k}$, we get

$$
N_{j k \mid l}=\lambda_{l}\left[N_{j k}-2(1-n) M_{j k}\right]+2(1-n) M_{j k \mid l}
$$

Using (1.10b) in above equation, we get

$$
N_{j k \mid l}=\lambda_{l} N_{j k}-\frac{2}{n+1} \lambda_{l}\left(n N_{j k}+N_{k j}\right)+\frac{2}{n+1}\left(n N_{j k \mid l}+N_{k j \mid l}\right) .
$$

Using the skew -symmetric property for $N_{j k}$ in above equation, we get

$$
N_{j k \mid l}=\lambda_{l} N_{j k}-2 \lambda_{l} N_{j k}+2 N_{j k \mid l} .
$$

which can be written by
(2.5) $\quad N_{j k \mid l}=\lambda_{l} N_{j k}$.

Thus, we conclude
Theorem 2.2. In $W R-F_{n}$, if $M_{j k}$ and $N_{j k}$ satisfy the skew -symmetric property then $N_{j k}$ is recurrent.
Differentiating (1.10b) covariantly with respect to x^{l} in the sense of Cartan, using and (2.5), we get
(2.6) $\quad M_{j k \mid l}=-\frac{2}{n^{2}-1} \lambda_{l}\left(n N_{j k}+N_{k j}\right)$.

Using (1.10b) in (2.6), we get

$$
\begin{equation*}
M_{j k \mid l}=\lambda_{l} M_{j k} \tag{2.7}
\end{equation*}
$$

Using (2.1) and (2.6) in (2.4), we get

$$
\begin{equation*}
N_{j k h \mid l}^{i}=\lambda_{l} N_{j k h}^{i} \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8), we conclude
Theorem 2.3. In $W R-F_{n}$, the tensor $M_{j k}$ and normal projective curvature tensor $N_{j k h}^{i}$ ars recurrent.
Differentiating (1.5f) partially with respect to y^{j}, we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(H_{r k h \mid l}^{r}\right)=\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k h}^{r}+\lambda_{l} \dot{\partial}_{j} H_{r k h}^{r} \tag{2.9}
\end{equation*}
$$

Differentiating (1.7) covariantly with respect to x^{m} in the sense of Cartan and using (1.2b), we get

$$
N_{j k h \mid l}^{i}=H_{j k h \mid l}^{i}-\frac{1}{n+1} y^{i}\left(\dot{\partial}_{j} H_{r k h}^{r}\right)_{\mid l} .
$$

Using commutation formula exhibited by (1.3) for $H_{r k h}^{r}$ in above equation, using (2.8) and (1.4a), we get

$$
\lambda_{l} N_{j k h}^{i}=H_{j k h \mid l}^{i}-\frac{1}{n+1} y^{i}\left\{\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k h}^{r}+\lambda_{l} \dot{\partial}_{j} H_{r k h}^{r}+H_{r s h}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{h l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k h}^{r}\right) P_{j l}^{s}\right\}
$$

Using (1.7) in above equation, we get

$$
\begin{equation*}
\lambda_{l} H_{j k h}^{i}=H_{j k h \mid l}^{i}-\frac{1}{n+1} y^{i}\left\{\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k h}^{r}+H_{r s h}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{h l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k h}^{r}\right) P_{j l}^{s}\right\} . \tag{2.10}
\end{equation*}
$$

This shows that

$$
H_{j k h \mid l}^{i}=\lambda_{l} H_{j k h}^{i}
$$

if and only if

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 兴 Peer-reviewed \& Refereed journal 泛 Vol. 11, Issue 5, May 2024
 DOI: 10.17148/IARJSET.2024.11544

(2.11)

$$
\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k h}^{r}+H_{r s h}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{h l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k h}^{r}\right) P_{j l}^{s}=0 .
$$

Contracting the indices i and h in (2.10) and using (1.5f), we get

$$
\begin{equation*}
\lambda_{l} H_{j k}=H_{j k \mid l}-\frac{1}{n+1} y^{t}\left\{\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k t}^{r}+H_{r s t}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{t l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k t}^{r}\right) P_{j l}^{s}\right\} . \tag{2.12}
\end{equation*}
$$

This shows that

$$
H_{j k \mid l}=\lambda_{l} H_{j k} .
$$

if and only if
(2.13) $\quad y^{t}\left\{\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k t}^{r}+H_{r s t}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{t l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k t}^{r}\right) P_{j l}^{s}\right\}=0$.

Thus, we conclude
Theorem 2.4. In $W R-F_{n}$, Berwald curvature tensor $H_{j k h}^{i}$ and Ricci tensor $H_{j k}$ are recurrent if and only if (2.11) and (2.13) hold.

Transvecting (2.10) by $g_{t i}$, using (1.5c), (1.1c) and (1.2d), we get

$$
\lambda_{l} H_{j t k h}=H_{j t k h \mid m}-\frac{1}{n+1} y_{t}\left\{\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k h}^{r}+H_{r s h}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{h l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k h}^{r}\right) P_{j l}^{s}\right\} .
$$

This shows that

$$
\begin{equation*}
H_{j t k h \mid m}=\lambda_{m} H_{j t k h} \tag{2.14}
\end{equation*}
$$

if and only if
$y_{t}\left\{\left(\dot{\partial}_{j} \lambda_{l}\right) H_{r k h}^{r}+H_{r s h}^{r}\left(\dot{\partial}_{j} \Gamma_{k l}^{* s}\right)+H_{r k s}^{r}\left(\dot{\partial}_{j} \Gamma_{h l}^{* s}\right)+\left(\dot{\partial}_{s} H_{r k h}^{r}\right) P_{j l}^{s}\right\}=0$.
Thus, we conclude
Theorem 2.5. In $W R-F_{n}$, the associate tensor $H_{j t k h}$ of the curvature tensor $H_{j k h}^{i}$ behaves as recurrent if and only if (2.14) holds.

III. PROJECTION ON INDICATRIX WITH RESPECT TO CARTAN'S CONNECTION

Since $W_{j k h}^{i}$ is recurrent in sense of Cartan, i.e. characterized by (2.1). Now, in view of (1.12), the projection of $W_{j k h}^{i}$ on indicatrix is given by
(3.1) $\quad p . W_{j k h}^{i}=W_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}$.

Taking covariant derivative of (3.1) with respect to x^{l} in sense of Cartan and using the fact that $h_{j \mid l}^{i}=0$, then using (2.1) in the resulting equaion, we get

$$
\left(p . W_{j k h}^{i}\right)_{\mid l}=\lambda_{l} W_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d} .
$$

In view of (1.12), above equation can be written as

$$
\left(p . W_{j k h}^{i}\right)_{\mid l}=\lambda_{l}\left(p . W_{j k h}^{i}\right) .
$$

This shows that $p . W_{j k h}^{i}$ is recurrent. Thus, we conclude

Theorem 3.1. $W R-F_{n}$, the projection of the projective curvature tensor $W_{j k h}^{i}$ on indicatrix is recurrents in sense of Cartan.

Since $W_{j k}^{i}$ is recurrent in sense of Cartan, i.e. characterized by (2.2). In view of (1.12), the projection of $W_{j k}^{i}$ on indicatrix is given by
(3.2) $\quad p . W_{j k}^{i}=W_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c}$.

Taking covariant derivative of (3.2) with respect to x^{l} in sense of Cartan and using the fact that $h_{j \mid l}^{i}=0$, then using (2.2) in the resulting equaion, we get

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 兴 Peer-reviewed \& Refereed journal 泛 Vol. 11, Issue 5, May 2024
 DOI: 10.17148/IARJSET.2024.11544

$\left(p . W_{j k}^{i}\right)_{\mid l}=\lambda_{l} W_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c}$.
In view of (1.12), above equation can be written as

$$
\left(p \cdot W_{j k}^{i}\right)_{\mid l}=\lambda_{l}\left(p \cdot W_{j k}^{i}\right)
$$

This shows that $p . W_{j k}^{i}$ is recurrent.. Thus, we conclude

Theorem 3.2. $W R-F_{n}$, the projection of the torsion tensor $W_{j k}^{i}$ on indicatrix is recurrent in sense of Cartan.
Since W_{j}^{i} is recurrent in sense of Cartan, i.e. characterized by (2.3). In view of (1.12), the projection of W_{j}^{i} on indicatrix is given by

$$
\begin{equation*}
p . W_{j}^{i}=W_{b}^{a} h_{a}^{i} h_{j}^{b} . \tag{3.3}
\end{equation*}
$$

Taking covariant derivative of (3.3) with respect to x^{l} in sense of Cartan and using the fact that $h_{j \mid l}^{i}=0$, then using (2.3) in the resulting equaion, we get

$$
\left(p . W_{j}^{i}\right)_{\mid l}=\lambda_{l} W_{b}^{a} h_{a}^{i} h_{j}^{b} .
$$

In view of (1.12), above equation can be written as

$$
\left(p \cdot W_{j}^{i}\right)_{\mid l}=\lambda_{l}\left(p \cdot W_{j}^{i}\right)
$$

This shows that $p . W_{j}^{i}$ is recurrent. Thus, we conclude
Theorem 3.3. $W R-F_{n}$, the projection of the deviation tensor W_{j}^{i} on indicatrix is recurrent in the sense of Cartan.
Let us consider a Finsler space F_{n} which the projection of $W_{j k h}^{i}$ on indicatrix is recurrent with respect to Cartan's connection. i.e characterized by (2.1). Using (1.12) in (2.1), we get

$$
\left(W_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right)_{\mid l}=\lambda_{l} W_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}
$$

Using (1.13) in above equation, we get

$$
\begin{aligned}
& \left\{W_{b c d}^{a}\left(\delta_{a}^{i}-\ell^{i} \ell_{a}\right)\left(\delta_{j}^{b}-\ell^{b} \ell_{j}\right)\left(\delta_{k}^{c}-\ell^{c} \ell_{k}\right)\left(\delta_{h}^{d}-\ell^{d} \ell_{h}\right)\right\}_{\mid l} \\
& =\lambda_{l}\left\{W_{b c d}^{a}\left(\delta_{a}^{i}-\ell^{i} \ell_{a}\right)\left(\delta_{j}^{b}-\ell^{b} \ell_{j}\right)\left(\delta_{k}^{c}-\ell^{c} \ell_{k}\right)\left(\delta_{h}^{d}-\ell^{d} \ell_{h}\right)\right\}
\end{aligned}
$$

which can be written as

$$
\begin{aligned}
& \left(W_{j k h}^{i}-W_{j k d}^{i} \ell^{d} \ell_{h}-W_{j c h}^{i} \ell^{c} \ell_{k}+W_{j c d}^{i} \ell^{c} \ell_{k} \ell^{d} \ell_{h}-W_{j k h}^{a} \ell^{i} \ell_{a}\right. \\
& \left.+W_{j k d}^{a} \ell^{i} \ell_{a} \ell^{d} \ell_{h}+W_{j c h}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-W_{j c d}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k} \ell^{d} \ell_{h}\right)_{\mid l} \\
& =\lambda_{l}\left(W_{j k h}^{i}-W_{j k d}^{i} \ell^{d} \ell_{h}-W_{j c h}^{i} \ell^{c} \ell_{k}+W_{j c d}^{i} \ell^{c} \ell_{k} \ell^{d} \ell_{h}-W_{j k h}^{a} \ell^{i} \ell_{a}\right. \\
& \left.+W_{j k d}^{a} \ell^{i} \ell_{a} \ell^{d} \ell_{h}+W_{j c h}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k}-W_{j c d}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{k} \ell^{d} \ell_{h}\right) .
\end{aligned}
$$

Using (1.11a), (1.11b), (1.2a) and (1.2c) in above equation, we get

$$
\begin{aligned}
& \left(W_{j k h}^{i}-\frac{1}{F} W_{j k}^{i} \ell_{h}-\frac{1}{F} W_{j h}^{i} \ell_{k}-W_{j k h}^{a} \ell^{i} \ell_{a}+W_{j k}^{a} \ell^{i} \ell_{a} \ell_{h}+\frac{1}{F} W_{j h}^{a} \ell^{i} \ell_{a} \ell_{k}\right)_{\mid l} \\
& \quad=\lambda_{l}\left(W_{j k h}^{i}-\frac{1}{F} W_{j k}^{i} \ell_{h}-\frac{1}{F} W_{j h}^{i} \ell_{k}-W_{j k h}^{a} \ell^{i} \ell_{a}+W_{j k}^{a} \ell^{i} \ell_{a} \ell_{h}+\frac{1}{F} W_{j h}^{a} \ell^{i} \ell_{a} \ell_{k}\right)
\end{aligned}
$$

Now, since the torsion tensor $W_{j k}^{i}$ is recurrent, i.e characterized by (2.2), then in view of (2.2), (1.2a) and (1.2c), above equation can be written as

$$
\begin{equation*}
\left(W_{j k h}^{i}-W_{j k h}^{a} \ell^{i} \ell_{a}\right)_{\mid l}=\lambda_{l}\left(W_{j k h}^{i}-W_{j k h}^{a} \ell^{i} \ell_{a}\right) \tag{3.4}
\end{equation*}
$$

```
International Advanced Research Journal in Science, Engineering and Technology
Impact Factor 8.066 泛 Peer-reviewed & Refereed journal 泛 Vol. 11, Issue 5, May 2024
    DOI: 10.17148/IARJSET.2024.11544
```

Thus, we conclude

Theorem 3.4. If the projection of $\left(W_{j k h}^{i}-W_{j k h}^{a} \ell^{i} \ell_{a}\right)$ on indicatrix is recurrent, then the space is $W R-F_{n}$, provided $W_{j k}^{i}$ is recurrent in sense of Cartan.

From (3.4), we get

Corallary 3.1. In $W R-F_{n}$, the projection of $W_{j k h}^{i}$ on indicatrix is recurrent, if and only if $W_{j k h}^{a} \ell_{a}$ is recurrent.
Let us consider a Finsler space F_{n} which the projection of $W_{j k}^{i}$ on indicatrix is recurrent with respect to Cartan's connection characterized by (2.2). Using (1.12) in (2.2), we get

$$
\left(W_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c}\right)_{\mid l}=\lambda_{l} W_{b c}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} .
$$

Using (1.13) in above equation, we get

$$
\left\{W_{b c}^{a}\left(\delta_{a}^{i}-\ell^{i} \ell_{a}\right)\left(\delta_{j}^{b}-\ell^{b} \ell_{j}\right)\left(\delta_{k}^{c}-\ell^{c} \ell_{k}\right)\right\}_{\mid l}=\lambda_{l}\left\{W_{b c}^{a}\left(\delta_{a}^{i}-\ell^{i} \ell_{a}\right)\left(\delta_{j}^{b}-\ell^{b} \ell_{j}\right)\left(\delta_{k}^{c}-\ell^{c} \ell_{k}\right)\right\}
$$

which can be written as

$$
\begin{aligned}
& \left(W_{j k}^{i}-\frac{1}{F} W_{k}^{i} \ell_{h}-\frac{1}{F} W_{h}^{i} \ell_{k}+\frac{1}{F^{2}} W_{c}^{i} y^{c} \ell_{h}-W_{k h}^{a} \ell^{i} \ell_{a}-\frac{1}{F} W_{k}^{a} \ell^{i} \ell_{a} \ell_{h}\right. \\
& \left.\quad+\frac{1}{F} W_{h}^{a} \ell^{i} \ell_{a} \ell_{k}-W_{b c}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{h} \ell^{b} \ell_{k}\right)_{\mid l}=\lambda_{l}\left(W_{j k}^{i}-\frac{1}{F} W_{k}^{i} \ell_{h}-\frac{1}{F} W_{h}^{i} \ell_{k}\right. \\
& \left.\quad+\frac{1}{F^{2}} W_{c}^{i} y^{c} \ell_{h}-W_{k h}^{a} \ell^{i} \ell_{a}-\frac{1}{F} W_{k}^{a} \ell^{i} \ell_{a} \ell_{h}+\frac{1}{F} W_{h}^{a} \ell^{i} \ell_{a} \ell_{k}-W_{b c}^{a} \ell^{i} \ell_{a} \ell^{c} \ell_{h} \ell^{b} \ell_{k}\right)
\end{aligned}
$$

Now, since the deviation tensor W_{j}^{i} is recurrent, i.e characterized by (2.3), then in view of (2.3), (1.11b), (1.11c), (1.2a) and (1.2c), above equation can be written as

$$
\begin{equation*}
\left(W_{j k}^{i}-W_{j k}^{a} \ell^{i} \ell_{a}\right)_{\mid l}=\lambda_{l}\left(W_{j k}^{i}-W_{j k}^{a} \ell^{i} \ell_{a}\right) \tag{3.5}
\end{equation*}
$$

Thus, we conclude
Theorem 3.5. If the projection of $\left(W_{j k}^{i}-W_{j k}^{a} \ell^{i} \ell_{a}\right)$ on indicatrix is recurrent, then the space is $W R-F_{n}$.
From (3.5), we get
Corollary 3.2. In $W R-F_{n}$, the projection of $W_{j k}^{i}$ on indicatrix is recurrent, if and only if $W_{j k}^{a} \ell_{a}$ is recurrent.

IV. CONCLUSION

We introduced a Finsler space which $W_{j k h}^{i}$ satisfies the recurrence property in sense of Cartan. Also, we proved that some tensors behave as recurrent.

REFERENCES

[1] Abdallah A. A., Navlekar A. A., Ghadle K. P and Hardan B., "Fundamentals and recent studies of Finsler geometry", International Journal of Advances in Applied Mathematics and Mechanics, 10(2), 27-38, 2022.
[2] Abdallah A. A., Navlekar A. A., Hamoud A. A. and Ghadle K. P., "Decomposition for Cartan's second curvature tensor of different order in Finsler spaces", Nonlinear Functional Analysis and Applications, 27(2), 433-448, 2022.
[3] Cartan, É., "Les espaces de Finsler", Actualités, Paris, 79, 1934. 2 ${ }^{\text {nd }}$ edit. 1971.
[4] Dikshit, S., "Certain types of recurrences in Finsler spaces", D.Phil. Thesis, University of Allahabad, Allahabad (India), 1992.
[5] Gheorghe, M., "The indicatrix in Finsler geometry", Analele Stiintifice Ale Uuiversitătii Matematică. Tomul LIII, 163-180, 2007.

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 泛 Peer-reviewed \& Refereed journal $氵$ Vol. 11, Issue 5, May 2024 DOI: 10.17148/IARJSET.2024.11544

[6] Kim B. D. and Parw H. T, "On special Finsler spaces with common geodesics", Comm. Korean Math. Soc.,15(2), 331-338, 2000.
[7] Navlekar A. A., Ghadle K. P and Abdallah A. A., "On Study Generalized BP - Recurrent Finsler Space", International Journal of Mathematics Trends and Technology, 65(4), 74-79, 2019.
[8] Pande, H. D. and Tiwari, S. K., "Recurrent Finsler spaces", J. Nat. Acad. Math. II, 98-109, 1997.
[9] Pandey, P. N., "A note on recurrent vector", Proc. Nat. Acad. Sci., 51A, I, 6-8, 1981.
[10] Qasem, F. Y., "On transformation in Finsler spaces", D.Phil. Thesis, Univ. of Allahabad, (Allahabad) (India), 2000.
[11]Rund, H., "The differential geometry of Finsler spaces", Springer-verlag, Berlin Göttingen-Heidelberg, 1959.
[12]Saleem, A. A. and Abdallah, A. A., "On U-recurrent Finsler space", International Research Journal of Innovations in Engineering and Technology, 6(1), 58-63, 2022.

