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Abstract: This paper aims to provide a comprehensive overview of machine learning (ML) techniques across various
data types, fostering opportunities to address research gaps and advance the field, particularly in the detection and
prediction of crop diseases. The survey presents valuable insights into ML-based techniques for forecasting, detecting,
and classifying diseases and pests. It highlights the importance of maintaining long-term datasets encompassing
weather, disease, and pest data. Time-series ML models, such as recurrent neural networks (RNNs), are shown to be
effective tools for accurately predicting disease and pest occurrences based on sequences of meteorological
measurements. Additionally, incorporating normalized difference vegetation index (NDVI) measurements can provide
supplementary insights into crop development. Leveraging computer vision and deep learning algorithms, particularly
convolutional neural network (CNN) models, proves advantageous for detecting and classifying pests and diseases,
outperforming traditional approaches that rely on manual feature extraction.
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INTRODUCTION

Global food production systems are grappling with substantial losses in crop yield and financial resources primarily due
to plant diseases. Recent reports highlight that these diseases reduce global food production by 20% to 40%, resulting
in a 13% decline in global crop yields [1]. Early detection of plant and crop diseases emerges as the most efficient
solution, enabling the implementation of proactive measures to enhance expected yields. However, human errors in
manual disease identification can compromise the effectiveness of pesticide use, leading to irreversible consequences.
Accurate disease identification is pivotal for determining suitable measures to safeguard crop health, thereby boosting
yields, which are influenced by factors like seed quality, soil fertility, precipitation, temperature, and the use of natural
or commercial fertilizers. While various elements contribute to plant diseases, researchers commonly consider the host,
pathogen, and favourable environmental conditions as primary factors, with pesticide resistance, application timing,
and pesticide quality playing secondary roles. These three factors are typically regarded as key by researchers and are
interconnected, as illustrated in Fig. 1.

HOST

PATHOGEN ENVIRONMENT

Fig.1. Plant Disease Triangle.

In most cases, plant diseases start showing symptoms at the base of the plant and then spread upwards. This is mainly
due to the lower portion's proximity to the soil. The spread of the disease to the entire plant, the whole crop, and
neighboring fields largely depends on the speed and direction of the airflow, as well as the mobility of the disease-
spreading organisms. Therefore, it is essential to monitor the disease's spread in addition to identifying and controlling
it. Early detection and limited spread are crucial for effectively managing the disease and preventing significant yield
losses.
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In most instances, plant diseases initially exhibit symptoms at the plant's base before spreading upward. This trend is
largely attributed to the proximity of the lower portion to the soil. The spread of the disease to the entire plant, entire
crop, and neighbouring fields heavily relies on airflow speed and direction, as well as the mobility of disease-spreading
organisms. Thus, it becomes imperative to monitor the spread of the disease alongside its identification and control.
Early detection and containment are imperative for effectively managing the disease and mitigating significant yield
losses.

Farmers and agricultural scientists commonly rely on visual leaf inspection to identify plant diseases. Plants are
susceptible to various diseases, each affecting distinct parts of the plant. Most diseases exhibit symptoms on leaves,
referred to as foliar diseases, which undergo discernible changes observable through visual inspection. Fungal diseases,
prevalent among plant diseases, often manifest through these leaf alterations. Identification typically entails comparing
healthy leaves with diseased ones. Understanding the characteristics and patterns of healthy leaves and their alterations
due to disease is essential. Given the voluminous data involved, leveraging plant leaf images coupled with digital
vision, machine learning, and deep learning techniques has proven advantageous for continuous monitoring and precise
diagnosis. Detecting multiple diseases across various crops, including within the same crop, will significantly benefit
the farming community, fostering increased yields.

Manual visual inspection methods for plant disease diagnosis and monitoring are expensive, time-consuming, and
dependent on experts, making them ineffective for precision agriculture despite their long-standing use. These
traditional methods suffer from low accuracy and are subject to human bias and fatigue [2-4]. By contrast, the use of
image processing techniques, machine learning, and deep learning with plant images can address these problems and
provide more accurate results.

Although recognizing objects in images is easy for humans, it has traditionally been difficult for automated algorithms.
However, recent advancements in deep learning have achieved accuracy levels that surpass human performance in
some tasks. Modern deep learning algorithms have outperformed humans in image recognition, thanks to deep learning
architectures that mimic biological neural networks. This rapidly evolving field offers various applications in image
classification.

Over the past 10 to 12 years, the incorporation of deep learning techniques has enabled automatic feature extraction
with high accuracy.

Machine learning models employed in the detection of plant diseases represent a pivotal advancement in addressing the
considerable threat these diseases pose to global food security, causing significant economic losses and jeopardizing the
livelihoods of agricultural communities. Traditionally, disease detection in plants relied on manual inspection by
trained experts, a labor-intensive and time-consuming process. However, the emergence of modern technology has
paved the way for machine learning models to automate the detection and diagnosis of plant diseases, offering a
promising avenue for revolutionizing the agricultural industry. By harnessing the capabilities of artificial intelligence,
these models hold the potential to deliver precise, rapid, and cost-effective solutions for identifying diseases in plants.

This application of machine learning in agriculture aligns with the broader field of precision agriculture, which seeks to
optimize farming practices through data-driven decision-making. Leveraging an array of sensors, imaging techniques,
and data analysis, machine learning models can discern subtle patterns and symptoms of plant diseases that may elude
human detection. Offering real-time disease monitoring, these models facilitate early intervention, thereby mitigating
crop losses and ultimately bolstering agricultural productivity.

In this paper, we delve into the current landscape of machine learning models utilized for plant disease detection,
shedding light on their capabilities and limitations. Additionally, we explore the underlying technology and data
sources, the challenges associated with deploying these models in real-world agricultural settings, and the potential for
their widespread adoption. Furthermore, we examine recent breakthroughs and case studies that underscore the
effectiveness of machine learning in plant disease detection.

Support Vector Machine (SVM)

Support Vector Machine (SVM) stands out as a favored machine learning algorithm in the realm of plant disease
detection due to its adeptness in efficiently and accurately classifying data, particularly in binary classification
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scenarios distinguishing healthy plants from diseased ones. SVMs exhibit versatility, robustness, and suitability for
applications in agriculture and plant disease detection. Here, we delve into the application of SVM maodels in this
context:

1. Feature Extraction and Selection: SVMs operate on data-driven principles, wherein their performance hinges
upon the quality and relevance of input features. In the realm of plant disease detection, features typically encompass
color, texture, and shape attributes extracted from images of plant leaves. The extraction and selection of pertinent
features constitute pivotal steps in constructing an effective SVM model, as judiciously chosen features enable SVMs
to discern between healthy and diseased plants accurately.

2. Binary Classification: SVM inherently operates as a binary classification algorithm, rendering it well-suited
for scenarios framing plant disease detection as a binary problem—distinguishing between healthy and diseased states.
Nonetheless, modifications and extensions can be employed to address multi-class problems that may arise with
multiple disease classes.

3. Margin Maximization: SVM aims to identify the hyperplane that best separates the two classes—healthy and
diseased plants—with the widest margin. This pursuit of margin maximization engenders a robust and generalizable
model. SVMs excel particularly in scenarios featuring limited datasets, as they prioritize the most informative data
points for delineating decision boundaries.

4. Non-Linearity: SVMs can accommodate non-linear decision boundaries via kernel functions. In plant disease
detection, where the relationship between features and disease presence may exhibit non-linearity, kernel SVMs—such
as the radial basis function (RBF) kernel—are commonly employed to capture intricate data patterns.

5. Handling Imbalanced Datasets: Imbalanced datasets, where the prevalence of healthy plants significantly
outweighs that of diseased ones (or vice versa), are commonplace in plant disease detection. SVMs can be configured
to address imbalanced datasets by assigning class-specific weights to instances, thereby circumventing bias toward the
majority class.

6. Evaluation and Validation: Rigorous model evaluation is imperative. Cross-validation techniques—such as k-
fold cross-validation—facilitate the assessment of SVM's performance and its generalizability to unseen data. Metrics
encompassing accuracy, precision, recall, F1-score, and the area under the Receiver Operating Characteristic (ROC)
curve typically gauge the model's efficacy.

7. Limitations: SVMs may not deliver optimal performance in scenarios featuring extensive datasets or
necessitating real-time processing. Sensitivity to parameter settings—such as the choice of kernel function and
regularization parameter—demands meticulous tuning.

Moreover, SVM excels in handling non-linear data through the utilization of the kernel trick technique, transforming
low-dimensional input spaces into higher-dimensional spaces conducive to linear separability. Consequently, SVM
proves highly effective in high-dimensional spaces. Additionally, SVM finds utility in regression problems, and its
hybrid integration—such as combining SVM with the logistic regression algorithm—demonstrates promise in
predicting diseases like powdery mildew in tomato plants. A synthesis of agricultural studies employing SVM as the
ML model underscores its prevalence, with linear, polynomial, and RBF kernels being the most commonly utilized in
SVM-based classification and regression algorithms applied to agricultural contexts. SVM demonstrates superior
performance compared to other ML techniques such as ANNs and conventional regression approaches in forecasting
plant diseases .

Support Vector Machine models are extensively utilized in plant disease detection due to their proficiency in accurately
classifying plants as healthy or diseased based on image and feature data. They excel in handling non-linearity,
imbalanced datasets, and contribute to automating disease diagnosis in agriculture. When coupled with appropriate
feature engineering and parameter tuning, SVMs serve as a valuable tool for optimizing crop management and
mitigating losses attributed to plant diseases.
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Random Forest

Random Forest (RF) emerges as a versatile and potent machine learning algorithm well-suited for plant disease
detection. It excels in both classification and regression tasks and offers several advantages when applied to plant
disease detection scenarios. Here's an overview of how Random Forest can be leveraged in this context:

1. Ensemble Learning: Random Forest operates as an ensemble learning technique, combining the predictions of
multiple decision trees to yield a more robust and accurate outcome. In plant disease detection, it amalgamates the
decisions of numerous trees to classify plants as healthy or diseased, furnishing a more dependable prediction.

2. Feature Importance: Random Forest models furnish valuable insights into feature importance, particularly
crucial in plant disease detection scenarios reliant on features extracted from plant images (e.g., color, texture, shape).
By ranking these features, Random Forest aids researchers in discerning the most pertinent characteristics for precise
disease detection.

3. Robustness to Noisy Data: Random Forest exhibits resilience to noisy data and outliers, a prized attribute in
agricultural settings where environmental conditions can introduce noise and image variations. The ensemble of
decision trees adeptly handles noisy data, outperforming individual trees.

4. Handling Imbalanced Datasets: Imbalanced datasets prevalent in plant disease detection, where the healthy
plants outnumber the diseased ones (or vice versa), pose no hindrance to Random Forest. It offers mechanisms to
accord greater importance to the minority class, ensuring sustained model performance.

5. Non-Linearity: Random Forest adeptly captures intricate, non-linear relationships between features and the
presence of plant diseases, a vital asset in agriculture where such relationships abound.

6. Prevention of Overfitting: Random Forest incorporates mechanisms to mitigate overfitting, rendering it more
resilient to high-variance models, thereby ensuring robust generalization to unseen data—a critical facet in plant
disease detection.

7. Model Interpretability: Despite being an ensemble of decision trees, Random Forest affords insights into the
decision-making process, elucidating the most influential features in classifying plant health and facilitating a deeper
understanding of disease detection.

8. Model Tuning: Random Forest offers parameters for customization, including the number of trees in the forest
and the depth of individual trees, enabling model optimization tailored to the dataset's characteristics and the desired
trade-off between bias and variance.

9. Model Validation: Cross-validation techniques, such as k-fold cross-validation, serve to evaluate Random
Forest's performance in plant disease detection, with metrics like accuracy, precision, recall, F1-score, and ROC-AUC
serving as yardsticks for effectiveness.

Random Forest (RF) stands out as a renowned ensemble comprising decision trees trained on diverse subsets of the
training data. During node splitting, RF considers a random set of variables rather than the entire feature set. Each tree
contributes its vote during classification, with the most commonly agreed-upon class being returned. Rapid
computation owing to the subset-based training, coupled with a diverse array of trees, renders Random Forest robust to
noise and outliers. Random Forests (RFs) exhibit superior accuracy even with fewer samples compared to other ML
techniques .

Random Forest stands out as a robust and effective machine learning algorithm for plant disease detection. Its ensemble
nature, coupled with its ability to handle non-linearity, conduct feature importance analysis, and robustly deal with
noisy data, makes it highly suitable for this task. When appropriately configured and trained on high-quality data,
Random Forest models can significantly contribute to automating plant disease diagnosis and enhancing crop
management practices.
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Artificial Neural Networks

Artificial Neural Networks (ANNSs) have garnered significant attention in recent years for their application in plant
disease detection and diagnosis. ANNSs, a type of deep learning algorithm, excel in modeling complex relationships
between input data, such as images of plant leaves, and the presence of diseases. Here's how ANNs can be applied in
plant disease detection:

Image-Based Detection: ANNs prove particularly effective in image-based plant disease detection. Trained on
extensive datasets of images depicting both healthy and diseased plants, ANNs learn to discern subtle patterns and
features distinguishing between the two. Their deep architecture enables them to capture intricate details and
relationships in images, essential for accurate diagnosis.

Convolutional Neural Networks (CNNs): CNNs, a specialized type of ANN for image analysis, are commonly
employed in plant disease detection. These networks automatically learn hierarchical features from images through
convolutional layers, enabling them to identify patterns such as lesions, discolorations, or irregularities on plant leaves.

Transfer Learning: Leveraging pre-trained CNN models (e.g., VGG16, ResNet, Inception) on large image datasets like
ImageNet can significantly enhance plant disease detection. Fine-tuning these models for plant disease detection tasks,
especially when working with limited datasets, capitalizes on knowledge acquired from general image recognition
tasks.

Data Augmentation: Techniques such as data augmentation artificially expand the training dataset, enhancing the
generalization capability of ANNSs. By introducing variations in lighting, perspective, and background in plant images,
ANNSs become more robust to real-world conditions.

Multi-Class Classification: ANNs can be trained to perform multi-class classification, enabling the identification of
various diseases concurrently. This capability is crucial for real-world applications where plants may suffer from
multiple diseases simultaneously.

Hyperparameter Tuning: Fine-tuning ANNS' hyperparameters, including the number of layers, neurons per layer,
learning rate, and activation functions, optimizes performance. Grid search or Bayesian optimization methods help
identify the most effective hyperparameters.

Model Evaluation: Proper evaluation through techniques like k-fold cross-validation ensures ANNSs' performance in
plant disease detection. Metrics such as accuracy, precision, recall, Fl-score, and ROC-AUC gauge model
effectiveness.

Real-Time and On-Device Applications: Lightweight neural network architectures like MobileNet facilitate real-time
processing on devices such as smartphones or drones, enabling immediate disease diagnosis and intervention in
agricultural settings.

Continuous Learning: ANNSs can be continually updated as new data becomes available, enabling adaptation to new
disease variants or evolving field conditions.

While ANNs offer significant advantages in plant disease detection, challenges such as the need for large and diverse
training datasets, model interpretability, and computational resources for training and deployment must be considered.
Nonetheless, ANNSs, particularly CNNs, hold the potential to revolutionize plant disease detection by offering accurate,
efficient, and scalable solutions for precision agriculture.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have revolutionized computer vision and find extensive use in various
domains, including plant disease detection. CNNs excel at learning intricate patterns and features in images, making
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them well-suited for identifying plant diseases based on visual symptoms. Here's how CNN architectures are commonly
utilized in plant disease detection:

Image Preprocessing: Before inputting images into a CNN, preprocessing steps are typically undertaken. These may
include resizing images to a consistent size, normalizing pixel values, and augmenting the dataset with transformations
like rotations, flips, and color adjustments to improve the network's generalization.

Choice of CNN Architecture: Various CNN architectures, such as AlexNet, VGG, ResNet, Inception, and DenseNet,
cater to different complexity levels and computational resources, each offering specific advantages in plant disease
detection tasks.

Transfer Learning: Pre-trained CNN models, often trained on vast datasets like ImageNet, can be fine-tuned for plant
disease detection tasks, leveraging knowledge from general image recognition tasks to enhance model performance,
especially when data is limited.

Data Augmentation: Techniques like random rotations, flips, and cropping augment the dataset size, enhancing model
robustness and generalization to diverse plant disease variations.

Training and Validation: The dataset is divided into training, validation, and testing sets for CNN training and
evaluation. The training set is used to train the CNN, while the validation set aids in hyperparameter tuning and
performance monitoring. The testing set evaluates the CNN's generalization to new, unseen data.

Object Localization: Some plant disease detection models incorporate object localization techniques to precisely locate
disease symptoms within plant images, employing architectures like Faster R-CNN or YOLO in conjunction with
CNNs.

Post-processing: Refinement of disease detection results via post-processing steps such as thresholding, noise
reduction, and clustering enhances the model's output accuracy.

Deployment: Trained CNN models can be deployed on various platforms, including mobile apps or embedded systems,
enabling real-time or near-real-time disease detection in agricultural settings.

Using CNN architectures for plant disease detection has the potential to transform agriculture by enabling early and
precise disease diagnosis, facilitating timely intervention to safeguard crops and enhance yields. The integration of
CNNs can notably boost the efficiency and effectiveness of agricultural practices while diminishing the reliance on
manual inspection methods.

User-defined Network Architectures

User-defined network architectures provide adaptability and the opportunity to craft tailored neural networks for
specific purposes like plant disease detection. When devising custom architectures, it's crucial to account for the
distinct characteristics and demands of the task. Here's a guide on crafting user-defined network architectures for plant
disease detection:

1. Data Preparation: Initiate the process by gathering and preparing your dataset, typically comprising images of
plant leaves depicting both healthy and diseased states. Preprocessing steps involve resizing, standardizing, and
augmenting images to enhance model adaptability.

2. Architectural Considerations: Deliberate on architectural elements that align with your objectives. Key
considerations include:

° Convolutional Layers: Employ convolutional layers to extract features from images. Customize parameters
such as layer count, filter sizes, and activation functions (e.g., ReLU) based on dataset characteristics.
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° Pooling Layers: Integrate pooling layers (e.g., max-pooling) to downscale spatial dimensions and extract
pertinent features.

° Fully Connected Layers: Incorporate fully connected layers for classification tasks, with neuron counts
tailored to task complexity.

° Dropout: Introduce dropout layers to mitigate overfitting.

. Batch Normalization: Enhance training stability and convergence speed with batch normalization layers.

° Skip Connections: Enhance feature capture with skip connections aiding local and global feature

representation.

3. Custom Loss Functions: Design loss functions tailored to specific objectives. For instance, weighted loss
functions can prioritize certain diseases over others based on importance.

4, Activation Functions: Experiment with diverse activation functions (e.g., ReLU, Leaky ReLU, Swish) to
optimize model performance.

5. Data Augmentation: Implement augmentation techniques like rotation, translation, and color adjustment to
augment dataset size and improve model robustness.

6. Regularization Techniques: Incorporate regularization techniques such as L1 and L2 regularization alongside
dropout layers for effective regularization.

7. Transfer Learning: Consider leveraging pre-trained features from established models like VGG or ResNet,
especially beneficial for smaller datasets.

8. Training Strategy: Define a comprehensive training strategy encompassing optimizer choice (e.g., Adam,
SGD), learning rate schedule, and batch size. Continuous monitoring of training progress and validation metrics is
essential to ensure model fidelity.

9. Evaluation Metrics: Select relevant evaluation metrics (e.g., accuracy, precision, recall, F1-score, ROC-AUC)
aligned with plant disease detection objectives.

10. Hyperparameter Tuning: Iterate through various hyperparameter configurations, including learning rates and
batch sizes, optimizing model performance through techniques like grid search or Bayesian optimization.

11. Model Interpretability: Incorporate interpretability techniques such as Grad-CAM or SHAP to gain insights
into critical image regions influencing disease predictions.

12. Deployment: Prepare the trained custom architecture for deployment in real-world scenarios, whether on edge
devices or cloud platforms.

The CNN, featuring two convolutional layers with 20 filter kernels followed by max-pooling layers, outperformed the
MLP. Additionally, LSTM networks were employed for time series data processing, demonstrating superior accuracy
compared to RF, SVM, and KNN . Utilization of ANNSs to predict rice disease outbreaks based on weather data, has
showcased the versatile usage of neural networks in agriculture.

Transfer Learning

Transfer learning emerges as a potent technique in enhancing the performance of plant disease detection models by
leveraging pre-trained neural network models. Here's how transfer learning can be effectively applied:Pre-trained
Model Selection: Begin by selecting a pre-trained neural network model trained on diverse datasets, such as VGG16 or
ResNet, to serve as a base for transfer learning.
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1. Layer Modification: Remove the top layers responsible for original categorization while retaining feature
extraction layers.

2. Custom Layer Addition: Append new layers to the pre-trained model to suit the plant disease detection task,
typically incorporating fully connected layers for classification.

3. Pre-trained Layer Freezing: Freeze pre-trained layer weights to preserve learned features during training,
ensuring effective adaptation to the new task.

4. Data Preparation: Organize and preprocess the plant disease dataset, applying suitable transformations and
augmentation techniques to enhance model adaptability.

5. Fine-Tuning: Train the modified model on the plant disease dataset while keeping pre-trained layers frozen.
Monitor training metrics to gauge model learning effectiveness.

6. Optional Unfreezing and Further Fine-Tuning: Unfreeze pre-trained layers after initial training rounds and
continue training with a reduced learning rate to fine-tune feature extraction layers, enhancing model performance.

7. Model Evaluation: Evaluate the fine-tuned model using standard metrics like accuracy, precision, recall, and
F1-score, ensuring robust performance assessment.

8. Deployment: Deploy the fine-tuned model in real-world applications, whether on edge devices or cloud
platforms, for automated plant disease detection.

Transfer learning presents numerous benefits in plant disease detection:

o It mitigates the necessity for extensive datasets by leveraging knowledge acquired from pre-training.

° This approach often leads to expedited convergence and enhanced generalization, particularly when dealing
with limited data.

° Transfer learning is apt for scenarios demanding real-time or near-real-time detection.

° It facilitates the utilization of established, cutting-edge architectures without the need to develop a bespoke

network from scratch. Transfer learning stands out as a valuable technique for enhancing the precision and efficacy of
plant disease detection models, rendering it a pragmatic option for precision agriculture and crop management.

In this paper SVM, RF, or deep learning-based ML models were discussed. These methodologies have demonstrated
promising outcomes, underscoring the potential of ML techniques in disease and pest classification, detection, and
prediction. SVMs exhibit robustness and efficacy in high-dimensional spaces owing to their utilization of the kernel
trick. RF can forestall overfitting by employing numerous trees trained on diverse data subsets. Deep learning
consistently yields superior classification outcomes by generating and extracting hierarchical features from inputs.
Notably, deep learning outperforms other ML models, particularly in image classification domains, especially when
employing pre-existing CNN architectures like Inception and ResNet. Despite the higher accuracy achieved by deep
learning models, SVM and RF can also attain high accuracy rates exceeding 94%, particularly in disease classification
using laboratory images . SVM achieves notable accuracy, surpassing 90%, in tomato disease detection. RNNs excel in
establishing correlations between weather data and pest occurrence, outperforming RF and SVM .In situations where
data acquisition is challenging, models trained with limited data can benefit from transfer learning, rather than being
trained from scratch .Most studies pre-train their models on extensive image classification datasets such as ImageNet or
COCO. Integrating the PlantVillage dataset with ImageNet for pre-training enhances model accuracy for disease
classification in field-acquired images Transfer learning is typically applied by jointly training some of the top layers of
the pre-trained model with the new classifier. Alternatively, addressing data scarcity issues can be accomplished
through few-shot learning approaches.

C.Jackulin and S. Murugavalli [21] conducted an extensive review on the application of Al-based machine learning and
deep learning techniques in plant disease detection. They undertook a comparative analysis of machine and deep
learning methods, showcasing their performance and utilization across various research papers to underscore the
superior effectiveness of deep learning models over machine learning counterparts. Tiago Domingues, Tomas Brandao,
and Juao C. Ferrira [20] conducted a literature review focusing on ML techniques in agriculture, particularly in
classifying, detecting, and predicting diseases and pests, with a spotlight on tomato crops. Their survey aimed to foster
smart farming and precision agriculture by advocating for techniques that enable reduced pesticide use while enhancing
crop quality and yield.
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Taranjeet Singh, Krishna Kumar, and SS Bedi [22] explored several techniques based on machine learning and image
processing for crop disease recognition, presenting discussions that offer insights for advancements in this field. Tiago
Domingues, Tomas Brandao, and Juao C. Ferrira [20] also furnished details on available databases in their work.
Kartikeyan, P., and Shrivastava, G. [23] provided an overview of established methods for plant disease detection and
classification.

Kamilaris, A., Kartakoullis, A., and Prenafeta-Boldu, F.X. [36] outlined the vast opportunities of big data analysis in
agriculture toward smarter farming, highlighting advancements in hardware, software, techniques, and data sources.
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborova [31] discussed
the applications of ML methods across various scientific domains, emphasizing recent successes, challenges, and
advancements in computing architectures. Gianni Fenu and Francesca Maridina Malloci [24] analyzed and classified
research studies focused on forecasting disease onset at pre-symptomatic stages or early stages, examining
methodologies, pre-processing techniques, data sources, performance metrics, and encountered challenges. V. Sharma,
A. Verma, and N. Goel [30] primarily focused on the most utilized classification mechanisms in plant disease
detection, highlighting the superior accuracy of Convolutional Neural Network approach compared to traditional
methods.

S. Arivazhagan, S. Newlin, S. Ananthi, and S.V. Varthini [39] proposed a system for automatic plant leaf disease
detection and classification, presenting an efficient processing scheme that achieved a 94% accuracy rate in detecting
and classifying diseases on a database of 500 plant leaves. Elakeyaa P V, Keerthana A, Bharathi P, Ezhilmani S, and
Dr. V. Mohan [26] measured disease detection, infected area, and affected region percentage. Akhtar, Asma, A.
Khanum, Shoab A. Khan, and A. Shaukat [40] compared the performance of various ML techniques for identifying and
classifying plant disease patterns from leaf images, demonstrating the superiority of Support Vector Machines for
disease classification.

Ageel ur, R., Abbasi, A., Islam, N., and Shaikh, Z. [38] reviewed the use of wireless sensors in agriculture and WSN
technology, discussing various system frameworks and ethical considerations of big data in agriculture. Liaghat, S., and
Balasundram, S.K. [41] emphasized the utility of remote sensing technology in agriculture. Kondor, R., and S. Trivedi
[35] explored the role of convolutional structures in achieving equivariance to the action of a compact group,
leveraging concepts from representation theory and noncommutative harmonic analysis. Hopfield [42] discussed the
emergence of computational properties useful for biological organisms or computers from systems with a large number
of simple components. Noe, F., S. Olsson, J. Kéhler, and H. Wu [32] delved into Boltzmann Generators, which employ
neural networks to learn a coordinate transformation of the complex configurational equilibrium distribution.

Fenu, G., and Malloci, F.M. [24] presented a case study on forecasting potato late blight, employing models like the
Negative Prognosis model and the Fry model. Fenu, G., and Malloci, F.M. [25] utilized regional weather variables to
predict potato late blight risk, achieving high prediction accuracy using Machine Learning approaches. Bing Lu and
others [27] provided insights into the strengths and limitations of hyperspectral imaging in agriculture applications,
aiming to facilitate its adoption in agricultural research and practice.

Elavarasan, D., Vincent, D.R., Sharma, V., Zomaya, A.Y., and Srinivasan, K. [34] compared supervised and
unsupervised machine learning models associated with crop yield, employing error measures like RMSE, RRMSE,
MAE, and R2.

Bhatia and others [28] implemented Extreme Learning Machine (ELM) algorithm for plant disease prediction, focusing
on real-time scenarios like Tomato Powdery Mildew Disease (TPMD). de Oliveira Aparecido and others [29]
employed multiple machine learning algorithms for disease prediction, demonstrating the superiority of Random Forest
Regressor in predicting various coffee diseases using weather conditions. Researchers have utilized deep learning-
based image classification to determine disease severity based on the area of leaves covered by lesions, considering it
as a measure of disease severity.

CONCLUSIONS

The exploration of ML-based techniques for disease and pest forecasting, detection, and classification presented
valuable insights in this survey. It emphasized the importance of maintaining long-term records of datasets
encompassing weather, diseases, and pests data. Time-series ML models, such as RNNs, emerge as effective tools for
accurately predicting disease and pest occurrences based on series of meteorological measurements. Additionally,
incorporating NDVI measurements can offer supplementary insights into crop development. Leveraging computer
vision and deep-learning algorithms, particularly CNN models, proves advantageous for detecting and classifying pests
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and diseases, outperforming traditional approaches reliant on manual feature extraction. However, the data
requirements for deep learning models pose a challenge, necessitating strategies like transfer learning or few-shot
learning. Despite their high performance under controlled conditions, further research is needed to analyze images
captured in real-life field conditions. Moreover, the absence of substantial work on pest and disease forecasting using
diverse data modalities underscores the need for future investigations. This article, by including the general references,
aims to provide a comprehensive overview of ML techniques across various data types, fostering opportunities for
addressing this research gap and advancing the field.
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