
IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 586

ISSN (O) 2393-8021, ISSN (P) 2394-1588

RISC-V Microarchitecture Design on FPGA

Mr. Praveen A1, Shwetha V2, Thushar Cherian3, Prayag Singh4, Varshith S5

Assistant Professor, Department of ECE, K S Institute of Technology, Bengaluru, India1

Undergraduate Students, Department of ECE, K S Institute of Technology, Bengaluru, India2,3,4,5

Abstract: This project presents the design and implementation of a single cycle RISC-V RV32I processor on FPGA

using Xilinx ISE Design Suite. RISC-V is an open standard instruction set architecture that provides flexibility, scalability

and privilege from proprietary constraints, making it an excellent choice for educational purposes. The processor is

designed using Verilog HDL, includes essential components such as the instruction fetch, decode, execute, memory

access and write-back stages.

The entire design is synthesized and implemented on a Spartan-6 FPGA board. This project demonstrates the feasibility

and effectiveness of implementing a single cycle RISC-V processor on FPGA, providing valuable insights into processor

design and hardware implementation.

Keywords: RISC-V single cycle processor design, RV32I Instruction Set, Spartan 6 FPGA, Xilinx ISE Design Suite.

I. INTRODUCTION

 The rapid advancement of digital technologies has promoted a growing need for efficient and flexible processors.

Among these, the RISC-V instruction set architecture (ISA) has played a significant role due to its open-source nature,

modularity and simplicity. The RISC-V is an open and extensible ISA developed by the University of California,

Berkeley, designed to support a wide range of applications, from small embedded systems to large scale data center. This

project focuses on the designing a single cycle microarchitecture for RISC-V RV32I processor using Verilog HDL and

implementing it on a Spartan 6 FPGA board. The RISC-V RV32I subset is a 32-bit ISA that includes a basic integer

instruction set, making it ideal for educational purposes and small-scale applications. The RV32I instruction set consists

of load, store, arithmetic, logical, and control flow instructions, providing a comprehensive foundation for understanding

processor functionality.

A single cycle processor carries out one instruction in a single clock cycle. Therefore, in this architecture, each

instruction is executed in a single clock cycle, encompassing instruction fetch, decode, execution, memory access and

write-back stages. Despite its simplicity, the single cycle design serves an excellent educational tool for understanding

the fundamental concepts of processor operation and microarchitecture design. The design will be divided into datapath

and control unit, each component crafted to ensure efficient execution of the instructions. The integration of these

components will be carried out under a top module which will then be deployed on Spartan 6 FPGA board for validation

and testing.

FPGAs are widely used for prototyping and educational purposes due to their flexibility and reconfigurability. These

devices allow designers to implement and test various architectural features and optimizations directly in hardware,

providing valuable insights into real-world processor design challenges and trade-offs. The Spartan-6 FPGA is a family

of Field-Programmable Gate Arrays (FPGAs) developed by Xilinx, designed to deliver high performance and low power

consumption at an affordable cost. One of the standout features of Spartan-6 FPGAs is their power efficiency. These

FPGAs are designed to operate with minimal power consumption, which is crucial for applications where energy

efficiency is a priority. This makes them particularly suitable for battery-powered devices and other power-sensitive

applications.By successfully implementing a single-cycle RISC-V processor on an FPGA, this project not only reinforces

the fundamental principles of computer architecture but also provides a solid foundation for exploring more advanced

processor designs and optimizations in future endeavors.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 587

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Why RISC-V?

Table I. Comparison of ISAs

II. LITERATURE SURVEY

[1] Pushpalatha K N, Anmol Singh, Arpit Kumar, Abhishek Singh, Anirudh Reddy R. “Design And Implementation Of

RISC-V ISA (RV32IM) On FPGA” (2023)

The paper "Design and Implementation of RISC-V ISA (RV32IM) on FPGA" by Pushpalatha K N, Anmol Singh,

Arpit Kumar, Abhishek Singh, and Anirudh Reddy R. presents an in-depth study and practical application of the RISC-

V instruction set architecture, specifically the RV32IM subset, in the context of FPGA implementation. The paper begins

with a comprehensive overview of the RISC-V architecture, highlighting its advantages over traditional proprietary ISAs.

The RV32IM subset, which includes basic integer instructions (RV32I) and multiplication and division instructions (M),

is specifically addressed. The authors discuss the modular nature of RISC-V, which allows for the selective

implementation of instruction subsets tailored to specific application requirements. Through detailed design

methodology, thorough validation, and performance analysis, the authors provide valuable insights into the challenges

and solutions associated with FPGA-based processor design. This work not only contributes to the academic

understanding of RISC-V but also serves as a valuable resource for practical applications and further research in the field

of digital design and computer architecture.

[2] Enfang Cui, Tianzheng Li, And Qian Wei.“RISC-V Instruction Set Architecture Extensions: A Survey” (2023)

The paper "RISC-V Instruction Set Architecture Extensions: A Survey" by Enfang Cui, Tianzheng Li, and Qian Wei

provides a comprehensive overview of the various extensions developed for the RISC-V instruction set architecture

(ISA). As RISC-V continues to gain momentum in both academic and industrial domains, its open-source nature allows

for extensive customization and enhancement through ISA extensions. The survey begins by discussing the fundamental

aspect of the RISC-V architecture, emphasizing its modular design and the rationale behind the creation of various ISA

extensions. The authors categorize the extensions into several groups based on their functionalities, such as performance

enhancement, security, and application-specific extensions. The survey delves into the implementation challenges and

strategies for integrating these extensions into RISC-V processors. It discusses the trade-offs involved in extending the

ISA, such as the balance between performance gains and increased complexity or power consumption. The authors also

highlight the importance of maintaining backward compatibility with the base ISA to ensure broad adoption and support.

[3] Mr.Rajkumar D.Komati1, Aditya Kolekar, Kunal Kasbekar, Ms.Avanti Godbole. “Design and Implementation Of

16-Bit RISC-V Processor On FPGA” (2020)

The paper "Design and Implementation of 16-Bit RISC Processor on FPGA" by Rajkumar D. Komati, Aditya Kolekar,

Kunal Kasbekar, and Avanti Godbole presents an in-depth exploration of the development and realization of a 16-bit

Reduced Instruction Set Computing (RISC) processor on an FPGA platform. The core of the research focuses on the

ISA CHIPS ARCHITECTURE

LICENSE

COMMERCIAL

CORE IP

ADD OWN

INSTRUCTIONS

OPEN-

SOURCE

CORE IP

x86 Yes,

three

vendors

No No No No

ARM Yes,

many

vendors

Yes, expensive Yes, one vendor No No

RISC-

V

Yes,

many

vendors

Yes, free Yes, many

vendors

Yes Yes,

many

available

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 588

ISSN (O) 2393-8021, ISSN (P) 2394-1588

design methodology for a 16-bit RISC processor. The authors detail the architecture's main components, including the

arithmetic logic unit (ALU), register file, instruction fetch unit, control unit, and memory interface. The implementation

process on an FPGA is discussed, with specific reference to the chosen FPGA platform. The authors describe the

synthesis, place, and route processes, addressing challenges such as resource constraints and timing optimization. The

FPGA's reconfigurable nature allows for iterative testing and refinement of the processor design. The paper details the

16-bit instruction set designed for the processor, including arithmetic, logical, control flow, and data transfer instructions.

The design of the instruction set aims to balance simplicity with functionality, ensuring that the processor can perform

essential operations efficiently.

[4] Deepika R, Gopika Priyadharsini S M, Muthu Malar, Vivek Anand. “Microarchitecture Based RISC-V Instruction

Set Architecture for Low Power Application” (2022)

The paper "Microarchitecture Based RISC-V Instruction Set Architecture for Low Power Application" by Deepika R,

Gopika Priyadharsini S M, Muthu Malar, and Vivek Anand (2022) delves into the design and implementation of a RISC-

V microarchitecture tailored specifically for low-power applications. The authors emphasize the significance of the RISC-

V ISA's open-source nature, which provides the flexibility needed to optimize the architecture for power efficiency

without the constraints of licensing fees associated with proprietary ISAs. The research focuses on the development of a

microarchitecture that balances performance with power consumption, making it suitable for applications where energy

efficiency is paramount, such as in wearable devices, IoT sensors, and other embedded systems. The authors outline their

approach to reducing power usage by incorporating various techniques, such as clock gating, dynamic voltage scaling,

and power gating. These techniques are integrated into the RISC-V processor design to minimize active and standby

power consumption. Overall, this research contributes to the ongoing efforts to develop energy-efficient computing

solutions by leveraging the flexibility of the RISC-V ISA. The findings and methodologies presented in this paper can

serve as a foundation for further advancements in low-power microarchitecture design, potentially influencing the

development of next-generation processors for various low-power applications.

III. METHODOLOGY

A. Block Diagram

Figure 1.Block Diagram of RISC-V single cycle processor

The Figure.1, shows the RISC-V single cycle processor block diagram which consists of the fundamental components

necessary for executing RISC-V instructions within a single clock cycle. The central component is the Datapath, which

mainly includes the Program Counter (PC) for tracking instruction addresses, the Instruction Memory (IMEM) for storing

the program's instructions, and the Register File for holding the processor's working data. An Arithmetic Logic Unit

(ALU) performs arithmetic and logical operations, while Data Memory (DMEM) is used for data storage during

execution.

The Control Unit generates the necessary signals to orchestrate the Datapath operations, ensuring each instruction is

fetched, decoded, executed, and results are written back correctly. Together, these components interact within a single

clock cycle, ensuring streamlined instruction execution.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 589

ISSN (O) 2393-8021, ISSN (P) 2394-1588

B. Working

Datapath

Figure 2. Instruction Memory

The program counter contains the address of the instruction to execute. The first step is to read this instruction from

instruction memory. The PC is connected to the address input of the instruction memory as shown in Figure.2. The

instruction memory fetches the 32-bit instruction, labelled Instr. The processor’s actions depend on the specific

instruction that was fetched.

Figure 3. Read source from Register File

The next step is to read the source register containing the base address. The base register is specified in the rs1 field of

the instruction. These bits of the instruction connect to the A1 address input of the register file, as shown in Figure 3. The

register file reads the register value onto RD1. The offset is stored in the 12-bit immediate field of the instruction. It is a

signed value, so it must be sign-extended to 32 bits. Sign extension is performed by an Extend unit. It receives the 12-bit

signed immediate and produces the 32-bit sign-extended immediate.

The ALU can perform many operations, as was described in Table 3, ALUControl specifies the operation. The ALU

receives 32-bit operands and generates a 32-bit ALUResult. The result is sent to the data memory as the address to read.

Figure 4. Data Memory

The memory address from the ALU is provided to the address (A) port of the data memory as shown in Figure 4. The

data is read from the data memory onto the ReadData bus and then written back to the destination register at the end of

the cycle. A control signal called RegWrite (register write) is connected to WE3 in Figure 4., port 3’s write enable input,

and is asserted so that the data value is written into the register file. The write takes place on the rising edge of the clock

at the end of the cycle. While the instruction is being executed, the processor must also compute the address of the next

instruction, that is PCNext, therefore PC is incremented to point next instruction address. The new address is written into

the program counter on the next rising edge of the clock.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 590

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Control Unit

The control unit, is also referred to as the controller or the decoder, because it decodes what the instruction should do. It

is partitioned into two major parts: the Main Decoder, which produces most of the control signals, and the ALU Decoder,

which determines what operation the ALU performs.

The Main Decoder determines the instruction type from the opcode and then produce the appropriate control signals for

the datapath. The Main Decoder generates most of the control signals for the datapath.

Figure 5. Controller

Table II. Main Decoder Truth Table

It produces internal signals Branch and ALUOp, signals used within the controller. The logic for the Main Decoder can

be developed from the truth table shown in Table II, using various techniques for combinational logic design. The ALU

Decoder produces ALUControl based on ALUOp and func3. In the case of the sub and add instructions, the ALU Decoder

also uses funct7(5) and op(5) to determine ALUControl, as given in the Table III. ALUOp of 00 indicates add (e.g., for

loads or stores). ALUOp of 01 indicates subtract (e.g., to compare two numbers for branches). ALUOp of 10 indicates

an R-type ALU instruction where the ALU Decoder must look at the func3 field and sometimes also the op(5) and

func7(5) bits to determine which ALU operation to perform (e.g., add, sub, and, or, slt).

Each component is designed using Verilog HDL, ensuring modularity and ease of integration. The datapath and control

unit are integrated under a top-level module, which coordinates their interactions to ensure the correct execution of

instructions.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 591

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Table III. ALU Decoder Truth Table

The entire design is synthesized and implemented on a Spartan 6 FPGA board. The assembly code is converted into

binary or hexadecimal format and loaded into the instruction memory of the FPGA-implemented processor. Upon

execution, the results are stored in the data memory, referred to as result (1). The same assembly programs are executed

on an online RISC-V simulation platform, and the results are recorded as result (2).

Finally, result (1) from the FPGA implementation is compared with result (2) from the online RISC-V platform to validate

the correctness of the processor design. Matching results confirm the proper functioning of the designed processor.

IV. HARDWARE & SOFTWARE USED

A. Hardware used - Spartan 6 FPGA Kit

Figure 6. Spartan 6 FPGA

An FPGA, Field Programmable Gate array, is a semiconductor device, that is based on matrix of configurable logic

blocks, connected via programmable interconnects. FPGAs are subset of logic devices referred to as programmable logic

devices. A FPGA configuration is generally written using a hardware description language (HDL). The logic blocks of

an FPGA can be configured to perform complex combinational functions, or act as simple logic gates like AND and

XOR. FPGAs also have a role in embedded system development due to their capability to start system software

development simultaneously with hardware, enable system performance simulations at a very early phase of the

development, and allow various system trials and design iterations before finalizing the system architecture.

Xilinx produced the first commercially viable field-programmable gate array in 1985 – the XC2064. The Spartan-6 FPGA

board, developed by Xilinx, is a versatile and widely used platform in the area of digital logic design, embedded systems,

and rapid prototyping. The Spartan-6 family includes various models with different capacities and features, catering to a

broad spectrum of requirements. The Spartan-6 family is designed to deliver low power consumption, making it ideal for

battery-powered and portable applications.

ALUOp Func3 {op(5),func7(5)} ALUControl Instruction

00 x x 0000 lw,sw

01 x x 0001 beq

10 000 00,01,10 0000 add, addi

 000 11 0001 sub

 001 xx 0100 sll, slli

 010 xx 0101 slt,slti

 011 xx 0110 sltu, sltiu

 100 xx 0111 xor, xori

 101 00,01,10 1000 srl, srli

 101 11 1001 sra, srai

 110 xx 0011 or, ori

 111 xx 0010 and, andi

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 592

ISSN (O) 2393-8021, ISSN (P) 2394-1588

B. Software used – Xilinx ISE

Figure 7. Xilinx ISE Design Suite

Xilinx ISE (Integrated Software Environment) is a comprehensive software tool, provided by Xilinx for the synthesis

and analysis of HDL (Hardware Description Language) designs, enabling developers to design, simulate, and implement

FPGA and CPLD (Complex Programmable Logic Device) designs. Xilinx ISE was the flagship IDE from Xilinx for

FPGA design for almost two decades since its introduction in 1992. It enabled the complete FPGA design flow from

design entry to bitstream generation using integrated tools for synthesis, place and route, timing analysis, simulation and

debugging.

The Xilinx ISE supports the Spartan 6, as well as older devices which include CPLDs (CoolRunner and XC9500). It

also supports various methods of design entry, including schematic capture, HDL (VHDL, Verilog), and state machines.

Various integrated tools for functional simulation, timing analysis, and formal verification to ensure the correctness of

the design can be used. Xilinx's algorithms for synthesis allow designs to run up to 30% faster than competing programs,

and allows greater logic density which reduces project time and costs.

V. RESULTS

.

Figure 8. RISC-V single cycle processor

The above complete single cycle processor is designed using Verilog HDL on Xilinx ISE. This design is tested using

the ALP program shown in Table IV. A test bench program is written to simulate the functionality of the designed single

cycle RISC-V processor. The simulation is successful and it is as shown in the Figure 9.

0

1

PCNext

CLK
CLK CLK

00

01

10

PC
A RD

INSTRUCTION

MEMORY

Instr

+

4

PCPlus4
Extend

31:7

11:7

24:20

19:15

30

14:12

6:0

0

1

ImmExt

+
PCTarget

REGISTER

FILE

DATA

MEMORY

WriteData

ALUResult

SrcA

SrcB

A1

A2

A3

WE3

RD1

RD2

WE

RD A

WD

ReadData

Zero

Control

Unit

op

funct3

funct7

Zero

PCSrc

ResultSrc1:0

MemWrite

ImmSrc1:0

ALUSrc

ALUControl2:0

RegWrite

Result

WD3

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 593

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Table IV. RISC-V ALP and its equivalent hexadecimal

Figure 9. Simulation Output

RISC-V ASSEMBLY HEXADECIMAL EQUIVALENT

addi x2, x0, 5 00500113

addi x3, x0, 12 00C00193

addi x7, x3, -9 FF718393

or x4, x7, x2 0023E233

and x5, x3, x4 0041F2B3

add x5, x5, x4 004282B3

beq x5, x7, end 02728863

slt x4, x3, x4 0041A233

beq x4, x0, around 00020463

addi x5, x0, 0 00000293

slt x4, x7, x2 0023A233

add x7, x4, x5 005203B3

sub x7, x7, x2 402383B3

sw x7, 84 (x3) 0471AA23

lw x2, 96 (x0) 06002103

add x9, x2, x5 005104B3

jal x3, end 008001EF

addi x2, x0, 1 00100113

add x2, x2, x9 00910133

sw x2, 0x20 (x3) 0221A023

beq x2, x2, done 00210063

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 594

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Figure 10. Venus RISC-V simulator output

The same ALP code is executed on Venus RISC-V simulator on Visual Studio Code to compare and validate the

designed RISC-V processor output. The output of the RISC-V simulator is shown in Figure 10. Note that the ALP

contains two sw instructions that writes data into data memory as follows,

1. 0x07 at the address 0x60

2. 0x19 at the address 0x64

The program produces the correct results (above specified sw operations) only if all the functions are functioning

correctly. If the designed hardware is buggy, the expected result may not be obtained.

Hardware Utilizations:

Figure 11. HDL synthesis report

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 595

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Figure 12. Device Utilization Summary

RTL Schematic:

Figure 13. RTL Schematic

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed & Refereed journalVol. 11, Issue 7, July 2024

DOI: 10.17148/IARJSET.2024.11798

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 596

ISSN (O) 2393-8021, ISSN (P) 2394-1588

VI. CONCLUSION & FUTURE SCOPE

This project was a significant undertaking that provided us a hands-on experience in digital design of a RISC-V

processor on FPGA platform. The project successfully demonstrated the feasibility of designing and deploying a single-

cycle processor on an FPGA. Key learning outcomes included understanding the RISC-V instruction set architecture,

digital design of a processor using Verilog Hardware Description language (VHDL), and gaining proficiency in using

Xilinx ISE for FPGA synthesis and implementation.

The project highlights the flexibility and efficiency of the single-cycle RISC-V architecture and the programmability of

FPGA platforms like the Spartan 6. It also underscores the advantages of open-source architectures in education and

prototyping, allowing for customization and optimization to meet specific needs.

In the Future work, we intend to extend the single-cycle processor to a pipelined architecture to improve performance by

overlapping instruction execution. To develop a multi-core RISC-V processor on the FPGA to explore parallel processing

and multi-threading capabilities.

REFERENCES

[1] Pushpalatha K N, Anmol Singh, Arpit Kumar, Abhishek Singh, Anirudh Reddy R. “Design and Implementation of

RISC-V ISA (RV32IM) On FPGA” (2023)

[2] Enfang Cui, Tianzheng Li, and Qian Wei. “RISC-V Instruction Set Architecture Extensions: A Survey” (2023)

[3] Mr. Rajkumar D. Komati1, Aditya Kolekar, Kunal Kasbekar, Ms. Avanti Godbole. “Design and Implementation of

16-Bit RISC Processor On FPGA” (2020)

[4] Deepika R, Gopika Priyadharsini S M, Muthu Malar, Vivek Anand. “Microarchitecture Based RISC-V Instruction

Set Architecture for Low Power Application” (2022)

[5] Akshay Birari et al., “A RISC-V ISA Compatible Processor IP,” 24th International Symposium on VLSI Design and

Test (2020).

[6] Aneesh Raveendran et al., “A RISC-V Instruction Set Processor Microarchitecture Design and Analysis,”

International Conference on VLSI Systems, Architectures, Technology and Applications (2016).

[7] Jikku Jeemon, “Low power pipelined 8-bit RISC processor design and implementation on FPGA”, ICCICCT 2015.

[8] https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

https://iarjset.com/
https://iarjset.com/

