
IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024

DOI: 10.17148/IARJSET.2024.111103

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 25

ISSN (O) 2393-8021, ISSN (P) 2394-1588

The Existence of the Halting Function in a Purely

Mathematical Context and the Solution of

Halting paradox with termination checking of

programs over definite Topological spaces.

(AMS MSC2020 03-08) Category:

Mathematics and computation

Dr.SOHAM DASGUPTA1, DIPANJAN ROUT2,SOURJYA GUPTA3,

ARCHISMAN MUKHRJEE4

PM SHRI KENDRIYA VIDYALAYA NO.2 SALTLAKE1

Department of Data Science and AI, IIT Madras2

Techno India University, Dept. of Computer science3

UG Basic Science NISER Bhubaneswar & Ex student of PM Shri Kendriya Vidyalaya No.2 Saltlake4

Abstract: Here we define, mathematically, a program 𝑓𝑖 : 𝑤 ⟶ {0,1}ℵ𝟎
. Where 𝑤 is a set of all programmable words,

we consider as the domain, and {0,1}ℵ𝟎
is the co-domain is the set of all finite or infinite strings of 0 & 1. (*Ref.1). In this

paper, we propose a function 𝑓𝑖 *, which we call the stop function and we propose another function h, which we call the

halt function. Our objective of the paper is to show their existence in a completely mathematical form of the, well known

halting problem and its solution using simple functional compositions. Our next approach is to study the structure of the

domain of programmable functions i.e. 𝑤 and its topology with respect to the topology of {0,1}ℵ𝟎
 . Followed by defining

the finite string topology and the product topology on {0,1}ℵ𝟎
and study the continuous functions from 𝑤 to {0,1}ℵ𝟎

. Our

main intention is to show that a programmable function will terminate for a specific input if and only if the function is

continuous at that specific input (point on 𝑤).

The main deference between the classical halting problem and our method is instead of mechanical switch program we

utilize two-point functions. Which leads us to generate some interesting results through a purely mathematical context.

Keywords: Halting Problem, Turing machine, Undecidability, Stop function, Halting function,Product topology

INTRODUCTION

Alan Turing's 1936 introduction of the halting problem is regarded as one of the most significant advances in theoretical

computer science. It is a classic illustration of an undecidable problem one which cannot be solved always by any

algorithm. The halting problem specifically focuses on figuring out if a given program will continue indefinitely or finally

end for a given input. This issue, which shows inherent limitations in what can be calculated algorithmically, sits at the

intersection of computability theory and mathematical philosophy.

In this paper, we revisit the halting problem by developing a mathematical foundation for the existence of halting

functions, which can indicate whether a program terminates for certain inputs. We explore the structure of the set of all

programs, modeling them binary strings, and introduce the concept of a stop function to describe the behavior of programs

for different inputs. Our approach allows us to construct a halting function within this framework, providing insight into

the conditions under which a program halts or non-terminating.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024

DOI: 10.17148/IARJSET.2024.111103

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 26

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Furthermore, using topological techniques, we demonstrate which are the programable words and how particular

programs can be designed to fail under the assumptions of a general halting algorithm, reinforcing the undecidability of

the problem. In the prospects machine the existence of halting function leads to a contradiction, but in a completely in a

theoretical and mathematical approach its existence is definable. Thus, roughly speaking there exists some problem which

computer cannot solve but it is solvable in a completely theoretical and mathematical way.

The Halting Problem and its classical proof for undecidability.

The main concept of the halting problem is somewhat straightforward: given an input and a program, is it possible to

predict whether the program will terminate or run forever? Undecidability became a fundamental aspect of computational

theory when Turing's groundbreaking work demonstrated that no generic algorithm may determine this for all programs

and inputs. Although there are some specific situations in which termination can be anticipated, this basic restriction

applies to the wide range of programs.

Let ℎ(𝑖, 𝑥) be a function that decides whether the program 𝑃𝑖 halts on input 𝑥. We define ℎ(𝑖, 𝑥) as:

ℎ(𝑖, 𝑥) = {
1 if 𝑃𝑖 halts on input 𝑥,
0 otherwise.

The goal is to prove that no total computable function can always correctly compute ℎ(𝑖, 𝑥), i.e., the function ℎ is

undecidable.

Proof by Contradiction

Assume, for contradiction, that such a total computable function ℎ(𝑖, 𝑥) exists. We now define a new function 𝑔(𝑖) based

on an arbitrary total computable function 𝑓(𝑖, 𝑖):

𝑔(𝑖) = {
0 if 𝑓(𝑖, 𝑖) = 0,

undefined if 𝑓(𝑖, 𝑖) ≠ 0.

Here, 𝑔(𝑖) is a partial computable function, depending on the value of 𝑓(𝑖, 𝑖).

We now define a program 𝑒 that computes 𝑔(𝑖):

We now define a program 𝑒 that computes 𝑔(𝑖):

 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑒(𝑖):

  𝑖𝑓 𝑓(𝑖, 𝑖) == 0 :
 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 0

 𝑒𝑙𝑠𝑒:

 Non terminating

This program halts and returns 0 if 𝑓(𝑖, 𝑖) == 0, and non-terminating if 𝑓(𝑖, 𝑖) ≠ 0.

This program halts and returns 0 if 𝑓(𝑖, 𝑖) = 0, and non-terminating if 𝑓(𝑖, 𝑖) ≠ 0.

Behavior of 𝑒 on Input 𝑒

Now, we consider the behavior of 𝑒 when given the input 𝑒:

• Case 1: If 𝑓(𝑒, 𝑒) = 0, then 𝑔(𝑒) = 0, meaning 𝑒 halts on input 𝑒, so ℎ(𝑒, 𝑒) = 1.

• Case 2: If 𝑓(𝑒, 𝑒) ≠ 0, then 𝑔(𝑒) is undefined, meaning 𝑒 does not halt on input 𝑒, so ℎ(𝑒, 𝑒) = 0.

Contradiction

This leads to a contradiction:

• If 𝑓(𝑒, 𝑒) = 0, then ℎ(𝑒, 𝑒) = 1, implying 𝑒 halts.

• If 𝑓(𝑒, 𝑒) ≠ 0, then ℎ(𝑒, 𝑒) = 0, implying 𝑒 does not halt.

Thus, ℎ(𝑒, 𝑒) cannot simultaneously be both 1 and 0, which contradicts the assumption that ℎ(𝑖, 𝑥) is a total computable

function.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024

DOI: 10.17148/IARJSET.2024.111103

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 27

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Mathematical approach to redefine the problem and to investigate its solution.

Definition : Let w be the set of all programable sentences and {0,1}ℵ𝟎
 is the collection of any finite or infinite countable

strings of 0 and 1. Now, 𝑓𝑖 : 𝑤 ⟶ {0,1}ℵ𝟎 is called a program.

 𝜌 = {𝑓𝑖|𝑓𝑖 : 𝑤 ⟶ {0,1}ℵ𝟎
} is the set of all programs.

Definition : Now we define 𝑓𝑖
∗
as the stop function for every 𝑓𝑖 that is if 𝑓𝑖(x) is finite for some input x belongs to w then

𝑓𝑖
∗
(x) = 0, else 1. i.e. {

𝑓𝑖
∗(𝑥) = 0 𝑖𝑓 𝑓𝑖(𝑥) 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒

𝑓𝑖
∗(𝑥) = 1 𝑖𝑓 𝑓𝑖(𝑥) 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒

 x∈ 𝑤

The set of all such stop functions is 𝜌∗ = {𝑓𝑖
∗|𝑓𝑖

∗: 𝑤 ⟶ {0,1}}.

Now we defining the ℎ: {0,1} ⟶ {0,1} named as the halting function. Observe that there exist only one such non constant

function out of 4. Also, that is self-invertible.

Now ℎ ∘ 𝑓𝑖
∗: 𝑤 ⟶ {0,1}. Obviously ℎ ∘ 𝑓𝑖

∗𝜖𝜌

Hence {
(ℎ ∘ 𝑓𝑖

∗)(𝑥) = ℎ[𝑓𝑖
∗(𝑥)] = 1 ; 𝐼𝑓 𝑓𝑖

∗(𝑥) = 0

(ℎ ∘ 𝑓𝑖
∗)(𝑥) = ℎ[𝑓𝑖

∗(𝑥)] = 0; 𝐼𝑓 𝑓𝑖
∗(𝑥) = 1

 x∈ 𝑤

Now, observe the following composite function ℎ ∘ [ℎ ∘ 𝑓𝑖
∗]

that is ℎ ∘ [ℎ(𝑓𝑖
∗(x))] = 0 if 𝑓𝑖

∗(𝑥) = 0

and ℎ ∘ [ℎ(𝑓𝑖
∗(x))] = 1 if 𝑓𝑖

∗(𝑥) = 1

Thus, there exists a halting function ℎ theoretically. So, we can conclude that for every program 𝑓𝑖 and any input x∈ 𝑤

there is a halting function h along with the program ℎ ∘ 𝑓𝑖
∗
 , which can able to say that 𝑓𝑖 terminates or not for the certain

x.

Topological structures of {0,1}ℵ𝟎
and 𝒘

Now our second intension is to study that the structure of 𝑤, such that the finite space and product space structure of

{0,1}ℵ𝟎 and with respect to them the topological structures of 𝑤.

Firstly, we are defining a simple topology on {0,1}ℵ𝟎 named as the finite space topology 𝜏 .

Definition: The base of 𝜏 consists of all the subsets Bs of {0,1}ℵ𝟎 which contains only finite strings of 0 & 1 as the open

sets.

Obviously ⋃ 𝐵𝑠𝑠∈𝑆 is also containing only finite strings of 0 & 1 similarly for ⋂ 𝐵𝑠𝑛
𝑠=1 . So 𝜏 is closed under arbitrary

union and finite intersections. Thus, along with Ø and {0,1}ℵ𝟎 itself. So 𝜏 is a topology on {0,1}ℵ𝟎

Theorem: A program terminates for a certain input if and only if it is continuous.

From the previously defined topology 𝜏 on {0,1}ℵ𝟎 for every program i.e. 𝑓𝑖: 𝑤 ⟶ {0,1}ℵ𝟎
if we consider the sets

𝑓𝑖
−1(𝑎𝑛𝑦 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑜𝑓 0,1) ⊆ 𝑤 ,we can generate different topological bases on 𝑤 depending upon each

𝑓𝑖.

Since 𝑓𝑖
−1(⋃ 𝐵𝑠𝑠∈𝑆) = ⋃ 𝑓𝑖

−1(𝐵𝑠)𝑠∈𝑆 and 𝑓𝑖
−1(⋂ 𝐵𝑠𝑠∈𝑆) = ⋂ 𝑓𝑖

−1(𝐵𝑠)𝑠∈𝑆 .

We denote them as 𝑤 [𝜏(𝑓𝑖
−1)]={ 𝑓𝑖

−1(𝐵𝑠) ∣ 𝐵𝑠 ∈ 𝜏 − {{0,1}ℵ𝟎
} ∪ {𝑤}. Therefore, on this context we can conclude that

for such topological spaces a program 𝑓𝑖 will be continuous for a x∈ 𝑤 if and only if 𝑓𝑖(𝑥) is an output in finite string of

0&1 that is 𝑓𝑖
∗(𝑥)= 0 if and only if 𝑓𝑖 is continuous at x.

Thus, for here we can say roughly that a program terminates for a certain input if and only if it is continuous.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024

DOI: 10.17148/IARJSET.2024.111103

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 28

ISSN (O) 2393-8021, ISSN (P) 2394-1588

Cartesian product structure and the product topology on {𝟎, 𝟏}ℵ𝟎

Secondly, we can generalize it more by introducing product topology on {0,1}ℵ𝟎
.Before that we need to redefine the

structure of {0,1}ℵ𝟎
as ∪{Xi ∣ Xi= {0,1}𝑖 ; 0 ≤ i ≤ ℵ0 }. That is from now we will consider the elements of {0,1}ℵ𝟎

as the

elements of some cartesian product of {0,1}. Now lets consider the following set X{Xi ∣ Xi = {0,1}𝑖 ; 0 ≤ i ≤ ℵ0 } , in

short we write it X[Xi] as the cartesian product of all the Xi ‘s.

Thus X[Xi]= {f I f→ ∪{{Xi ∣ Xi = {0,1}𝑖 ; 0 ≤ i ≤ ℵ0 } with f(i) ∈ Xi }

⇒ X[Xi]= {f I f:I→{0,1}ℵ𝟎
& f(i) ∈ Xi } where I = ℕ ∪ { ℵ0} as the index set.

Now let for every Xi there is a topology ℑi assigned to it. i.e. (Xi, ℑi) are pre-defined topological spaces.

Now the functions pj: X[Xi] → Xi defined as pj(f)=f(j) with j∈I , are our required projection maps.

The product topology Xℑi on X[Xi] will be defined as the weakest topology where all the projection maps pj are

continuous.

Theorem: The projection of a product space into each of its coordinate spaces is open.

Let 𝑃𝑐 be the projection of X { 𝑋𝑎: a ∈ A} into 𝑋𝑐. In order to show that 𝑃𝑐 is open it is sufficient to show that the image

of a neighborhood of a point x in the product is a neighborhood of 𝑃𝑐(x), and it may be assumed that the neighborhood

in the product space is a member of the defining base for the product topology. Suppose that 𝑥 ∈ 𝑉 = {𝑦: 𝑦𝑎 ∈

𝑈𝑎 𝑓𝑜𝑟 𝑎 𝑖𝑛 𝐹}, where F is a finite subset of A and 𝑈𝑎 is open in 𝑋𝑎 for each a in F. We construct a copy of Xe which

contains point x.

For z ∈Xe let 𝑓(𝑧)𝑒 = 𝑧, and for a ≠c let 𝑓(𝑧)𝑎 = 𝑥𝑎 .Then 𝑃𝑐 ∘ 𝑓(𝑧) = 𝑧

If 𝑐 ∉ 𝐹, then clearly f[𝑋𝑐] ⊂V and 𝑃𝑐[V] = 𝑋𝑐 which is open. If c ∈ F, then f (z) ∈ V iff z ∈ 𝑈𝑐 and 𝑃𝑐[V]= 𝑈𝑐.

The theorem follows. (As a matter of fact, the function f defined in this proof is a homeomorphism, a fact that is

occasionally useful.)

Theorem: A function f on a topological space to a product X {𝑋𝑎:a ∈ A} is continuous if and only if the composition

𝑃𝑎 ∘ 𝑓 is continuous for each projection 𝑃𝑎.

If f is continuous, then 𝑃𝑎 ∘ 𝑓 is always continuous because Pa is continuous. If 𝑃𝑎 ∘ 𝑓 is continuous for each a, then for

each open subset U of 𝑋𝑎 the set (𝑃𝑎 ∘ 𝑓)−1[𝑈] = 𝑓−1[𝑃𝑎
−1[𝑈]] is open. It follows that the inverse under f of each

member of the defining subbase for the product topology is open, and hence f is continuous.

Thus, we are using this result for every program 𝑓𝑖 where 𝑓𝑖: 𝑤 ⟶ {0,1}ℵ𝟎
to check that they are continuous or not. On

otherward to check a program terminates or not for a specific input.

CONCLUSION

The mathematical fundamentals of halting functions were the primary topics of our discussion. We begin by defining the

stop function for a class of programs that will terminate for certain inputs and intends to run indefinitely for others.

Analyzing these functions within the framework of programmatic sentences and countable binary strings, we are able to

establish the existence of a halting function. We explore the zero sets of continuous functions using their topology and

product space structure, offering fresh perspectives on the connection between input structures and program termination.

Additionally, we examine programs that do not halt for specific inputs, extending the classical proof by contradiction

that no algorithm can universally solve the halting problem. We construct programs where recursive loops ensure non-

termination under particular input conditions, using these results to show the inherent undecidability of certain

computational problems. This study provides a deeper understanding of program behavior in relation to the halting

problem and offers a theoretical framework for future computational complexity research.

https://iarjset.com/
https://iarjset.com/

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024

DOI: 10.17148/IARJSET.2024.111103

© IARJSET This work is licensed under a Creative Commons Attribution 4.0 International License 29

ISSN (O) 2393-8021, ISSN (P) 2394-1588

REFERENCES

[1]. https://www.rapidtables.com/convert/number/ascii-to-binary.html

[2]. Code: https://github.com/DR2K02/Halting Problem

[3]. Topological Structures by Wolfang J. Thron (Holt Rinehart and Winston)

[4]. https://encyclopediaofmath.org/index.php?title=Turing_machine

[5]. CS208: Automata Theory and Logic Part II: Turing Machines and Undecidability (IIT BOMBAY)

[6]. General Topology by N.Bourbaki (Vol.I&II) Addison Wesley

[7]. Introduction to the Theory of Computation by Michael Sipser

[8]. Introduction to Algorithms by Thomas H. Cormen

BIOGRAPHY

1. Dr.Soham Dasgupta (PGT Math PM Shri Kendriya Vidyalaya No.2 Saltlake,Kolkata)

t1273.soham.dasgupta@kvsrokolkata.co.in , mathsoham@gmail.com

2. Dipanjan Rout (Department of Data Science and AI, IIT Madras) 21f3002560@ds.study.iitm.ac.in

3. Sourjo Gupta (Techno India University, Dept. of Computer science)

 sourjya231001202002@technoindiaeducation.com

4. Archisman Mukherjee (UG Basic Science NISER Bhubaneswar & Ex student of

PM Shri Kendriya Vidyalaya No.2 Saltlake) archisman.mukherjee@niser.ac.in

https://iarjset.com/
https://iarjset.com/
https://www.rapidtables.com/convert/number/ascii-to-binary.html
https://github.com/DR2K02/Halting%20Problem
https://encyclopediaofmath.org/index.php?title=Turing_machine
mailto:kvsrokolkata.co.in%20,%20mathsoham@gmail.com
mailto:21f3002560@ds.study.iitm.ac.in
mailto:sourjya231001202002@technoindiaeducation.com
mailto:archisman.mukherjee@niser.ac.in

