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Abstract: Artificial intelligence offers valuable methods for crafting complex problem-solving scenarios, with recent 

advancements allowing the development of agents capable of human-level or even superhuman performance. 

Reinforcement learning (RL), particularly through tools like the Unity ML-Agents toolkit, enables developers to 

incorporate machine learning-driven behaviors into game environments without needing specialized expertise. This paper 

reviews and compares various reinforcement learning techniques, detailing their application across two distinct training 

environments. We assess these methods in terms of training pace, generalization capabilities, and cumulative reward 

accumulation, with a focus on evaluating how combined extrinsic and intrinsic rewards influence training effectiveness 

in sparse reward settings. Our findings aim to support developers in selecting optimal reinforcement strategies to save 

time during training while enhancing performance and robustness. Results indicate that agents trained in sparse 

environments achieved faster progress with a mix of extrinsic and intrinsic rewards, while agents relying solely on 

extrinsic rewards struggled to complete tasks and exhibited suboptimal learning behaviors. Additionally, we discuss the 

role of exploration-exploitation trade-offs, curriculum learning, and reward shaping in improving agent performance. 

 

Index Terms: Unity, ML-Agents, Reinforcement Learning, Sparse Reward Environment, Artificial Intelligence, 

Machine Learning, Intrinsic Rewards, Extrinsic Rewards, Agent Training, Exploration-Exploitation, Curriculum 

Learning, Reward Shaping, Game Development, Autonomous Agents, Performance Evaluation, Generalization, 

Behavior Modeling, Policy Optimization. 

 

I. INTRODUCTION 
 

Reinforcement Learning (RL) has become a crucial approach for training agents to handle challenging, sequential 

decision-making tasks. This technique has demonstrated exceptional success in complex strategic games, such as 

StarCraft and DoTA2, where deep RL agents have achieved and even surpassed expert human performance. Training 

deep RL agents requires substantial data and computational power, as these agents rely on neural networks and vast 

training experiences to improve performance. For instance, advanced agents like MuZero and Agent-57 necessitate 

decades’ worth of simulated gameplay to master environments like Atari games, and OpenAI Five required over 45,000 

years of simulated experience to excel in its domain.  

 

While these data demands are feasible in video game simulations, real-world applications often involve higher costs and 

require more efficient use of data. As a result, improving data efficiency has become a vital goal for RL in real-world 

settings. Self-supervised learning has made strides in data efficiency, especially in vision and language tasks where data 

scarcity or limited labelling is an issue. These self-supervised approaches leverage intrinsic structures within data, like 

image patches or temporal proximities, to generate additional training signals. This allows for significant gains in learning 

efficiency and performance, especially when resources for labeled data are limited.  

 

Inspired by these advances, we employ enhanced representation learning for RL by developing models that predict future 

representations and maintain consistency across augmented data views. Specifically, we extend a model-free agent with 

a dynamic model that forecasts future representations based on temporal consistency and data augmentation, focusing on 

representations rather than raw data reconstruction. We evaluate this Self Predictive Representation (SPR) approach on 

the Atari 100k benchmark, where agents interact with the environment for a limited number of steps, providing a data-

efficient comparison for evaluating these advancements. 

 

II. STUDY ON DIFFERENT ML AGENTS 

 

The Unity ML-Agents toolkit is an open-source plugin for the Unity game engine that enables developers to integrate 

reinforcement learning for training game agents. It uses PyTorch, a deep learning library, to train AI on                                            

CPUs and GPUs, allowing neural network-driven behaviors to control game agents within the Unity environment. The 

toolkit consists of three primary components: the agent, the environment, and the available actions the agent can take.  
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Through the Python API, agents share experiences during training, accessing player inputs, scripts, and neural networks 

to update their policies. A "Communicator" connects the agents to the trainers, facilitating the exchange of training data 

and behavioral adjustments. 

 

 

Supervised Learning Agent : 
Supervised learning involves training an agent to map input data to specific outputs using labeled data pairs. During 

training, data is divided into sets for training and testing, allowing the model to learn from the training data and validate 

performance on test data. Supervised learning requires external labels to guide the agent, making it suitable for situations 

where clear input-output relationships exist. This approach has broad applications  in machine learning, especially in 

cases where extracting precise information from large datasets is necessary. 

 

 

Semi Supervise Learning agent:  

Semi-supervised learning combines supervised and unsupervised learning techniques. It is beneficial in contexts where 

unlabelled data is abundant, but labeling is labor-intensive or costly. By training on both labeled and unlabeled data, 

semi-supervised learning enhances learning efficiency, making it useful for cases where limited labeled data is 

supplemented by large amounts of unlabeled data. 

 

Unsupervised Learning agent: 

Unlike supervised learning, unsupervised learning does not require labeled data. Instead, it allows agents to independently 

discover patterns or structures within the data, learning features that aid in classification or clustering tasks. This approach 

is valuable in exploratory data analysis, where the goal is to identify inherent groupings or reduce dimensionality without 

prior knowledge of categories. 

 

 

 

https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024 

DOI:  10.17148/IARJSET.2024.111119 

© IARJSET                 This work is licensed under a Creative Commons Attribution 4.0 International License                  159 

ISSN (O) 2393-8021, ISSN (P) 2394-
1588 

 

Multitask Learning Agent: 

Multi-task learning aims to improve learning efficiency by training agents to perform several related tasks simultaneously. 

By leveraging similarities across tasks, multi-task learning encourages the agent to generalize knowledge across various 

domains, reducing the need for separate models. This technique is especially useful for applications where tasks are 

interrelated but not identical, allowing shared knowledge to improve performance. 

 

III. MACHINE LEARNING APPLICATIONS 

      

Table 1: Overview of Research Papers. 

 

 

 

Ref no.      Research Paper 
      Authors/year 

      Methodology 
      Remarks 

     [1] Unsupervised state 

representation learning in 

Atari 
Ankesh Anand (2020) 

 

 

 

This paper focuses on 

unsupervised learning techniques 

to extract state representations 

from Atari games. The approach 

leverages deep learning models 

to learn meaningful state 

representations without the need 

for explicit labels or supervision. 

The research is significant as it 

highlights the potential of 

unsupervised learning in 

complex environments like Atari 

games, contributing to 

advancements in representation 

learning. 

     [2] Learning representations by 

maximizing mutual 

information across views. 

William Buchwalter. 

(2021) 

The authors propose a method 

for learning representations by 

maximizing the mutual 

information between different 

views of the same data. This is 

achieved through a deep neural 

network that learns to represent 

data in a way that captures the 

shared information between 

views. 

This work is important for its 

novel approach to representation 

learning, which can be applied to 

various domains such as 

computer vision and natural 

language processing. 

 

    [3] Grandmaster level in 

StarCraft II using multi-agent 

learning. 

Vinyals,Silver, D. (2020). 

 

The research describes the use of 

multi-agent reinforcement 

learning to achieve grandmaster-

level performance in the real-

time strategy game StarCraft II. 

The approach involves training 

multiple agents to cooperate and 

compete in the game 

environment. 

This paper demonstrates the 

potential of multi-agent systems 

in complex, dynamic 

environments, showcasing 

significant progress in AI 

capabilities. 

https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 11, Issue 11, November 2024 

DOI:  10.17148/IARJSET.2024.111119 

© IARJSET                 This work is licensed under a Creative Commons Attribution 4.0 International License                  160 

ISSN (O) 2393-8021, ISSN (P) 2394-
1588 

 

 

 

 

 

 

 

    [4]  Chess and Shogi by planning 

with a learned model. 

Schrittwieser, J (2020) 

 

 

: This paper discusses the various 

challenges faced when applying 

reinforcement learning (RL) to 

real-world problems. It covers 

issues such as sample efficiency, 

safety, and the transfer of RL 

algorithms from simulation to 

real-world environments. 

The insights provided are crucial 

for advancing the application of 

RL in practical, real-world 

scenarios, guiding future 

research to address these 

challenges. 

    [5]  Challenges of real-world 

reinforcement learning.. 

 

 

  

Dulac-ArnoldHester, T. 

(2020) 

This paper discusses the various 

challenges faced when applying 

reinforcement learning (RL) to 

real-world problems. It covers 

issues such as sample efficiency, 

safety, and the transfer of RL 

algorithms from simulation to 

real-world environments. 

 

 

The insights provided are crucial 

for advancing the application of 

RL in practical, real-world 

scenarios, guiding future 

research to address these 

challenges. 

    [6] A simple framework for 

contrastive learning of visual 

representations. 

Hinton, G. (2020) 
The authors propose a 

contrastive learning framework 

for visual representation 

learning. This method trains a 

model to distinguish between 

similar and dissimilar image 

pairs, improving the quality of 

learned representations. 

The framework is praised for its 

simplicity and effectiveness, 

contributing significantly to the 

field of self-supervised learning. 

    [7] Momentum contrast for 

unsupervised visual 

representation learning. 

He, K., & Girshick, R. 

(2020) 
his paper introduces Momentum 

Contrast (MoCo), an 

unsupervised learning method 

for visual representations. MoCo 

builds a dynamic dictionary with 

a queue and a moving-averaged 

encoder, which helps in 

contrasting different image 

representations effectively. 

In unsupervised learning method 

for visual representations. MoCo 

builds a dynamic dictionary with 

a queue and a moving-averaged 

encoder, which helps in 

contrasting different image 

representations effectively. 

    [8] A general platform for 

intelligent agents. 

Mattar, M, Lange, D. 

(2021) 

The paper presents the Unity 

platform, designed for 

developing and training 

intelligent agents. Unity provides 

a flexible and comprehensive 

environment for simulating 

complex tasks and testing 

various AI algorithms. 

Unity has become a widely used 

tool in AI research and 

development, supporting 

advancements in areas such as 

reinforcement learning and 

robotics. 
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IV. STRUCTURE OF MACHINE LEARNING FRAMEWORK 
 

 

 
 

Figure 4: Structure of Machine Learning 

 

The basic framework of Machine Learning is illustrated in a model where an agent interacts with its environment through 

sensor data, modifies the environment, and earns rewards for its actions. The environment is represented by states, which 

are features or parameters describing it. Sensor information determines these states. From a specific state SSS, a value 

function evaluates the possible actions an agent can take, predicting an associated reward. In Reinforcement Learning, 

an agent perceives the environment and learns the optimal strategy by taking actions in various conditions. This approach 

represents a simple behavior and learning algorithm where the agent iteratively optimizes its new states. The agent 

determines its current state (s∈Ss \in Ss∈S), selects an action (a∈Aa \in Aa∈A), potentially transitions to a new state, and 

receives a reward signal (r∈Rr \in Rr∈R). Through this process, the agent gathers useful experience regarding states, 

actions, transitions, and rewards to act more effectively, with the system's evaluation occurring simultaneously with the 

learning process. The primary goal of Reinforcement Learning is to learn how to associate states with actions that 

maximize cumulative rewards over time. 

 

Reinforcement Learning often utilizes a framework modeled as a Markov Decision Process (MDP), which serves as the 

mathematical foundation for single-agent reinforcement learning. MDPs address sequential decision-making problems, 

where actions must be chosen at each state to navigate the system effectively. Such problems are prevalent in stochastic 

control theory and have deep mathematical roots. An MDP is typically defined by a tuple (S,A,P,R)(S, A, P, R)(S,A,P,R), 

where SSS represents the set of states, A(s)A(s)A(s) is the set of available actions for each state, P:S×A×S→[0,1]P: S 

\times A \times S \to [0, 1]P:S×A×S→[0,1] is the state transition probability function defining the likelihood of moving 

to a specific state after taking an action in a given state, and R:S×A→rR: S \times A \to r R:S×A→r specifies the 

immediate reward for performing an action in a particular state. The objective is to identify a policy that maximizes the 

total accumulated rewards over time, expressed as r0+γr1+γ2r2+…r_0 + \gamma r_1 + \gamma^2 r_2 + \ldotsr0+γr1

+γ2r2+…, where γ∈(0,1)\gamma \in (0, 1)γ∈(0,1) is the discount factor. This factor determines the relative importance 

of immediate versus future rewards, ensuring the cumulative return RtR_tRt remains finite when γ<1\gamma < 1γ<1. 

 

Automated Robots: 

Although most robots don’t match the depictions popularized by pop culture, their capabilities are no less remarkable. 

With Reinforcement Learning (RL), robots improve their accuracy and efficiency over time, enabling them to perform 

tasks that were once time-consuming with increased speed and precision. They can also undertake hazardous tasks with 

significantly reduced risks compared to humans. For these reasons, robots, apart from needing occasional supervision 

and routine maintenance, have become a cost-effective and efficient alternative to manual labor. For instance, some 

restaurants deploy robots to serve food to tables, while grocery stores utilize them to monitor stock levels and initiate 

restocking orders. In various settings, robots have been widely used for assembling products, detecting defects, managing 

inventory, delivering goods, traveling across distances, organizing and reporting data, and handling objects of varying 

shapes and sizes. As robotic capabilities continue to evolve through testing and development, new features are being 

introduced, broadening their range of potential applications. 
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V. CHALLENGES IN EXISTING SYSTEM  

 

The combination of deep learning (DL) and reinforcement learning (RL) has enabled advancements in fields such as 

autonomous driving, robotics, machine translation, and gaming. However, despite these achievements, current deep 

reinforcement learning (DRL) systems face significant challenges that limit their broader application. Key challenges 

include:    

                                                              

5.1 Opacity or Non-interpretability:                                                                                              
 Modern neural networks often function as "black boxes," making it difficult to understand or interpret the processes 

within each layer. This lack of transparency creates limitations, as the networks do not resemble human cognitive 

processing or reasoning and lack intuitively understandable decision-making steps. Consequently, it remains challenging 

to decode how specific activation methods and layers contribute to final outputs, which affects model interpretability 

 

5.2 Data Inefficiency:  
Training neural networks to perform at optimal levels typically requires extensive data, which increases model complexity 

and demands high computational power. This is problematic for applications with high sample complexity; for instance, 

a DRL agent might require millions of frames in a video game setting to reach peak performance, whereas a human can 

often understand the game within a fraction of those frames. 

 

5.3 Low Sample Efficiency:  

Sample efficiency pertains to the quantity of experience needed for an algorithm or agent to learn effectively. Efficient 

algorithms should ideally learn quickly and make optimal use of experiences to improve policy and performance. 

However, many DRL methods struggle with sample efficiency, potentially missing valuable learning opportunities, which 

can slow down model performance improvements. 

 

5.4 Issues of Reproducibility:  
Due to the complexity and vast data requirements in neural networks, reproducing DRL models can be challenging even 

for their original developers. As networks grow more intricate, the ability to replicate or verify their performance becomes 

increasingly difficult. To address this, researchers are exploring approaches like minimal trace modeling, experiment 

tracking, logging, and using metadata platforms, along with novel architectures like Neurosymbolic AI, to enhance 

reproducibility and application-specific customization. 

 

5.5 Implementation in Real Life Scenarios: 

RL agents generally train by exploring simulated environments, which limits their ability to adapt to real-world situations 

without extensive retraining. In real-world scenarios, agents often rely on pre-trained data instead of live exploration, 

which may create a “reality gap” between the training simulation and actual deployment. Solutions to mitigate this issue 

include behavior imitation, using verified simulations, and algorithm optimization. 

 

5.6 Hyperparameter configuration: 
Configuring hyperparameters is critical for effective RL model training. In this study, we used a configuration file adapted 

from Unity’s ML-Agents toolkit, modifying parameters through trial and error to optimize training performance. Once 

an ideal setup was determined, the same parameters were applied consistently across all training methods, except for 

unique settings required by methods like GAIL, curiosity-driven learning, and behavior cloning. 

 

VI.     CONCLUSION 
 

To delve deeper into the impact of our findings, we analyzed how different reward structures affect the efficiency of agent 

learning across tasks of varying complexity. Sparse reward environments pose significant challenges for reinforcement 

learning agents due to the minimal feedback available, often resulting in slower learning or difficulty in finding optimal 

strategies. However, when intrinsic reward mechanisms, such as curiosity-driven exploration, were introduced, agents 

showed improved adaptability and robustness. This facilitated better navigation through sparse environments, 

emphasizing the importance of enhancing sparse reward systems with complementary incentive structures to aid agent 

training. 

 

In environments with dense rewards, the frequent feedback provided a clear and direct path for agents to optimize their 

actions. Proximal Policy Optimization (PPO), a commonly used baseline algorithm, performed effectively due to its 

balance between stability and efficiency, allowing agents to make consistent progress without being overly influenced by 

short-term variations in rewards.  
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Additionally, the Random Network Distillation (RND) method enhanced performance by fostering exploratory behaviors, 

which enabled agents to discover high-value strategies even in scenarios with abundant rewards. The combination of 

RND and PPO showcased the advantage of integrating exploration-focused methods with robust policy optimization 

algorithms.Another valuable insight from this study is the benefit of hybrid approaches in improving agent performance. 

By incorporating additional methods, such as intrinsic motivation or auxiliary learning objectives, alongside standard 

reinforcement learning techniques, we observed notable advancements in sparse reward settings. This finding highlights 

the value of customizing algorithms to align with the reward structure of a given environment, leading to more efficient 

learning and better generalization to novel situations,These results offer practical guidance for game designers and 

developers aiming to integrate AI-driven behaviors into their projects.  

 

Choosing the right reinforcement learning approach based on the environment's reward dynamics can significantly reduce 

the time and resources required for training. Furthermore, understanding the strengths and limitations of different 

reinforcement learning strategies can help designers create environments that enhance agent performance, whether by 

adjusting reward systems or employing hybrid training methodologies. 
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