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Abstract: The exact solution of a nonlinear fractional Volterra-Fredholm integro-differential equation is found in this 

paper through the successful application of the Abaoub Shkheam decomposition method. These techniques have a 

wider range of applications due to their dependability and decreased computational effort. 

 
Additionally, analytical approximations can be used to formally determine the solution's behaviour. Lastly, an example 

is provided in this study to show the reliability and suitability of the suggested methodologies. 
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I. INTRODUCTION 

 

Fractional derivatives with various definitions, such as the Riemann- Liouville fractional integral [1], Caputo fractional 

derivative [2], and Caputo-Fabrizio fractional derivative [3], have been applied to numerous real-world problems 

recently by numerous scientists. These researchers have demonstrated the effectiveness of employing such non-integer-

order and nonlocal kernels to numerically solve various kinds of integral equations and to characterise the dynamics 

and properties of these problems; see, for instance, [4–12]. 

 

It should be noted that nonlinear Volterra-Fredholm integral equations are used in a wide range of fields, such as neural 

networks [13], the pulses of sound reflections [14], and mathematical physics such as Lane–Emden-type equations 

[15], and many more can be found, for example, in [16] and references therein. 

 

In this paper, we consider the nonlinear Caputo fractional Volterra-Fredholm integro-differential equations of the 

form:. 

 𝑐𝐷𝛼𝑢(𝑥) = 𝑔(𝑥) + ∫ 𝑘1(𝑥, 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡 +

𝑥

0

∫  

1

0

𝑘2(𝑥, 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡  ,            (1)    

with the initial condition: 

𝑢(𝑖)(0) =  𝛿𝑖 , 𝑖 =  0, 1, … , 𝑛 − 1 ,                                                                            (2) 

 

where 𝑛 − 1 < 𝛼 ≤ 𝑛  and  𝑛 ∈ ℕ, 𝑢: [0,1] → ℝ ,be the continuous function which has to be determined, 𝑔: [0,1] →
ℝ, and  𝑘𝑖: [0,1] ×  [0,1] → ℝ are continuous functions. 𝐹𝑖: ℝ → ℝ, 𝑖 = 1,2 are nonlinear terms and Lipchitz continuous 

functions. Here  𝑐𝐷𝛼  stands for the Caputo fractional derivative. 

II.  PRELIMINARIES 

 

Definition 1. [18] 

Let a real function  𝑢(𝑥), 𝑥 > 0, which is said to be the space 𝐶𝜔, 𝜔 ∈ ℝ, if the there exists a real number 𝑃 >  𝜔,    
such that 𝑢(𝑥) =  𝑥𝑃𝑢1(𝑥), where 𝑢1(𝑥) ∈ 𝐶 [0, ∞). 

 

Definition 2. (Riemann-Liouville fractional integral) [19] 

      The Riemann Liouville fractional integral of order 𝛼 ≥ 0 of function 𝑢(𝑥) ∈ 𝐶𝜔, 𝜔 ≥  −1  is defined as: 
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𝐼0
𝑅𝐿

𝑥
𝛼 𝑢(𝑥) = {

1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1

𝑥

0

 𝑢(𝑡)𝑑𝑡, 𝑥 > 0, 𝛼 ∈ ℝ+        

 
 𝑢(𝑥)                                                𝛼 = 0                                    

                (3)   

Where ℝ+ is the set of positive real numbers. 

 

Definition 3. ( Caputo fractional derivative )[19] 

Let 𝑢(𝑥) be a function defined on the interval [𝑎, 𝑏], and let  𝑛 ∈  𝑁 be the smallest  integer that the order 𝛼, (𝑛 −
1 <  𝛼 ≤ 𝑛). the Caputo fractional derivative of order 𝛼 of 𝑢(𝑥), defined by                                                                 

 𝐷𝑎
𝑐

𝑥
𝛼𝑢(𝑥) =

1

Γ(𝑛 − 𝑎)
∫

𝑢(𝑛)(𝑡)

(𝑥 − 𝑡)𝛼+1−𝑛

𝑥

𝑎

 𝑑𝑡,                                  (4) 

where  𝑢(𝑛)(𝑡) is the n-th derivative of 𝑢(𝑡) with respect to 𝑡 . 
  Consequently, we possess the following properties: 

• .𝐼𝛼𝐼𝛽𝑢 = 𝐼𝛼+𝛽𝑢,    𝛼, 𝛽 > 0 

• 𝐼𝛼𝑥𝛽 =
Γ(𝛽+1)

Γ(𝛼+𝛽+1)
𝑥𝛼+𝛽 ,                                   𝛼 > 0, 𝛽 > −1, 𝑥 >  0 

• 𝐼𝛼𝐷𝛼𝑢(𝑥) = 𝑢(𝑥) − ∑ 𝑢(𝑘)𝑛−1
𝑘=0 (0)

𝑥𝑘

𝑘!
,       𝑥 >  0, 𝑛 − 1 <  𝛼  ≤ 𝑛 

 

Definition 4. ( Abaoub Shkheam transform) [17] 

    The Abaoub Shkheam transform is defined over the set of function 

ℬ = {𝑓(𝑡): ∃ 𝑁, 𝑘1, 𝑘2 > 0 , |𝑓(𝑡)| < 𝑁𝑒
(

|𝑡|
𝑘𝑗

)
, 𝑖𝑓  𝑡 ∈ (−1)𝑗 × [0, ∞)} 

by the following formula  

𝑄{𝑓(𝑡)} = ∫ 𝑓(𝑣𝑡)𝑒
−𝑡
𝑠 𝑑𝑡

∞

0

=  𝑇 (𝑣, 𝑠) 

Definition 5. (Definition of convolution ) [20] 

 The convolution of piecewise continuous functions 𝑓, 𝑔: ℝ → ℝ, is the function (𝑓 ∗ 𝑔): ℝ → ℝ  given by: 

(𝑢 ∗ 𝑔)(𝑥) = ∫ 𝑢(𝑡)
𝑥

0

𝑔(𝑥 − 𝑡) 𝑑𝑡 

Theorem 1.  

      Let 𝑓(𝑡) and 𝑔(𝑡) be functions having ℒ -transform 𝐹(𝑠), and 𝐺(𝑠) respectively, and having the Q-transform 

 𝑇1(𝑣, 𝑠) and 𝑇2(𝑣, 𝑠) respectively. The Q-transform of the convolution of 𝑓(𝑡) and 𝑔(𝑡) is given by 

                                 𝑄{𝑓(𝑡) ∗ 𝑔(𝑡)} = 𝑣𝑇1(𝑣, 𝑠)𝑇2(𝑣, 𝑠)                           (5) 

Theorem 2.  

  If  𝑓(𝑥) is a continuous function, then the Abaoub Shkheam transform of Riemann Liouville fractional integral for 

𝑓(𝑥) is given by  

𝑄[ 𝐼0
𝑅𝐿

𝑥
𝛼 𝑓(𝑥)] = (𝑤𝑠)𝛼 . 𝑄[𝑓(𝑥)]                                                                      (6) 

Proof: 

Taking the Abaoub Shkheam transform of both sides for the first part of (3), we get  

𝑄[ 𝐼0
𝑅𝐿

𝑥
𝛼 𝑓(𝑥)] = 𝑄 [

1

Γ(𝛼) 
∫(𝑥 − 𝑡)𝛼−𝑡

𝑥

0

 𝑓(𝑡)𝑑𝑡]              

=
𝑤

Γ(𝛼)
𝑄[𝑥𝛼−𝑡 ∗ 𝑓(𝑡)] 

=
𝑤

Γ(𝛼) 
𝑄[𝑡𝛼−1]. 𝑄[𝑓(𝑡)] 

                =
𝑤

Γ(𝛼) 
(𝛼 − 1)! 𝑤𝛼−1. 𝑠𝛼 . 𝑄[𝑓(𝑡)] 

            =
𝑤

Γ(𝛼)
. Γ(𝛼). 𝑤𝛼−1. 𝑠𝛼 . 𝑄[𝑓(𝑡)] 

= (𝑤𝑠)𝛼𝑄[𝑓(𝑡)]                 
𝑄[𝐽𝑥

𝛼𝑓(𝑥)] = (𝑤𝑠)𝛼𝑄[𝑓(𝑡)]     
 

Theorem 3. 

       If  𝑓(𝑥) is a continuous function, then the Abaoub Shkheam transform  of  Caputo fractional derivative for 𝑓(𝑥) 

is given by  
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𝑄{ 𝐷𝑋
𝛼

 
𝑐  𝑓(𝑥)} =

𝑄[𝑓(𝑥)]

(𝑤𝑠)𝛼
−

1

𝑤
∑

𝑓(𝑘)(0)

(𝑤𝑠)𝛼−1−𝑘
                                           (7)

𝑛−1

𝑘=0

 

Proof: 

Since  

𝐷𝑋
𝛼

 
𝑐 {𝑓(𝑥)} = 𝐼𝑥

𝑛−𝛼 . 𝑓(𝑛)(𝑥),                                                                             (8) 

taking the Abaoub Shkheam transform of both sides of (8), we get  

𝑄{ 𝐷𝑋
𝛼

 
𝑐  𝑓(𝑥)} = 𝑄{𝐼𝑥

𝑛−𝛼𝑓(𝑛)(𝑥)} 

                                 = (𝑢𝑠)𝑛−𝛼𝑄[𝑓(𝑛)(𝑥)] 

                                                                         = (𝑢𝑠)𝑛−𝛼 [
𝑄[𝑓(𝑥)]

(𝑤𝑠)𝑛
−  

1

𝑤
∑

𝑓(𝑘)(0)

(𝑤𝑠)𝑛−1−𝑘
    

𝑛−1

𝑘=0

] 

                                                              =
𝑄[𝑓(𝑥)]

(𝑤𝑠)𝛼
−

1

𝑢
∑

𝑓(𝑘)(0)

(𝑤𝑠)𝛼−1−𝑘
.               

𝑛−1

𝑘=0

 

III. ABAOUB SHKHEAM DECOMPOSITION METHOD (QADM) 

 

On both sides of Eq. (1), we apply the Abaoub Shkheam transform:  

 

𝑄[ 𝑐𝐷 
𝛼𝑢(𝑥)] = 𝑄[𝑔(𝑥)] + 𝑄 [∫ 𝑘1

𝑥

0

(𝑥, 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡  + ∫ 𝑘2

1

0

(𝑥, 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡],                        (9) 

 using theorem 3, we get: 

 

𝑄[𝑢(𝑥)]

(𝑢𝑠)𝛼
− 𝐶 = 𝑄[𝑔(𝑥)] + 𝑄 [∫ 𝑘1

𝑥

0

(𝑥, 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡 

                                                                                                         + ∫ 𝑘2

1

0

(𝑥, 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡] ,             (10) 

where 𝐶 =  
1

𝑢
∑

𝑢(𝑘)(0)       

(𝑢𝑠)𝛼−𝑘−1
𝑛−1
𝑘=0 . Consequently, the provided equation is equivalent to 

  𝑄[𝑢(𝑥)] = (𝑢𝑠)𝛼 . 𝐶 + (𝑢𝑠)𝛼[𝑄[𝑔(𝑥)] + (𝑢𝑠)𝛼𝑄 [∫ 𝑘1

𝑥

0

(𝑥, 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡 + ∫ 𝑘2

1

0

(𝑥, 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡].            (11) 

  The Adomian method is employed to express the solution 𝑢(𝑥), as a series shown below 

                                                     𝑢 = ∑ 𝑢𝑛

∞

𝑛=0

 ,                                                                                                                          (12) 

                   

and the nonlinear function 𝐹𝑖 , 𝑖 = 1,2  is decomposed as:  

                           𝐹1 = ∑ 𝐴𝑛

𝛼

𝑛=0

,     𝐹2 = ∑ 𝐵𝑛

𝛼

𝑛=0

.                                                                                                                    (13)  

                                      
where 𝐴𝑛 , 𝐵𝑛 are the Adomian polynomials given by: 

                           𝐴𝑛 =
1

𝑛!
[

𝑑𝑛

𝑑∅𝑛
(𝐹1 ∑ ∅𝑖𝑢𝑖)

𝑛

𝑖=0

]

Ø=0

,      𝐵𝑛 =
1

𝑛!
[

𝑑𝑛

𝑑∅𝑛
(𝐹2 ∑ ∅𝑖𝑢𝑖)

𝑛

𝑖=0

]

Ø=0

.                                         (14) 

 

substituting (12), and (13) into (11) we get: 

𝑄 [∑ 𝑢𝑛

∞

𝑛=0

] =  (𝑢𝑠)𝛼 . 𝐶 + (𝑢𝑠)𝛼 𝑄[𝑔(𝑥)]  + (𝑢𝑠)𝛼  . 𝑄 [∫ 𝑘1

𝑥

0

(𝑥, 𝑠) ∑ 𝐴𝑛

∞

𝑛=0

 𝑑𝑠 + ∫ 𝑘2

1

0

(𝑥, 𝑠) ∑ 𝐵𝑛

∞

𝑛=0

 𝑑𝑠].       (15)  

  The iterative procedure that results from comparing both sides of equation (15) is as follows: 
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𝑄[𝑢0] = 𝐶(𝑢𝑠)𝛼 + (𝑢𝑠)𝛼 𝑄 [ 𝑔(𝑥)]                         

            𝑄[𝑢1] = (𝑢𝑠)𝛼 𝑄 [ ∫ 𝑘1

𝑥

0

(𝑥, 𝑠)𝐴0 𝑑𝑠 + ∫ 𝑘2

1

0

(𝑥, 𝑠)𝐵0 𝑑𝑠]                                      

                               𝑄[𝑢2] = (𝑢𝑠)𝛼 𝑄 [ ∫ 𝑘1

𝑥

0

(𝑥, 𝑠)𝐴1 𝑑𝑠 + ∫ 𝑘2

1

0

(𝑥, 𝑠)𝐵1 𝑑𝑠]                                                  (16) 

⋮   

 𝑄[𝑢𝑛+1] = (𝑢𝑠)𝛼 . 𝑄 [ ∫ 𝑘1

𝑥

𝑐

(𝑥, 𝑠)𝐴𝑛 𝑑𝑠 + ∫ 𝑘2

1

0

(𝑥, 𝑠)𝐵𝑛 𝑑𝑠].                                                  

Finally, we take the inverse of Abaoub Shkheam transform of both sides of relations (16), and we obtain the required 

solution (12). 

IV. ILLUSTRATIVE EXAMPLES 

 

In this section, we apply  the Abaoub Shkheam  decomposition method  for solving a nonlinear fractional Volterra 

Fredholm integro differential equations of the second kind.   

Example 3.1: Consider  

𝐷
3
4[𝑢(𝑡)] +

𝑡2𝑒𝑡

5
𝑢(𝑡) 

𝑐 =
6𝑡

9
4

Γ (
13
4

)
+ ∫ 𝑒𝑡𝑠𝑢(𝑠)𝑑𝑠

𝑡

0

+  ∫ (4 − 𝑠−3)𝑢(𝑠)𝑑𝑠
1

0

,                           (17) 

 with initial condition  

                                             𝑢(0) = 0.                                                                                                 (18) 

Applying the Abaoub-Shkheam transform to both sides of (17), we get 

𝑄[ᶜ𝐷
3
4𝑢(𝑡) = 𝑄 [(

−𝑡2𝑒𝑡

5
) 𝑢(𝑡)] + 𝑄 [(

6𝑡
9
4

Γ(
13
4

)] + 𝑄 [∫ 𝑒𝑡𝑠𝑢(𝑠)𝑑𝑠 + ∫ (4 − 𝑆−3)𝑢(𝑠)𝑑𝑠]
1

0

𝑡

0

].   

Using theorem 3, and the initial condition (18), we get: 

𝑄[𝑢(𝑡)] = (𝑤𝑠
3
4)(𝑄 [(

−𝑡2𝑒𝑡

5
) 𝑢(𝑡)]  + 𝑄 [

6𝑡
9
4

Γ (
13
4

)
]   + 𝑄 [∫ 𝑒𝑡𝑠𝑢(𝑠)𝑑𝑠 + ∫ (4 − 𝑠−3)𝑢(𝑠)𝑑𝑠

1

0

𝑡

0

] 

Substituting (12) and (13) into the above equation we get: 

𝑄 [ ∑ 𝑢𝑛(𝑡)

∞

𝑛=0

] = (𝑤𝑠)
3
4(𝑄 [(

−𝑡2𝑒𝑡

5
) ∑ 𝑢𝑛(𝑡)

∞

𝑛=0

] + 𝑄 [(
6𝑡

9
4

Γ (
13
4

)
)] + 𝑄 [∫ 𝑒𝑡𝑠 ∑ 𝐴𝑛𝑑𝑠

∞

𝑛=0

𝑡

0

+ ∫ (4 − 𝑆−3) ∑ 𝐵𝑛𝑑𝑠

∞

𝑛=0

1

0

] 

 By matching both sides of the preceding equation, we obtain 

𝑄[𝑢0(𝑡)] = (𝑤𝑠)
3
4 𝑄 [(

6𝑡
9
4

Γ (
13
4

)
)] 

𝑄[𝑢₁(𝑡)] = 𝑤𝑠
3
4𝑄 [(

−𝑡2𝑒𝑡

5
) 𝑢0(𝑡)] + 𝑤𝑠

3
4𝑄 [∫ 𝑒𝑡𝑆

𝑡

0

𝐴0𝑑𝑠 + ∫ (4 − 𝑆−3)𝐵0  𝑑𝑠
1

0

] 

⋮ 

𝑄[𝑢𝑛+1(𝑡)] = 𝑤𝑠
3
4𝑄 [(

−𝑡2𝑒𝑡

5
) 𝑢𝑛(𝑡)] + 𝑤𝑠

3
4𝑄 [∫ 𝑒𝑡𝑆

𝑡

0

𝐴𝑛𝑑𝑠 + ∫ (4 − 𝑆−3)𝐵𝑛 𝑑𝑠
1

0

] 

 By applying the inverse Abaoub-Shkheam transform to the above equation we get: 

𝑢0(𝑡) = 𝑡3 

𝑢1(𝑡) = 𝑄−1 (𝑤𝑠
3
4𝑄 [(

−𝑡𝑒𝑡

5
) 𝑢0(𝑡)] + 𝑤𝑠

3
4𝑄 [∫ 𝑒𝑡𝑠4

𝑡

0

𝑑𝑠 + ∫ (4 − 𝑆−3)𝑆3𝑑𝑠
1

0

]) = 0 

⋮ 
𝑢𝑛(𝑡) = 0, for  𝑛 ≥ 1. 

Therefore, the obtained solution  

𝑢(𝑡) = 𝑡3. 
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V. CONCLUSION 

 

In this paper, we combined the Abaoub-Shkheam transform with the Adomian Decomposition Method (QADM) to 

solve a nonlinear fractional Volterra-Fredholm integro-differential equation. Our technique proved to be efficient, 

decreasing computational complexity while assuring accuracy.  

The results demonstrate how effective this approach is at resolving these kinds of problems, particularly those 

involving Caputo fractional derivatives. Its application to more intricate systems and other kinds of fractional 

derivatives may be investigated in future research. 
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