

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.066 ∺ Peer-reviewed / Refereed journal ∺ Vol. 12, Issue 1, January 2025 DOI: 10.17148/IARJSET.2025.12142

Automated Expense Tracking with OCR: Enhancing Financial Management through Technology

Samarth R Hegde¹, Hrishikesh Gangatkar², Pradyumna V G³, Hayavadana M B⁴,

Prof. Sudha M⁵

Student, Artificial Intelligence and Machine Learning, K S Institute of Technology, Bengaluru, India¹⁻⁴

Assistant Professor, Artificial Intelligence and Machine Learning, K S Institute of Technology, Bengaluru, India⁵

Abstract: In the contemporary financial environment, proficient expense management is crucial for achieving success at both personal and organizational levels. Conventional approaches to expense tracking, which often involve manual data entry or the maintenance of physical records, tend to be labour-intensive, susceptible to inaccuracies, and inadequate in scalability to accommodate the increasing volume of both digital and paper transactions. To overcome these obstacles, automated expense tracking solutions have been developed, utilizing advancements in Artificial Intelligence (AI) and Optical Character Recognition (OCR). These solutions are designed to streamline financial management by facilitating efficient, precise, and real-time tracking of expenses. The implementation of OCR technology allows for the automatic extraction of essential financial information, such as dates, amounts, and vendor identities, from various documents, including both printed and handwritten receipts and invoices. Recent technological advancements, including the integration of Tesseract OCR with Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), have markedly improved the accuracy of text recognition, even in the case of low-quality or intricate receipts. Additionally, machine learning algorithms enhance these systems by categorizing expenses, identifying spending trends, and providing predictive analytics, thereby equipping users with the tools necessary for making informed financial choices. Automated expense tracking systems address prevalent challenges in financial management, such as errors in data entry, misclassification of transactions, and delays in the reconciliation process. By offering functionalities like realtime categorization and tailored financial insights, these systems meet the diverse needs of both individuals and organizations. However, challenges persist, including the recognition of poorly printed receipts and the computational requirements associated with training sophisticated AI models. Nonetheless, as AI and OCR technologies continue to advance, these systems are set to revolutionize financial management by minimizing manual labour and enhancing accuracy.

Keywords: Automated Expense Tracking, Optical Character Recognition (OCR), Machine Learning Algorithms, Financial Management, Expense Categorisation, Tesseract OCR, Spending Insights, Neural Networks (CNN, LSTM), Real- Time Expense Monitoring, Data Extraction.

1. INTRODUCTION

An automated expense tracker, especially one fuelled by AI and Optical Character Recognition (OCR), offers a cuttingedge arrangement to overseeing individual and trade accounts. Conventional strategies of following expenses—such as manual passage in spreadsheets or physical note-taking—are time-consuming and inclined to mistake. By leveraging OCR innovation, clients can check receipts and extricate pertinent money related data, such as thing names, costs, and dates, without manual input.

The utilize of machine learning calculations permits these frameworks to not as it were categorizing costs but to give prescient experiences into investing propensities, empowering way better budgetary arranging. Profound learning methods, like Convolutional Neural Systems (CNN) or Long Short-Term Memory (LSTM) systems, are frequently utilized to move forward the exactness of content acknowledgment from checked receipts, indeed when the quality of the receipt is problematic.

This innovation addresses common challenges such as misclassification of information, manual mistakes, and the time required for budgetary administration. As AI-based frameworks advance, their capacity to supply custom-made bits of knowledge based on client investing information upgrades individual back administration. These robotized frameworks eventually decrease human exertion whereas guaranteeing precise, proficient, and real-time following of expenses, enabling clients to create more educated monetary choices.

Impact Factor 8.066 $\,\,pprox\,$ Peer-reviewed / Refereed journal $\,\,pprox\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

The management of personal and organizational finances has become increasingly intricate due to the rise of digital transactions and the variety of expenditures. Conventional methods for tracking expenses—such as manually entering receipts, categorizing transactions, and reconciling accounts—are often laborious, susceptible to errors, and time-intensive. In light of these difficulties, automated expense tracking solutions have emerged, utilizing technologies like Optical Character Recognition (OCR) to enhance the efficiency of the process.

OCR technology facilitates the conversion of scanned documents, including receipts and invoices, into machine-readable text. This advancement permits the automatic extraction of pertinent financial information, such as amounts, dates, and vendor identities, directly from both printed and handwritten receipts. When incorporated into expense tracking systems, OCR diminishes the necessity for manual data entry, thereby significantly enhancing both efficiency and accuracy in the monitoring of daily expenses.

This paper reviews the existing landscape of OCR-based automated expense tracking systems, delving into their technical foundations, essential features, and the various challenges encountered in their implementation. Additionally, we investigate how these solutions can enhance financial management for both individuals and organizations by alleviating administrative burdens, reducing errors, and offering real-time insights into spending behaviours. Ultimately, the incorporation of OCR into expense tracking signifies a crucial advancement in the automation of financial management tasks, promoting both convenience and accuracy.

In today's digital economy, the ability to track daily expenses effectively is critical for both personal financial management and business accounting. Traditional methods, such as manual data entry or maintaining paper receipts, are inefficient and prone to error, especially as the volume of transactions grows. To address these challenges, the development of automated expense tracking systems has garnered significant attention, with Optical Character Recognition (OCR) technology playing a pivotal role.

OCR allows machines to interpret and extract text from scanned images, receipts, or invoices, transforming this data into machine-readable formats that can be easily processed and categorized. Recent advancements, particularly in Tesseract OCR integrated with Long Short-Term Memory (LSTM) neural networks, have dramatically improved the accuracy of text recognition, enabling the automatic extraction of essential information such as item descriptions, prices, and dates from receipts. This technology is further enhanced by the application of machine learning algorithms, which can classify and organize the data, offering users detailed insights into their spending habits through visualizations like graphs and charts.

The use of OCR in automated expense tracking offers numerous advantages, including the ability to handle high volumes of data efficiently, reduce human error, and provide real-time expense categorization. However, challenges such as character recognition errors in poorly printed or complex receipts, and the computational resources required for training machine learning models, still exist. As OCR and artificial intelligence technologies evolve, they will continue to play a critical role in simplifying personal and business financial management.

The rise of digital documentation and the escalating intricacy of financial transactions have rendered manual expense tracking both laborious and time intensive. In response to this issue, there is an increasing interest in the creation of automated expense tracking systems that utilize cutting-edge technologies such as Optical Character Recognition (OCR) and natural language processing (NLP). This study investigates the capabilities of AI-driven automated expense trackers, emphasizing the integration of OCR and language models to extract pertinent financial data from unstructured documents and receipts. The aim of this research is to design a web application that can effectively and accurately retrieve expense information from a variety of document types, including receipts, invoices, and bank statements. By automating this procedure, users can markedly alleviate their administrative workload and obtain valuable insights into their expenditure patterns.

1.1 Methodology

The development of the Automated Expense Tracking with OCR is structured around nine core components:

1. Optical Character Recognition (OCR) Technology

- Extracts text from scanned images, receipts, and invoices.
- Transforms physical and digital documents into machine-readable data.
- Uses advancements like **Tesseract OCR** for better accuracy.

2. Machine Learning Algorithms

- Classifies and organizes extracted data into relevant categories.
- Detects patterns in spending habits and provides predictive insights.
- Utilizes training datasets for enhancing performance over time.
- 3. Deep Learning Techniques
- Convolutional Neural Networks (CNN):
 - Improves OCR accuracy by recognizing complex text layouts and noisy data.

Impact Factor 8.066 $\,st\,$ Peer-reviewed / Refereed journal $\,st\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

• Long Short-Term Memory Networks (LSTM):

• Handles sequential data for better interpretation of text sequences, especially in low-quality or handwritten receipts.

4. Natural Language Processing (NLP)

- Extracts and interprets unstructured financial data from documents like invoices and bank statements.
- Enhances the system's ability to interpret context and provide structured outputs.

5. Real-time Data Processing

- Enables immediate categorization of expenses as receipts are scanned or uploaded.
- Provides users with instant insights and visualizations for effective decision-making.
 6. Integration with Financial Systems
- Synchronizes extracted data with budgeting tools, accounting software, or financial dashboards.
- Automates workflows such as reconciliation and reporting.

7. Error Correction and Validation

- Incorporates mechanisms to detect and correct OCR errors, especially in poorly printed or handwritten receipts.
- Uses rule-based or AI-driven models for data verification.

8. Visualization and Reporting

- Generates graphs, charts, and summaries to depict spending trends and patterns.
- Improves user experience by presenting data in an easily digestible format.

9. User Personalization

- Adapts to individual or organizational spending habits.
- Provides tailored insights and suggestions for better financial management.

1.2 Advantages of the Automated Expense Tracking with OCR 1. Enhanced Efficiency

- Automation eliminates the need for manual data entry, reducing time and effort for tracking expenses.
- Real-time processing provides immediate insights and categorization.
 2. Improved Accuracy
- OCR technology, supported by **Tesseract OCR**, **CNN**, and **LSTM**, minimizes human errors in text recognition, even for low-quality or handwritten receipts.
- Machine learning algorithms ensure accurate categorization and reduce misclassification of expenses. **3. Scalability**
- Capable of handling large volumes of receipts, invoices, and financial documents, making it suitable for both personal and organizational use.

4. Predictive Insights

- Machine learning analyses spending patterns to offer personalized insights, helping users make informed financial decisions.
- Predictive analytics assist in planning budgets and anticipating future expenses.
 5. Real-time Monitoring
- Immediate expense tracking helps users maintain better financial control and avoid overspending.
- Provides up-to-date visualizations and reports for quick assessment of financial health.

6. Reduced Administrative Burden

- Automating repetitive tasks like data extraction and categorization frees up time for more strategic financial activities.
- Simplifies processes like expense reconciliation and reporting.
 7. Versatility and Integration
- Supports a wide range of document types, including receipts, invoices, and bank statements.
- Can be integrated with financial systems, accounting software, and dashboards for seamless workflows.

Impact Factor 8.066 $\,st\,$ Peer-reviewed / Refereed journal $\,st\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

8. Accessibility

- Digital systems allow users to access and manage their financial data anytime and anywhere.
- Cloud-based solutions offer secure and centralized storage.

9. Error Reduction

- Reduces common errors like misreading handwritten text or entering incorrect amounts.
- Incorporates error-checking mechanisms to validate extracted data.
- 10. User Personalization
- Tailors spending insights and financial recommendations to individual habits and needs.
- Adapts to evolving user requirements over time. **11. Cost-Effectiveness**
- Reduces reliance on human labour for data entry and reconciliation, saving costs in the long run. 12. Enhanced Financial Transparency
- Offers clear, visual representations of spending patterns and expense breakdowns, improving financial awareness and decision-making.

2. LITERATURE SURVEY								
SI No.	Title	Author(s)	Year	Abstract	Methodology	Advantages	Disadvantages	
1	XPENSE TRACKER: AN EXPENSES TRACKING APPLICATION USING OCR AND MACHINE LEARNING	Mr Pandey, Harsh Vardhan, Ishank Verma, Sushank Pathak, Subhdeep Kushwah	2023	An automated expense tracking application that classifies receipts using OCR and machine learning, allowing users to categorize and analyze their spending.	Uses OCR and machine learning for receipt classification.	Wide audience reach, effective categorization and analysis.	Not specified.	
2	<u>eExpense: A</u> <u>Smart Approach to</u> <u>Track Everyday</u> <u>Expense</u>	S. Sabab, Sadman Saumik Islam, Md. Jewel Rana, Monir Hossain	2018	Automated system for expense tracking using bill scanning and OCR for budget management.	Scans bills/receipts, uses OCR for text extraction.	Simplifies tracking and budget management.	Potential issues with text recognition accuracy.	
3	Expense Tracking with Tesseract Optical Character Recognition v5: A Mobile Application Development	Xin-Tong Koo, Kok- Chin Khor	2023	Mobile app utilizing Tesseract OCR v5 to automate expense data extraction from receipts, emphasizing accuracy and usability.	Tesseract OCR v5 for data extraction from receipts.	High accuracy and usability.	Error rates can impact effectiveness.	
4	<u>Expense</u> <u>Management</u> <u>System</u>	E. Johri, Parth Desai, Paarth Soni, Hardik Jain, Nirmit Sanganeria	2023	System automates management of financial flows and offers AI- based recommendations. While not mentioning OCR, its features suggest advanced tech integration.	Automation with AI for recommendations (potential OCR).	Enhanced tracking and management features.	Uncertainty in OCR integration.	
5	Expense Manager using OCR	R. Khiste	2019	Application automating the tracking of expenses by converting receipts to text with OCR, allowing users to manage data effectively.	OCR for converting images to text and data analysis for reports.	Efficient management, data review, and editing.	Dependence on OCR accuracy.	

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 $\,\,st\,$ Peer-reviewed / Refereed journal $\,\,st\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

6	Automated Text Extraction from Images using OCR System	Chandni Kaundilya, Diksha Chawla, Yatin Chopra	2019	Discusses OCR techniques like text localization and segmentation for converting receipt images into text, highlighting Tesseract's accuracy.	Techniques such as text localization, segmentation, and Tesseract OCR.	Accurate text extraction, potential for enhancing expense tracking.	Not specifically applied to expense tracking.
7	<u>SPESE-Everyday</u> <u>Expenditure</u> <u>Tracker</u>	Dr. B. Muthu Senthil, Mummaneni Sravani, Konduru Theja Sree, M. P. K. Shri	2022	Helps users track expenses with defined categories and visualizations like pie charts.	User-defined categories and input spending tracking.	Enhances financial monitoring, suitable for new job holders and teenagers.	Not detailed on OCR specifics.
8	<u>eExpense: A</u> <u>Smart Approach to</u> <u>Track Everyday</u> <u>Expense</u>	S. Sabab, Sadman Saumik Islam, Md. Jewel Rana, Monir Hossain	2018	Uses OCR to scan bills/receipts for expense tracking and monitors income from SMS.	OCR for scanning bills/receipts and income monitoring via SMS.	Smart automation for financial tracking.	OCR accuracy dependent.
9	SURVEY ON CLASSIFICATION ENGINE FOR MONETARY TRANSACTIONS	K. Satpute, Abhiraj Kale, Anurag Mandal, R. Krishnan	2019	Web app for expense tracking using machine learning, classifies bank statements and manual records.	Machine learning classification for expense management.	Simplifies budget maintenance through automation.	OCR not explicitly mentioned.
10	Expense Tracking with Tesseract Optical Character Recognition v5: A Mobile Application Development	Xin-Tong Koo, Kok- Chin Khor	2023	Mobile app utilizing Tesseract OCR to enhance expense tracking convenience.	Tesseract OCR for data extraction from receipts.	Improves accuracy and ease of use.	Implementation complexity.
11	<u>An Android</u> <u>Application for</u> <u>Calculating Trip</u> <u>Expenses Using</u> <u>Firebase</u>	Sai Lokesh G, Balaji B, R. Reena	2022	Provides a computerized system for tracking expenses, allowing users to enter, amend, and delete categories.	Uses Firebase for expense tracking automation.	Streamlines expense management, reduces manual methods.	Limited to trip expenses without extensive OCR features discussed.
12	Expense Tracker	Subi James, Prof. Rajitha P. R.	2023	Employee- focused expense logging using React with filtering, sorting, and report generation.	React-based user interface for expense logging.	Accurate data entry and management with user- friendly interface.	Dependency on user interaction for data entry.

371

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 $\,\,st\,$ Peer-reviewed / Refereed journal $\,\,st\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

13	Digitizing Receipts with OCR	Ooi Yeung, J. John, N. Muton	2009	Discusses digitizing receipts using OCR, highlighting benefits of digital over paper methods, with analysis of applications and proposals for improvements.	Uses OCR for digitization of receipts; application analysis for improvements.	Improved preservation and management of receipts.	OCR not perfect, may need improvements.
14	Processing payment receipts using receipt bank	Шон Майкл Маккенна, Стюарт Генри Силай Маршалл	2016	Invention for processing payment receipts with OCR, creating and managing electronic receipts, enhancing reliability of transactions.	Uses OCR technology for managing electronic payment receipts.	Enhances electronic transaction reliability.	Details on practical application limited.
15	<u>Identification of</u> <u>Receipts in a Multi-</u> <u>receipt Image using</u> <u>Spectral Clustering</u>	Siddharth Garimella	2016	Method for isolating receipt segments in images with OCR to identify receipt amounts, using spectral clustering to enhance recognition and processing.	Uses OCR and spectral clustering for receipt segment identification.	Reduces validation time and effort for expense reports.	Method complexity.
16	<u>Computer</u> Customer Billing	George Massoff	1975	System processes payment stubs using OCR and OMR scanners for batch totals and account details, ensuring accurate billing and reporting.	Uses OCR and OMR scanners; processes 1,200 stubs per minute for billing.	High processing rate ensures billing accuracy and efficiency.	Technology dated, potential integration challenges with modern systems.
17	Value information management system	사소 아츠시, 모토지 오모리, 가오루 요코타	2005	System manages electronic receipts with OCR, securing data to prevent unfair billing, involving receipt scanning and secure memory card management.	Uses OCR for receipt scanning; secure data management.	Enhances data security in payment processing.	Limited OCR specification.
18	Recceipt digitization with OCR	Ooi Yeung, J. John, N. Muton	2023	Highlights benefits of receipt digitization over traditional methods,	Focus on improving receipt management and OCR processes.	Better preservation and management of receipts.	Not specific to streamlined OCR advancements.

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.066 $\,st\,$ Peer-reviewed / Refereed journal $\,st\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

				proposing effective receipt management and OCR enhancements.			
19	Processing payment receipts with reliability enhancement	Шон Майкл Маккенна, Стюарт Генри Силай Маршалл	2009	Discusses system using receipt bank to process payment receipts electronically, ensuring reliability via OCR.	OCR for processing electronic payment receipts.	Increases reliability of electronic transactions.	Limited detail on practical implementations.
20	Computerized Billing with OCR	George Massoff	1975	The source uses OCR for processing full- payment receipts in billing, capable of high-speed data reading and transfer for efficient billing systems.	High-speed OCR reading for efficient billing processes.	Ensures accurate data handling and processing speed.	Implementation may require adaptation to current technology.

3. CONCLUSION

The implementation of automated expense tracking systems utilizing Optical Character Recognition (OCR) technology represents a significant advancement in personal financial management and business accounting. As financial transactions continue to increase in frequency and complexity, traditional methods of tracking expenses—such as manual entry and paper-based systems-have become inefficient and error-prone. By leveraging OCR, particularly advancements in engines like Tesseract combined with deep learning techniques, users can seamlessly convert physical receipts into digital formats, automating the data extraction process and thereby minimizing the likelihood of human error. The advantages of such automated systems are manifold. Firstly, they enhance efficiency by allowing users to quickly capture and categorize their expenditures, resulting in time savings that can be redirected toward more productive tasks. The integration of machine learning algorithms further empowers these systems to not only extract text but also analyse spending patterns, providing users with valuable insights through visual representations such as charts and graphs. This capability supports better financial decision-making, enabling users to identify trends in their spending behaviour and make informed adjustments as necessary. However, the technology is not without its challenges. Despite significant improvements in OCR accuracy, issues such as character recognition errors still arise, particularly with poorly printed or complex receipts. Such inaccuracies can undermine the reliability of the data collected, leading to potential discrepancies in financial reporting. Additionally, the computational resources required to train and maintain sophisticated machine learning models can be prohibitive, especially for smaller businesses or individuals with limited technological infrastructure. Furthermore, while these systems can provide a high level of automation, they may still require human oversight to ensure data integrity and correct categorization, particularly in edge cases or unfamiliar receipt formats. The future of automated expense tracking through OCR holds great promise, especially as the technology continues to evolve. Ongoing advancements in artificial intelligence, machine learning, and computer vision are expected to enhance the capabilities of these systems, making them more robust and user-friendly. As financial literacy becomes increasingly important in today's economy, tools that simplify expense tracking can empower users to take control of their financial health. Automated expense tracking systems utilizing OCR technology offer a compelling solution to the inefficiencies of traditional expense management. They provide users with the tools necessary to streamline their financial processes while offering insights that can drive better financial decision-making. As these technologies continue to develop, they will likely play an integral role in shaping the future of personal and business finance, making it essential for users to stay informed about these advancements to fully leverage their benefits. Embracing these innovations can ultimately lead to more effective and efficient financial management practices.

Impact Factor 8.066 $\,\,st\,$ Peer-reviewed / Refereed journal $\,\,st\,$ Vol. 12, Issue 1, January 2025

DOI: 10.17148/IARJSET.2025.12142

REFERENCES

[1] Mr Pandey, Harsh Vardhan, Ishank Verma, Sushank Pathak, Subhdeep Kushwah. "XPENSE TRACKER: AN EXPENSES TRACKING APPLICATION USING OCR AND MACHINE LEARNING." 2023. DOI: 10.56726/irjmets39430.

[2] S. Sabab, Sadman Saumik Islam, Md. Jewel Rana, Monir Hossain. "eExpense: A Smart Approach to Track Everyday Expense." 2018. DOI: 10.1109/CEEICT.2018.8628070.

[3] Xin-Tong Koo, Kok-Chin Khor. "Expense Tracking with Tesseract Optical Character Recognition v5: A Mobile Application Development." 2023. DOI: 10.1109/ISIEA58478.2023.10212265.

[4] E. Johri, Parth Desai, Paarth Soni, Hardik Jain, Nirmit Sanganeria. "Expense Management System." 2023. DOI: 10.1109/GCAT59970.2023.10353348.

[5] R. Khiste. "Expense Manager using OCR." 2019. DOI: 10.22214/ijraset.2019.4080.

[6] Chandni Kaundilya, Diksha Chawla, Yatin Chopra. "Automated Text Extraction from Images using OCR System." 2019.

[7] Dr. B. Muthu Senthil, Mummaneni Sravani, Konduru Theja Sree, M. P. K. Shri. "SPESE-Everyday Expenditure Tracker".

[8] K. Satpute, Abhiraj Kale, Anurag Mandal, R. Krishnan. "eExpense: A Smart Approach to Track Everyday Expense".[9] K. Satpute, Abhiraj Kale, Anurag Mandal, R. Krishnan. "SURVEY ON CLASSIFICATION ENGINE FOR MONETARY TRANSACTIONS".

[10] Xin-Tong Koo, Kok-Chin Khor. "Expense Tracking with Tesseract Optical Character Recognition v5: A Mobile Application Development".

[11] Sai Lokesh G, Balaji B, R. Reena. "An Android Application for Calculating Trip Expenses Using Firebase".

[12] Subi James, Prof. Rajitha P. R. "Expense Tracker".

[13] Ooi Yeung, J. John, N. Muton. "Digitizing Receipts with OCR".

[14] Шон Майкл Маккенна, Стюарт Генри Силай Маршалл. "Processing payment receipts using receipt bank".

[15] Siddharth Garimella. "Identification of Receipts in a Multi-receipt Image using Spectral Clustering".

[16] George Massoff. "Computer Customer Billing".

[17] 사소 아츠시, 모토지 오모리, 가오루 요코타. "Value information management system".

[18] Ooi Yeung, J. John, N. Muton. "Recceipt digitization with OCR".

[19] Шон Майкл Маккенна, Стюарт Генри Силай Маршалл. "Processing payment receipts with reliability enhancement".

[20] George Massoff. "Computerized Billing with OCR"