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Abstract:  Battery management systems (BMS) play a vital role in the safety, efficiency, and longevity of electric vehi-

cles (EVs). As electric mobility increases, the BMS has a critical impact on enhancing the overall vehicle performance 

and energy management, making its optimization vital. In this regard, this paper presents how advanced artificial intelli-

gence (AI) algorithms involving machine learning (ML), deep learning (DL), and reinforcement learning (RL) can over-

come the major issues confronting BMS: precise state-of-charge (SOC) estimation, state-of-health (SOH) prediction, 

thermal management, and charge-discharge efficiency. AI approaches such as XGBoost and CatBoost achieve high per-

formance for SOC and SOH predictions, with metrics like MAE, RMSE, and R² reaching values of 2.243, 3.2, 0.99, and 

17.1, 23.97, 0.99, respectively, showcasing the potential for superior accuracy and robustness. The integration of AI 

systems facilitates improved adaptability and intelligent energy distribution, propelling the journey toward a sustainable 

and efficient electric vehicle landscape. 
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1 INTRODUCTION 

 

The development of energy supply on a worldwide basis is key to achieving, maintaining, and even improving the quality 

of modern life. Currently, fossil fuel combustion dominates power grids. Renewable energy is mostly not part of the 

energy supply chain, where conventional fossil fuels still prevail, even though there is an ever-increasing global demand 

for clean energy. However, the natural resources of fossil fuels are limited, and increasing energy demands aggravate 

pollution. Environmental degradation is aggravated by inefficient centralized power generation systems, and structural 

adjustments need to be undertaken to facilitate the transition from conventional to renewable energy sources [2]. 

 

 
Fig. 1. Different parameters of Battery Management System [1] 

 

As figure 1 shows the different parameters for battery management system in software and hardware scenario that affects 

the battery life span. To increase the use of renewable power generation, technological advancements offer the oppor-

tunity to tackle sustainability challenges; however, renewable energy sources need to be embedded into the energy supply 

system. Owing to the exhaustion of fossil fuels and the need to combat pollution, the application of renewable energy in 

industries has attracted extensive research in recent years. Solar and wind energy are among the most heavily discussed 

renewable energy resources owing to their sustainability and availability. Throughout history, these resources have been 

exploited by large corporations that require large-scale investment in infrastructure. However, in response to climate 

change and sustainability issues, consumers are actively involved in the generation of renewable energy [3]. 
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Fig. 2. Factors affected for battery Management System [1] 

 

 An additional aspect is the threshold in battery technology in power systems, which also makes the energy supply more 

stable and reliable. Emerging energy storage technologies, along with solar and wind power, have led to the creation of 

distributed generation systems as clean and renewable energy solutions. However, challenges remain, such as the high 

cost of energy production, optimal power efficiency, and consistent energy supply. This implies that the system includes 

unit size, which plays a significant role in the overall performance and scalability of the power system. This transition is 

best exemplified by electric vehicles (EV),  which utilize electricity and one or more electric motors as their sources of 

energy and propulsion. EVs include bicycles, scooters, cars, trains, and vans. This study highlights the role of intelligent 

algorithms for accurate battery state estimation, such as SOC, SOH, and RUL. Additionally, several controller architec-

tures have been investigated for battery balancing, fault detection, and thermal management. The intelligent controllers 

and algorithms used for BMS are also discussed, and limitations in implementations across all domains are explained 

with recommendations and future directions for improving accuracy, adaptability, and reliability [4]. 

 

Research gaps, such as the limited exploration of regression models for charging duration estimation and the absence of 

real-time energy optimization strategies, emphasize the need for more robust and scalable solutions. Furthermore, the 

integration of ML with physical models, while promising, still struggles to generalize across diverse battery chemistries 

and operational conditions. 

 

2 LITREATURE REVIEW 

 

In recent years, advanced battery management system (BMS) technology for electric vehicles (EVs) has received in-

creasing research attention because of the increasing interest in the integration of artificial intelligence (AI) techniques 

for battery performance optimization in various studies. The primary subjects of these systems include SOC estimation, 

SOH prediction, charge-discharge efficiency, and thermal management. Figure 2 shows the different factors for BMS 

which affects the lifespan of battery. All these factors influence the battery longevity and safety of EV. ML has been 

widely used in BMS to forecast the status and performance of the battery cells. Some studies have used SVR, and random 

forest regression models are used for SOC and SOH estimation. Accurate prediction of battery conditions using these 

models would help in efficient energy management, leading to better EV performance. Recent studies have highlighted 

the fusion of multiple AI approaches to produce robust and accurate BMSs. Hybrid methods that integrate ML, DL, and 

RL techniques are emerging as effective solutions that significantly enhance battery health prediction, energy optimiza-

tion, and fault detection. A hybrid model using fuzzy logic and network identifiers has been devised for the nonlinear 

optimization of the battery health of EVs, which has been shown to result in higher accuracy for SOH prediction and 

fault diagnosis. 

 

In addition, people are interested in using AI for the thermal management of BMS. Good thermal management is neces-

sary for battery safety and crucial for high-performance EVs. Neural network and decision tree machine learning models 

have been utilized to anticipate temperature variations, optimize the cooling system of battery packs, avoid overheating, 

and extend battery lifespans. Table 1 and table 2 shows the latest research from year 2023 and 2024. 
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Table 1. Review from 2024 

 

Ref 

 

Challenges Methods Dataset Research Gap 

[5]  - Evaluating model 

accuracy in predict-

ing SOC and temper-

ature.   

- Handling outliers 

during data analysis 

and model training. 

 - Gradient descent, 

stochastic gradient 

descent, simulated 

annealing for  

 - Battery Initial Tem-

perature influences 

charging rate and effi-

ciency.   

- Room Temperature 

affects charging dy-

namics and perfor-

mance.   

 - Lack of real-world im-

plementation data for 

model validation.   

- Limited exploration of 

alternative optimization 

algorithms and tech-

niques. 

[6]  - Computational 

complexity for large-

scale battery systems.   

- Generalization to 

different battery 

chemistries and aging 

profiles. 

 - Deep Reinforce-

ment Learning for 

battery cycle opti-

mization.   

 

 - Simplified lithium-

ion battery model for 

simulations.   

- Performance metrics 

include cycle life and 

energy efficiency. 

 - Generalization of DRL 

policy across different 

battery types needed.   

- Computational effi-

ciency for large-scale 

systems requires further 

investigation. 

[7]  - Ensuring safety 

constraints during re-

inforcement learning 

actions.   

- Adapting to changes 

in battery dynamics 

effectively. 

 - Adaptive Gauss-

ian process models 

- Twin-delayed 

DDPG algorithm 

 - Datasets include tem-

perature and voltage 

data for battery charg-

ing.   

- Data used for training 

dynamic Gaussian pro-

cess models. 

 - Ensuring safety con-

straints in RL-based bat-

tery charging optimiza-

tion. 

- Addressing system 

safety to prevent irre-

versible battery damages. 

[8]  - Limited under-

standing of modeling 

process visualization 

and theory.   

- Importance of data 

balance for optimal 

classification results. 

 - Five classifica-

tion algorithms for 

crystal system clas-

sification.   

 

 - 339 types of lithium 

silicate cathode materi-

als. 

- Data includes 11 col-

umns of physical quan-

tities. 

 - Limited exploration of 

additional classification 

algorithms.   

- Need for broader da-

taset diversity and vali-

dation. 

 

Table 2. Literature from 2023 

 

Ref Methods  Challenges Dataset Research Gap 

[9] KNN algorithm; da-

taset divided into sub-

sets for supervised 

learning. 

Overfitting due to 

limited data; com-

plexity from addi-

tional features. 

Real-world dataset 

from 100+ users' 

charging sessions. 

Limited focus on regres-

sion; emphasis on dura-

tion prediction for charg-

ing stations and DSOs. 

[10] SNN, NARX, and hy-

brid ANFIS architec-

tures implemented in 

MATLAB. 

Robustness in real-

world conditions 

remains unproven. 

Li-ion ECM RC bat-

tery model with input-

output measurement 

data. 

No explicit gaps men-

tioned; focus is on SOC 

estimator development 

and performance. 

[11] Feature screening, fu-

sion, and acquisition 

probability evaluation. 

Feature selection 

and fusion; adapt-

ing to varied driv-

ing scenarios. 

NASA, MIT, and 

CALCE battery deg-

radation datasets. 

Real-world driving be-

havior impact and redun-

dancy in feature sets. 

[12] Physics-informed neu-

ral networks (PINN) 

integrating ML and 

physics-based models. 

Complexity of dy-

namic cell parame-

ters; dataset gener-

alization issues. 

Lithium-ion Power 

Cell LP2 51Ah-BEV 

cells (NMC-622 cath-

ode, graphite anode). 

Generalization across 

scenarios and complex-

ity of parameter estima-

tion. 

[13] Machine learning; his-

torical driving data for 

optimization. 

Real-time energy 

management and 

computational re-

source demands. 

EV data on battery ca-

pacity, routes, and 

weather. 

Real-time energy optimi-

zation limitations and 

scalability issues. 
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[14] RNNs with various op-

timizers; cross-valida-

tion for accuracy. 

Balancing voltage-

current weighting; 

custom model de-

velopment. 

Open-source battery 

cycling data from the 

Battery Research 

Group. 

Custom models to im-

prove middle charge esti-

mations. 

[15] Convex optimization 

and dual loop DP algo-

rithms. 

Addressing perfor-

mance and con-

sumer attitudes to-

ward EVs. 

Comparative algo-

rithm evaluation; no 

dataset specifics. 

Impact of optimization 

strategies on consumer 

adoption. 

[16] Cloud computing and 

ML for pattern extrac-

tion. 

Hardware con-

straints and predic-

tive modeling at 

various timescales. 

No dataset specifics 

mentioned; onboard 

chip data used. 

Scalability and predic-

tive modeling challenges 

across timescales. 

 

Unified modeling frameworks: State-of-the-art AI techniques do not generalize, rather focus on SOC or SOH estima-

tion. To date, there is no comprehensive framework to address all the BMS challenges including thermal management, 

charge-discharge, and energy distribution. Although AI approaches have demonstrated success, their integration with 

physics-based models to describe complex electrochemical dynamic continues to be underexplored. 

 

Generalization across battery types: These models are mostly specific to lithium-ion battery types, as opposed to 

other, emerging chemistries (e.g. solid-state, sodium-ion). EV battery conditions (e.g., temperature-usage patterns) 

change over time. Existing AI solutions cannot dynamically adapt to such changes. 

 

Data scarcity for edge cases:Training datasets may not fully reflect extreme conditions like overcharging, deep dis-

charging, or thermal runaway, making it challenging to accurately predict results using AI. Due to hardware constraints, 

high-end AI models are still primarily applied at low power, edge-computing for electric vehicles. 

 

Interdisciplinary collaboration:  Using our proprietary AI technology, we can develop Decentralized BMS capable of 

addressing new technologies at the top of the stack, which the existing models are often too leaky to handle, and therefore 

do not integrate or 129ptimize: However, there have been no studies on how AI in the BMS and the overall optimization 

of the BMS would improve battery recycling, second life applications and overall sustainability. 

 

3 MACHINE LEARNING FOR EVBO 

 

The integration of machine learning techniques into electric vehicle (EV) charging systems has opened new avenues for 

optimizing battery performance and energy management. A study on EV charging session classification using ML and 

provided insights into forecasting charging durations but remained limited to classification-based approaches without 

exploring regression models. Similarly, machine learning-based energy optimization systems for EVs have focused on 

historical driving data to predict energy requirements. However, challenges like frequent recharging and high computa-

tional resource demands underscore the need for scalable solutions. These studies highlight the growing role of ML in 

addressing energy efficiency and operational challenges in EV ecosystems. 

 

3.1 Deep Learning for Battery State-of-Charge and Health Monitoring 

Recent advancements in deep learning have significantly enhanced battery state-of-charge (SOC) estimation and health 

monitoring capabilities. Approaches such as the integration of shallow neural networks (SNN) and NARX architectures 

have demonstrated robustness against parameter variations. Additionally, hybrid adaptive neural fuzzy inference systems 

(ANFIS) have shown promise in estimating SOC under harsh conditions. Despite these advancements, practical chal-

lenges like the inability to accurately capture middle SOC ranges and reliance on specific datasets remain unresolved. 

These limitations call for further exploration of customized models that generalize well across diverse battery chemistries 

and conditions. 

 

3.2 Feature Engineering and Fusion Techniques in Battery Health Prediction 

The use of feature engineering and fusion techniques has improved the accuracy of battery health predictions. Studies 

employing scenario-based feature fusion and acquisition probability evaluation have demonstrated enhanced perfor-

mance in monitoring battery health under dynamic conditions. However, the redundancy of features and inaccuracies 

stemming from real-world driving behaviors present significant challenges. Research leveraging NASA, MIT, and 

CALCE battery degradation datasets highlights the importance of robust feature screening techniques to mitigate these 

challenges, paving the way for more accurate and reliable battery health monitoring frameworks. 

https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.066Peer-reviewed / Refereed journalVol. 12, Issue 2, February 2025 

DOI:  10.17148/IARJSET.2025.12216 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  130 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

 

3.3 Hybrid Modeling Approaches for Lithium-Ion Batteries 

Hybrid modeling approaches that combine physics-based and data-driven techniques are gaining traction in lithium-ion 

battery research. Physics-informed neural networks (PINNs) have been successfully applied to state estimation tasks, 

offering a balance between complexity and accuracy. Despite their potential, these models require large datasets for 

effective training and often struggle with generalization to unseen scenarios. The integration of domain knowledge from 

physics-based models with the predictive power of machine learning has been proposed as a promising avenue to over-

come these limitations, especially in the context of dynamic cell parameters. 

 

4 PREDICTION METHOD 

 

4.1 Dataset  

Dataset 1, used in the first two case studies, was generated based on the battery degradation simulation model in the 

MATLAB Simulink environment 42. The dataset contains 945 battery aging tests with different parameters including the 

state of charge (SOC), depth of discharge (DOD), temperature, and circulating current (C-rate). Our model-based simu-

lation is flexible in that researchers can define the battery types according to the manufacturer’s long-sheet and can 

configure it to simulate the effects of the ambient temperature, dynamics of the internal resistance, and aging character-

istics. This active model, while realistically penalizing linear amp-hour capacity degradation, may ultimately require 

more sophisticated predictive algorithms to account for real-world nonlinear capacity fading. While singular output mod-

els remain dominant in predicting remaining useful life (RUL) in linear degradation scenarios, advanced techniques are 

best suited for state representation in nonlinear scenarios because they can easily capture complex behavior.  

 

 
Fig. 3. RUL prediction model [19] 

 

Dataset 2: Data from 124 commercial Li-ion phosphate/graphite cells (A123 system, model: APR18650M1A, nominal 

capacity: 1.1 Ah) subjected to fast-charging protocols until end-of-life (EOL, defined as 80% of their initial capacity) 

comprise Dataset 2. Using a standard 30 °C controlled environment, different fast-charging policies (at various C rates) 

were implemented over the course of up to three separate stages. Charging started with a C-rate (C1), moved to an 

intermediate C-rate (C2), and ended with discharge at a rate of 4 C until the voltage decreased to a cutoff range of 3.6 V–

2. 0 V The dataset was used in case 3 and contains valuable information about the influence of fast-charging strategies 

on the performance and degradation of a battery.   

 

The third dataset is based on a study by the Hawaii Natural Energy Institute on nickel manganese cobalt cobalt oxide 

(NMC-LCO) batteries. In particular, this dataset consists of 14 standalone 18,650 cells (nominal 2.8 Ah) that were cycled 

beyond 1000 charge-discharge cycles under standardized conditions. 

 

The batteries were maintained at a temperature of 25 °C and charged with a constant current–constant voltage (CC-CV) 

at a rate of C/2 (i.e., one half of the battery capacity per hour). Discharge was conducted at 1.5 C, or 1.5-times the battery 

capacity in one hour. This dataset provides in-depth insights into the cycling behavior and degradation kinetics of NMC-

LCO batteries under controlled laboratory conditions. 
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4.2 Data Preprocessing 

As Figure 3 shows first part of system is data processing. The dataset was thoroughly checked for any missing and 

duplicate values. The absence of missing or duplicate instances in the data was confirmed after thorough preprocessing. 

This is an important step to preserve the reliability of the dataset, as removing missing values avoids biased analyses or 

incorrect predictions (especially in machine learning models). Moreover, this step also guarantees that each record is 

unique, an essential factor for statistical analyses and machine learning model training. This preprocessing is important 

as redundant data can affect the efficiency and accuracy of the model. 

 

Feature Selection 

By performing feature selection, the predictors best suited to the target variable, Remaining Useful Life (RUL), were 

selected. The analysis identified the following correlations. In contrast, the cycle index showed a perfect negative corre-

lation with the RUL (correlation coefficient = −1.00). A positive correlation was observed between the maximum dis-

charge voltage and RUL with a correlation coefficient of 0.78. 

During the charging process, the minimum voltage showed a negative relationship with the RUL (R = −0.76). 

 

Outlier Detection 

 The negative correlation between the cycle index and RUL was so strong that one could argue for its use as a feature. 

However, it was decided not to include this within the model. This decision was motivated by the risk of overfitting 

because the model could rely on this inverse relationship, which would reduce its generalizability to unseen data. Over-

fitting occurs when the model maps noise or spurious patterns that are peculiar to the training data and not generalizable 

relations. Beyond the cycle index, this also captures external factors such as material degradation and environmental 

conditions that could affect RUL and are otherwise not captured by this feature. The model was trained on only the most 

relevant features, significantly contributing to its robustness and overall predictive capabilities. Outlier detection was 

performed to assess extremely high or extremely low values that could bias the analysis or negatively influence the model 

training. Based on the study of outliers in this dataset, the following can be obtained: 

 

Z-Score Analysis: For numerical features, we used the Z-score method, in which we flagged data points with Z-scores 

beyond a certain threshold (for example, |Z| > 3) as outliers. This method is useful for detecting outlier values that are 

redundant in a distribution. 

 

Interquartile Range (IQR) method:  The I The IQR method based on the spread of the middle 50% of the data was 

used to detect outliers. Data points that fell below Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR were considered outliers. 

Visualization Techniques: Data visualization of RUL, voltage, and cycle index using box and scatter plots. Visual in-

spection was performed to identify patterns or groups of outliers. 

 

Model Selection.  
Several machine-learning algorithms have been considered for predicting the Remaining Useful Life (RUL) of batteries. 

The selection process was guided by the characteristics of the dataset, relationships between features, and the need to 

capture both linear and nonlinear patterns. The following models are shortlisted: 

 

Linear Regression: Establish baseline performance and understand linear relationships. 

Random forest regressors: Capture nonlinear relationships and assess feature importance owing to its ensemble-based 

structure. 

XGBoost (extreme-gradient boosting): It was selected for its ability to handle structured datasets efficiently, capturing 

complex interactions while reducing overfitting through built-in regularization techniques. 

Support Vector Regression (SVR): Model complex relationships using kernel functions. 

Neural Networks: To leverage their capacity to model highly nonlinear interactions and dependencies in a dataset. 

XGBoost and CatBoost are chosen for their high accuracy, efficiency, and ability to handle complex battery datasets. 

XGBoost excels in scalability and managing missing data, while CatBoost effectively handles categorical features and 

minimizes overfitting, making both ideal for SOC and SOH predictions in Battery Management Systems. 

 

4.3   XGBoost Algorithm 

XGBoost is a highly efficient and scalable implementation of gradient boosting. It is particularly well suited for predictive 

tasks that require both accuracy and speed, such as battery health monitoring. The key features of XGBoost include the 

following. 

Gradient Boosting Framework: XGBoost builds an ensemble of decision trees sequentially, where each tree corrects 

the errors of the previous trees, minimizing a specified loss function. 
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Regularization: XGBoost incorporates L1 (lasso) and L2 (ridge) regularization to prevent overfitting, which is crucial 

when working with datasets prone to noise or redundant features. 

Handling Missing Data: XGBoost handles missing values by learning the optimal splitting directions during the train-

ing. 

Parallelization: Unlike traditional gradient boosting methods, XGBoost supports parallelized computations, thereby sig-

nificantly reducing the training time. 

Customizable Objective Functions: This allows the use of user-defined loss functions, making it versatile for diverse 

applications. 

 

Model Training with XGBoost.  
XGBoost was trained on a pre-processed training dataset. The hyperparameters were tuned using a grid search to optimize 

the performance of the model. The key hyperparameters tuned include the following: 

Learning Rate (η): The step size is controlled at each boosting step. A smaller learning rate with more boosting rounds 

generally improves the performance. 

Max Depth: The maximum depth of each decision tree is determined, allowing the model to capture intricate data pat-

terns. 

Subsample: The fraction of training samples used for each tree helps to prevent overfitting. 

Gamma: The minimum loss reduction required to make a further partition on a leaf node controls tree complexity. 

Colsample_bytree: The fraction of features used to construct each tree improves the robustness of the model. 

 

4.4  CATBoost Algorithm.  
CatBoost is a gradient-boosting algorithm that optimizes the loss function by iteratively adding decision trees to minimize 

the errors. The CatBoost algorithm is explained step-by-step using the following mathematical notations: 

Given a dataset𝒟 = {(𝐱𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where 𝐱𝑖 ∈ ℝ𝑑 represents the features and 𝑦𝑖 ∈ ℝ (for regression) or 𝑦𝑖 ∈ {0,1} (for 

binary classification) represents the target. · The goal is to find a model 𝐹(𝐱) that minimizes the loss function ℒ,which 

is defined as: 

ℒ =
1

𝑁
∑ ℓ𝑁

𝑖=1 (𝑦𝑖 , 𝐹(𝐱𝑖))  (1) 

Where ℓ is the loss function, such as Mean Squared Error (MSE) for regression 

ℓ(𝑦𝑖 , 𝐹(𝐱𝑖)) =
1

2
(𝑦𝑖 − 𝐹(𝐱𝑖))

2
,  (2) 

 Log-Loss for classification: 

ℓ(𝑦𝑖 , 𝐹(𝐱𝑖)) = −(𝑦𝑖log𝑝̂𝑖 + (1 − 𝑦𝑖)log(1 − 𝑝̂𝑖)),     (3) 

 With 𝑝̂𝑖 = 𝜎(𝐹(𝐱𝑖)) and 𝜎(𝑧) =
1

1+𝑒−𝑧 (sigmoid function). 

 

Gradient Boosting Framework 

The model 𝐹(𝐱) is represented as an additive ensemble of decision trees: 

 

𝐹𝑡(𝐱) = 𝐹𝑡−1(𝐱) + 𝜂ℎ𝑡(𝐱),  (4) 

 

Where 𝐹𝑡(𝐱) is the model at iteration 𝑡, 𝜂is the learning rate,  ℎ𝑡(𝐱) is the base learner ( decision tree) added at iteration 

𝑡 At each iteration, ℎ𝑡(𝐱) is trained to minimize the residuals (the gradient of the loss function): 

 

𝑟𝑖
(𝑡)

= −
∂ℓ(𝑦𝑖,𝐹𝑡−1(𝐱𝑖))

∂𝐹𝑡−1(𝐱𝑖)
.   (5) 

 

For categorical features 𝑥𝑗, CatBoost uses an ordered target statistics approach: A random permutation 𝜋 of the dataset 

indices is applied. For each sample 𝑖,the mean target value of 𝑥𝑗 is computed only using preceding samples in the per-

mutation: 

Encoded(𝑥𝑖𝑗) =
∑ 𝑦𝑘𝑘<𝜋(𝑖) ⋅𝕀(𝑥𝑘𝑗=𝑥𝑖𝑗)

∑ 𝕀𝑘<𝜋(𝑖) (𝑥𝑘𝑗=𝑥𝑖𝑗)+𝛼
,  (6) 

 

where ll is the indicator function, and 𝛼 > 0 is a smoothing parameter to avoid overfitting 

 

CatBoost constructs trees symmetrically: 

 

· For each split, both branches have the same structure · Fora node 𝑛,the split is chosen to maximize the reduction in the 

loss function: 
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𝛥ℒ = ℒparent − (ℒleft + ℒright),   (7) 

 

where ℒleft and ℒright are the losses for the left and right child nodes. 

The final prediction is an ensemble of all trees: 

 

𝐹𝑇(𝐱) = ∑ 𝜂𝑇
𝑡=1 ℎ𝑡(𝐱),  (8) 

 

where 𝑇 is the total number of iterations. For regression, the prediction is: 

 

𝑦̂𝑖 = 𝐹𝑇(𝐱𝑖), 
and for classification: 

𝑝̂𝑖 = 𝜎(𝐹𝑇(𝐱𝑖)) =
1

1+𝑒−𝐹𝑇(𝐱𝑖)
.  (9) 

 

L2 Regularization: Adds a penalty term to the loss: 

 

ℒ =
1

𝑁
∑  𝑁

𝑖=1 ℓ(𝑦𝑖 , 𝐹(𝐱𝑖)) + 𝜆 ∥ 𝐹 ∥2  (10) 

 

where 𝜆 controls the regularization strength.  

 Learning Rate (𝜂) : Controls the contribution of each tree to the final ensemble.  

 

Evaluation Metrics 

The MAE is determined using             𝑀𝐴𝐸 =
|(𝑦𝑡−𝑦𝑝)|

𝑛
   (11) 

The MSE is determined using              𝑀𝑆𝐸 =
∑  (𝑦𝑡−𝑦𝑝)

2

𝑛
  (12) 

The RMSE is determined using           𝑅𝑀𝑆𝐸 = √∑  (𝑦𝑡−𝑦𝑝)
2

𝑛
  (13) 

 

The 𝑅-Squared, or coefficient of determination, is calculated by 

𝑅2 = 1 −
∑  (𝑦𝑡−𝑦𝑝)

2

∑  (𝑦𝑡−𝑦𝑡̅̅ ̅)2   (14) 

Here, 𝑦𝑖̅ is the mean of all of the actual values. 

 

5 RESULTS AND DISCUSSION 
 

The performance of the XGBoost and CatBoost models on the Remaining Useful Life (RUL) prediction task was evalu-

ated using multiple metrics, including (Mean Absolute Error (MAE), MSE (Mean Squared Error (MSE), RMSE (Root 

Mean Squared Error (RMSE), and Coefficient of Determination (R ²) across both the training and test datasets. A detailed 

analysis is provided in table 3. 

 

Table 3. Comparison OF XGBOOST and CatBoost Algorithm 

 

 Train Set Test Set 

ML MAE MSE RMSE RSquared MAE MSE` RMSE RSquared 

XGBoost 2.243 10.62 3.2 0.99 8.1 245.9 15.8 0.99 

CatBoost 15.15 431 20.78 0.995 17.1 574.95 23.97 0.99 

 

XGBoost demonstrated exceptional predictive accuracy and generalization ability as shown in figure 4(a)  and figure 5, 

as reflected by its consistently low error metrics and high R² values in both the training and test sets. The MAE was 2.243 

and the RMSE was 3.260, indicating a precise prediction with minimal deviation from the true values. An R² value of 

0.999 confirmed a nearly perfect fit to the training data. The model maintained strong performance, with an MAE of 

8.191 and an RMSE of 15.684. The high R² value of 0.997 highlights the robustness of the generalization capability of 

the model for unseen data. The performance of XGBoost can be attributed to its gradient-boosting framework, which 

efficiently handles complex interactions between features and prevents overfitting through regularization. 
 

CatBoost also shows strong performance shown in figure 4 (b) , but slightly lags behind XGBoost in terms of predictive 

accuracy. MAE and RMSE were 15.15 and 20.782, respectively, with an R² value of 0.995. While the model fits the 
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training data well, the error metrics are higher than those of XGBoost, suggesting less precise predictions. The test results 

revealed an MAE of 17.122 and RMSE of 23.978, with an R² value of 0.994. These metrics, although competitive, 

indicate a marginal drop in accuracy when compared to XGBoost. 
 

The performance of CatBoost is notable for its ability to handle categorical data effectively and its gradient-boosting-

based approach. However, additional fine-tuning may be required to match the performance of XGBoost for this specific 

application. 

 

 
Fig. 4. Evaluation of Train data a) XGBoost b) CatBoost 

 

 
Fig. 5. Evaluation of XGBoost for Test data 

 

The superiority of CatBoost over XGBoost in certain contexts lies in its ability to handle categorical features more effec-

tively, thanks to its unique ordered boosting and preprocessing techniques. CatBoost also reduces overfitting through 

novel approaches like oblivious decision trees, which ensures stability and consistency in performance across datasets. 

On the other hand, XGBoost outperforms CatBoost in scenarios with larger datasets and numerical features, leveraging 

its parallel processing capabilities and efficient gradient boosting mechanism. The choice between the two often depends 

on the nature of the dataset (e.g., categorical vs. numerical dominance), computational constraints, and specific applica-

tion requirements. 

 

6 CONCLUSION 

 

This paper presents AI algorithms and comparision, including machine learning (ML), deep learning (DL) for battery 

management system (BMS) optimization in electric vehicles (EVs). Thermal management of EV batteries is essential, 

and these AI techniques play a vital role in addressing significant roadblocks faced by Evs, including the accurate esti-

mation of state-of-charge (SOC) and state-of-health (SOH) prediction. Incorporating artificial intelligence techniques can 

lead to more accurate information gathering, intelligent computation, and data-driven decisions, resulting in better battery 

management systems to ensure longer battery lifetime, efficient performance, and safety. The continuous improvement 

of these technologies will also lead to smarter and more efficient BMS systems designed for Evs, which will further 

accelerate EV adoption, resulting in a cleaner and more sustainable future. In this study, an ensemble of different machine 

learning algorithms based on datasets of EV performance was used to enhance prediction accuracy and reduce mean 

absolute errors, which indicates that future studies can benefit from developing more sophisticated new AI algorithms or 

hybrid models and applying them to other EV domains, such as energy management and autonomous driving. This study 

is limited by the reliance on simulated data and specific AI models, which may not fully capture real-world battery 

behavior and scalability across diverse EV systems. 
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