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Abstract: This study explores the synthesis and characterization of a Carbon Quantum Dots (CQDs)/CdS/ZnS 

photoanode thin-film solar cell with a Cu-CuS counter electrode, targeting eco-friendly and efficient photovoltaic 

applications. The CQDs were synthesized via a hydrothermal method, while CdS and ZnS layers were deposited using 

the SILAR technique. The fabricated solar cell, comprising FTO/d-TiO2/m-TiO2/ CQD/CdS/ZnS/ /CuS-Cu, demonstrated 

a short-circuit current density (𝐽𝑠𝑐) of 26.30 µA, an open-circuit voltage (𝑉𝑜𝑐) of 0.470 V, and a power conversion 

efficiency (PCE) of 1.88%. The Cu-CuS counter electrode show cased desirable electronic properties, including a low 

resistivity (𝜌) of 2.161 × 10−2 Ω⋅cm and high conductivity (σ) of 4.628 × 102 S/cm, Hall coefficient (RH) of  value of 

5.659 c𝑚3/𝐶 and sheet resistance (Rs) value of 3.087 Ω/sq. These findings suggest that incorporating green materials 

and innovative design can significantly contribute to sustainable energy solutions, though further optimizations are 

required to enhance device performance. 

1.0 INTRODUCTION 

The growing global focus on sustainability and environmental conservation has brought green synthesis of nanomaterials 

into the spotlight as a crucial approach in modern nanotechnology [1,2]. Among renewable energy sources, solar energy 

is particularly promising due to its abundance thereby offering approximately 120,000 terawatts of power to Earth’s 

surface, which is 6,000 times the world’s current energy consumption [3]. Solar cell as a device that is capable of 

converting sunlight into electricity through the photovoltaic (PV) effect have seen significant progressions in recent times 

[4,5]. This advancements include the development of different categories such as perovskite solar cells [6-11], 

organic/polymer solar cells [12-14], quantum dot solar cells [15-18], flexible solar cells [19-21], tandem solar cells [22-

24] and many other architectures. These advanced PV technologies offer diverse applications like foldable chargers, 

wearable devices and transparent curtains which addressing the need for adaptable and innovative energy solutions. One 

of such advances in recent time is carbon qauntum dots (CQDs). 

Carbon quantum dots (CQDs) are small, carbon-based nanoparticles typically less than 10 nanometers in size [25]. These 

nanomaterials possess unique properties, including strong fluorescence, biocompatibility, and low toxicity, making them 

highly suitable for various applications such as bioimaging, sensing, drug delivery, and energy devices like solar cells 

[26]. Carbon quantum dots (CQDs) have become a more environmentally friendly option than standard semiconductor 

quantum dots (SQDs) which frequently include dangerous elements like lead (Pb) and cadmium (Cd) [27, 28]. Because 

of their great charge transfer capabilities, broad absorption spectra, huge two-photon absorption cross-section, and good 

photostability, CQDs are especially valued for their effectiveness in preventing electron-hole pair recombination in solar 

cells [29]. 
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CQDs can also perform a variety of functions in photovoltaic devices, including interlayer spacing components that align 

energy levels across various functional layers, light absorbers, and electron donors/acceptors [30-33]. The integration of 

CQDs into various layers of solar cells such as electron-transporting layers (ETL), active absorbing layers, hole-

transporting layers (HTL), and energy level alignment interlayers [34-36] has shown great potential in enhancing device 

performance while ensuring environmental safety. Compared to cadmium sulfide (CdS) and zinc sulfide (ZnS) QDs 

which provide strong electron transport properties and stability, CQDs are more appealing for environmentally friendly 

and scalable production. 

The bottom-up hydrothermal synthesis of carbon quantum dots (CQDs) from citric acid and ammonia (or nitrogen 

sources) has garnered significant attention due to its potential applications in optoelectronics and biomedicine [37-39]. 

Various studies had highlighted the effectiveness of citric acid as a carbon precursor and the role of nitrogen doping in 

enhancing the properties of CQDs [40-44]. Other synthetic approaches that have been empolyed to synthesize CQDs 

include green synthesis [45-38], pyrolysis technique [49-51], microwave assisted [52, 53], electrochemical carbonization 

[54-55], laser ablation [56-57] and chemical oxidation [58-59]. 

In the other hand, CdS and ZnS thin films are binary semiconductors with unique properties suitable for their application 

in solar cells and other optoelectronic application. Cadmium sulfide (CdS) thin film has a direct bandgap of about 2.4 eV, 

making it highly suitable for optoelectronic applications [60-61]. It exhibits excellent light absorption properties in the 

visible spectrum and typically used as a window layer in thin-film solar cells due to its ability to transmit light efficiently 

while forming a heterojunction with other materials like cadmium telluride or copper indium gallium selenide [62-66]. 

These heterojunctions facilitate efficient charge separation and collection thereby improving the overall performance of 

solar cells. Zinc sulfide (ZnS) is a wide-bandgap material with a bandgap of approximately 3.65 eV, making it transparent 

to visible light and suitable for applications requiring high optical transparency and luminescence [67]. In solar cells, 

ZnS is often used as a buffer or window layer in tandem with materials [64] or other thin film technologies. Its role is to 

enhance light transmission and serve as an electron transport layer, contributing to the efficiency and stability of the 

device [68-69]. CdS/ZnS heterojunction thin films combining the advantageous properties of both binary semiconductor. 

These heterojunctions are created by layering CdS and ZnS, forming a junction that exhibits excellent properties for solar 

cell application [70-71]. 

In this work, we focused on developing low cost  and efficient solar cells using Carbon Quantum Dots (CQDs)/CdS/ZnS 

trilayer thin films with Cu-CuS counter electrodes. CQDs, being non-toxic and cost-effective, enhance light absorption 

and sustainability, while ZnS reduces environmental risks associated with cadmium. The Cu-CuS counter electrode offers 

a low-cost, scalable alternative to rare materials, improving the commercial viability of the cells. This approach combines 

green materials and innovative design to promote renewable energy solutions for a sustainable future. 

2.0 EXPERIMENTAL DETAILS 

Reagents and other materials used for the fabrication of the solar cell include Ti-nanoxide D/SP (solaronix), titanium (IV) 

isopropoxide (Aldrich),  Zr-nanoxide Z/SP (solaronix), Elcocarb B/SP (solaronix), Methanol (Aldrich), citric acid 

(MERCK), ammonia (MERCK), zinc acetate (MERCK), cadmium chloride (Aldrich), sodium sulphide (Aldrich), 

Ammonium solution (Adrich),  Distilled water, Flourine doped Tin Oxide transparent conducting glass TCO30-8 

(Solaronix) ,  Acetylacetone  (MERCK), Titanium (IV) chloride (MERCK),   

2.1 Solar cell Fabrication 

Prior to fabricaion of the solar cell, the FTO substrates used underwent cleaning through a series of steps, including 

washing in a detergent solution, rinsing with distilled water, a final wash with isopropanol, and drying using a spin coater 

(Labscience model 800) at 3000 RPM. The cleaned FTO was masked to create a cell of 4 x 8 mm. 

2.1.1 Deposition of dense TiO2 thin film layer 

TiO2 thin film was deposited using electrostatic spray pyrolysis. The substrate temperature was set at 400°C, with a 

precursor flow rate of 0.1ml/min, atomizing voltage of 8kv, and a substrate to nozzle distance of 20mm. A total of 0.3ml 

of the precursor was sprayed. The precursor composition was madeup of 0.15M  titanium (IV) isopropoxide, 0.30 M 

acetylacetone and methanol was used as solvent.  
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2.1.2 Deposition of Mesoporous TiO2 thin film layer 

Ti-nanoxide was applied by screen printing, followed by annealing at 500°C for 30 minutes to prepare mesoporous TiO2 

(m-TiO2). The formed m-TiO2 film was treated with a 70 mM solution of TiCl4 at 70°C for 30min, rinsed with water, and 

annealed at 100 °C for 30 minutes. 

2.1.3 Synthesis of Carbon Quantum Dots  

To synthesize carbon quantum dots, hydrothermal method of synthesis was adopted. Citric acid mixed with amonia and 

distilled water  was used as reagemts. Firstly, 3.0 grams of citric acid was mixed with 12 mL of ammonia solution. The 

mixture was stirred for 20 minutes to have a homogenous mixture. 100 mL of distilled water was added gradually to the 

mixture under continous stirring for another 10 miutes. The final solution was heated at 200 ℃ for 3 hours in a 

hydrothermal chamber. Formation of carbon quantum dot is confirmed by the brownish black coluor observed. The CQD 

is dried and grinded. CQD is is extracted with methanol as a solvent and purified by centrifugation The CQD solution is 

stored in a test tube. 

2.1.4 SILAR synthesis of CdS and ZnS thin films layers 

Cadmium sulphide (CdS) and zinc sulphide (ZnS) thin films were synthesized using successive ionic layer adsorption 

reaction (SILAR). These were achieved using aqueous solutions of 0.10 M of cadmium chloride and 0.10 M of zinc 

acetate as precursors of Cd and Zn ions respectively. Sodium Sulfide was used as a source of S2- ions. The pH of metal 

ions were adjusted to 8.0 using sufficient quantity of concentrated  NH4OH solution. Four steps SILAR cycle approach 

similar to the steps used by [72-74] were used to synthesize the binary metal sulphides of CdS and ZnS thin films. 

2.1.5 Synthesis of CuS-Cu counter electrode thin film 

Cu-CuS layer was assembled on  Ni-Co-Cu  mesh substrate by immersion in 0.5M  sodium sulphide solution for 30 

minutes. The reaction forms  a surface layer of copper sulphide. 

2.2 Assembly of carbon quantum dot sensitized solar cell (CQDSSC) with CuS-Cu 

The CQDSSC is assembled by sandwiching these layers as shown in figure 1. The counter electrode is then attached with a glue 

and the electrolyte filled through a hole drilled on the counter electrode. The CQDSSC architecture is madeup of FTO/d-TiO2/m-

TiO2/CQD/CdS/ZnS/CuS-Cu as shown in figure 1(a). The prototype design is shown in figure 1(b). The syntheszied solar cell 

is made of 6 Silar cycles of CdS and 2  of ZnS. The developed CQDSSC was characterized to determine the cell parameters 

such as power conversion efficiency (𝜂), open circuit voltage (Voc), short circuit current (Jsc), fill factors and others. 

 
Figure 1:  Assembled QDSSC (a) designed structure and (b) prototype 

 

3.0 RESULTS AND DISCUSSIONS 

3.1 Solar cell parameters 

To determine the properties of the fabricated FTO/d-TiO2/m-TiO2/CQD/CdS/ZnS/CuS-Cu (6 cycle of CdS and 2 cycle of ZnS) 

CQDSSC, the current and voltage measurement of the cell was down. I-V curve was obtained under irradiance intensities of 
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1000 W/m2 at 25 oC. For an ideal solar cell, the light-induced current generated (Iph) is closely linked to the incident photon flux 

on the photodiode by the equation (1) as given by [75] 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑  

 

     𝐼 = 𝐼𝑝ℎ − 𝐼0 [𝑒
(

qV

KT
)

− 1]        1 

Where Id is diode current, KB is boltzman constant, T is absolute temperature, q is the electron charge, V is voltage at terminals 

and Io is saturation current. The short circuit current (JSC) is equal to the light-generated current (Iph). In this case, the open-

circuit voltage (VOC) can be calculated using equation (2) as given by [75] 

                 𝑉𝑜𝑐 =
𝐾𝐵𝑇

𝑞
ln (1 −

𝐼𝑝ℎ

𝐼0
)        2 

The short-circuit current (ISC) is the current when the voltage across the cell is at its minimum (zero) and the current is at its 

maximum. The open-circuit voltage (VOC) is the voltage when the cell is not connected to any load. The fill factor (FF) is given 

in equation (3) by [76-77] 

   𝐹𝐹 =  
𝐼𝑚𝑝×𝑉𝑚𝑝

𝐽𝑠𝑐×𝑉𝑜𝑐
         3 

Where 𝐼𝑚𝑝 is the maximum power current and 𝑉𝑚𝑝 is the maximum power voltage. The power conversion efficiency of the solar 

cell is given in equation (4) by [76-77] 

𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

𝑉𝑜𝑐×𝐽𝑠𝑐×𝐹𝐹

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑠𝑜𝑙𝑎𝑟 𝑝𝑜𝑤𝑒𝑟 (𝑃𝑖𝑛)
  

The I-V measurement of CuS-S counter electrode based solar cell was carried out using solar simulation equipment at 

SHESTCO, Abuja Nigeria. The solar simulation parameters used were flux intensity of 1000 W/m² and  AM1.5 solar spectrum. 

The IV results obtained were plotted and solar parameter determine d from the plot. The area of the solar cell was found to be 

32 mm2. Figure 2 shows the I-V curve of the solar cell while table 1 gives the corresponding solar cell parameters obtained from 

Figure 2. 

 

 
Figure 2: I-V curve of FTO/d-TiO2/m-TiO2/CQD/CdS/ZnS/CuS-Cu (6 cycle of CdS and 2 cycle of ZnS) CQDSSC 

 

Table 1: Solar cell parameters of FTO/d-TiO2/m-TiO2/CQD/CdS/ZnS/CuS-Cu (6 cycle of CdS and 2 cycle of ZnS) 

CQDSSC 

Cell name 𝑱𝒔𝒄 (𝝁𝑨) 𝑽𝒐𝒄 (𝑽) 𝑰𝒎𝒑 (𝝁𝑨) 𝑽𝒎𝒑(𝑽) 𝑷𝒎𝒂𝒙 

(µW) 

𝑷𝒊𝒏 

(W) 

FF 𝜼 (%) 

CuS-Cu 26.30 0.470 21.20 0.285 6.04 0.032 0.489 1.88 
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The performance of the FTO/d-TiO2/m-TiO2/CQD/CdS/ZnS/CuS-Cu quantum dot sensitized solar cell (QDSSC) was 

evaluated, yielding a short-circuit current density (𝐽𝑠𝑐) of 26.30 μA and an open-circuit voltage (𝑉𝑜𝑐) of 0.470 V, with a 

maximum power output (𝑃𝑚𝑎𝑥) of 6.04 μW at a current (𝐼𝑚𝑝) of 21.20 μA and voltage (𝑉𝑚𝑝) of 0.285 V. The solar cell 

demonstrated a fill factor (FF) of 0.489 and a power conversion efficiency (PCE) of 1.88%, calculated against an input 

power (𝑃𝑖𝑛) of 0.032 W. These results highlight the cell’s moderate efficiency, typical of quantum dot-based solar cells, 

and point to areas for improvement, such as reducing resistive losses to increase the FF and efficiency. The stable I-V 

curve indicates minimal shunt resistance losses, though the gap between 𝐽𝑠𝑐 and 𝐼𝑚𝑝 suggests some series resistance 

impacts performance. Similar researches [78-80] have shown that PCE of CQDSSC is generally low. Liu et al [78] 

reported a PCE of 1.61% for QDSSC on a vertical TiO2 nanotubes. Mistry et al [79] reported a PCE of 1.20% for nitrogen 

doped QDSSC. Alavi et al [80] reported an improved PEC values that ranged between 2.52 and 4.62% for QDSSC with 

similar TiO2/CdS/ZnS photoanode combinations but different counter electrode. 

3.2 Hall effect measurement and I-V curve of counter electrode material 

Figure 3 (a) and table 2 show the I-V and hall measurement parameters of CuS-Cu electrode. The Hall effect parameters 

of CuS-Cu thin films provide critical insights into their electronic and transport properties, particularly their potential as 

counter electrodes in quantum dot solar cells. The carrier concentration (𝑛𝑏)  of 1.103 × 1018 𝑐𝑚−3 suggests sufficient 

charge carriers for conduction, which is essential for maintaining efficient electron transfer during solar cell operation. 

The moderate mobility of 2.619 × 102 𝑐𝑚2/𝑉𝑠 indicates some level of scattering, which can be minimized to optimize 

performance. 

 
Figure 3(a-b): Hall effect measurement of and I-V curve of CuS-Cu counter electrode 

The low resistivity (𝜌) = 2.161 × 10−2 Ω⋅cm and high conductivity (σ) of 4.628 × 102 S/cm demonstrate efficient 

charge transport, a desirable characteristic for counter electrodes which require low electrical resistance for high current 

flow. The Hall coefficient (RH) of  value of 5.659 𝑐𝑚3/𝐶 provides clues about the majority carrier type, likely electrons 

or holes, critical for matching the band alignment in quantum dot solar cells. 

Additionally, sheet resistance (Rs) value of 3.087 Ω/sq confirm the material's suitability for thin-film applications. These 

properties imply that Cu-CuS thin films can efficiently catalyze the redox reactions at the counter electrode while 

maintaining electrical stability. This makes them a promising alternative to conventional materials like platinum, 

offering a cost-effective and scalable solution for next-generation solar cells. Optimizing these parameters could further 

improve their catalytic activity and energy conversion efficiency, enhancing the performance of quantum dot solar cells.  

 

Table 2: Hall effect parameters of the deposited Cu-CuS thin films 

𝒏𝒃 × 𝟏𝟎𝟏𝟖 

(𝒄𝒎−𝟑) 

𝝁 × 𝟏𝟎𝟐 

(𝒄𝒎𝟐/𝑽𝒔) 

𝝆 × 𝟏𝟎−𝟐 

(𝛀 𝒄𝒎) 

𝑹𝑯 

(c𝒎𝟑/𝑪) 

𝒏𝒔 × 𝟏𝟎𝟏𝟓 

(𝒄𝒎−𝟑) 

𝝈 × 𝟏𝟎𝟏 

(𝑺/𝒄𝒎) 

𝑹𝒔 

(𝛀/𝐬𝐪) 

1.103  2.619 2.161  5.659 7.721  4.628 3.087 
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4.0 CONCLUSION 

This study successfully fabricated and characterized a Carbon Quantum Dots (CQDs)/CdS/ZnS trilayer thin-film solar cell 

incorporating a Cu-CuS counter electrode. The solar cell demonstrated a power conversion efficiency (PCE) of 1.88%, a short-

circuit current density (𝐽𝑠𝑐) of 26.30 µA, and an open-circuit voltage (𝑉𝑜𝑐) of 0.470 V under standard test conditions. The Cu-

CuS counter electrode exhibited excellent electrical properties, including a low resistivity (𝜌) of 2.161 × 10−2 Ω⋅cm and high 

conductivity (σ) of 4.628 × 102 S/cm, Hall coefficient (RH) of  value of 5.659 c𝑚3/𝐶 and sheet resistance (Rs) value of 3.087 

Ω/sq emphasizing its potential for scalable photovoltaic applications. When compared with other studies, the obtained PCE is 

in line with typical quantum dot-sensitized solar cells (QDSSCs). For instance, Liu et al. reported a PCE of 1.61% for QDSSCs 

using vertically ranged TiO2 nanotubes, while Mistry et al. achieved 1.20% efficiency with nitrogen-doped QDSSCs. Alavi et 

al. demonstrated higher efficiencies ranging from 2.52% to 4.627% using manganese-doped ZnS passivation layers and co-

sensitized zinc-porphyrin photoanodes. These results highlight that while the current study aligns with existing literature, further 

optimization, particularly in reducing resistive losses and enhancing light absorption in the CQD layer, is essential to bridge the 

efficiency gap with advanced designs. This work underscores the potential of combining green synthesis approaches with 

innovative material design to develop eco-friendly and cost-effective solar cells.  
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